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Le présent document présente un probléeme de calcul différentiel destiné a la résolution d’une
EDP avec conditions de Dirichlet en dimension 1. Nous ne nous servirons que des outils étudiés
en L3 de mathématiques, que nous rappellerons au cours de ’exposé.

Dans tout ce probleme, E désigne le R-espace vectoriel :
E={ueC*([~1;1]) | u(~1) = u(1) = 0}
que 'on munit de la norme

lullz = sup [u"(t)] + sup [u/(t)] + sup [u(t)]

b —h _7]

Nous noterons F = C%([—1;1]) I'espace muni de la norme ||ul|r = sup |u(t)|.

)

On pourra admettre sans démonstration que (E,|.|g) et (F,|.]|r) sont deux espaces de
Banach. On notera L.(F, F') I'espace vectoriel des applications linéaires continues de E dans

F que I'on munit de la norme ||ul|z (g, = sup (@)l = sup |u(x)|F.
w20 |ZlE  ja)p=1

Une application linéaire v de E dans F' est continue ssi :
(AM > 0)(Vz € E) |u(z)|r < M||z|lp
ssi :

u est bornée sur la sphere unité

Ce probleme est 'examen de Juin 1996 du certificat de calcul différentiel en licence de ma-
thématiques (L3 actuellement) de 1'Université Paris XII (Créteil / Marne-la-Vallée), créé par
Pesprit tordu;-) de Franck Pacard, actuellement directeur de ’école Polytechnique.

Le but est de résoudre sur R x E I"équation d’inconnues (A, u) :

W+ d+ur=0

La correction est la mienne et donc toutes les erreurs qui pourraient advenir sont
de mon fait!



1 Enoncé du probleme
Question 1 : On munit R X E de la norme produit ||(A\, u)||rxz = max(|A|, ||u||g)-
Prouver que ’application

N:MNu) eERxE=u + utu*eF

est de classe C! sur R x E et déterminer sa différentielle.

2
Question 2 : On suppose que A\ € |0; % .

a) Démontrer que pour tout f € F, il existe une unique solution de
) w’+ A w=f sur]—1;1]
x)
w(—1)=w(1l)=0
qui appartient a F.

b) Démontrer que lapplication qui a f € F associe la solution w € E de (*) est linéaire
continue.

Indication : On pourra chercher w sous la forme :
t r
w(t) = acos(VAt) + bsin(Vt) + COS(\f)\t)/ (cos(ﬁr))d/ cos(V/\s) f(s)dsdr
-1 —1

ou les coefficients a et b restent & déterminer.
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Question 3 : On note pour toute la suite A\; = —.

Démontrer que pour tout Ag € [0; A\1[, DN (Ao, 0), la différentielle partielle de N par rapport
a u, calculée au point (Mg, 0) est un isomorphisme d’evn de E sur F.
En déduire I’ensemble des solutions de NV'(\,u) = 0 au voisinage de (A, 0).

Question 4 : On note pour toute la suite wy (t) = cos(mt/2).
Vérifier que (A1, w;) est 'unique solution de (*) telle que :

w(t) >0 sur | —1;1]
[ W)t =1

Question 5 : On note

Ei—{ucE| L 11 w1 (s)u(s)ds = 0}

et
Fil={ueF| /11 wi(s)u(s)ds = 0}

Ces espaces vectoriels sont respectivement munis des normes ||.||g et ||.|| .
Vous pourrez utiliser sans démonstration que (E1,|.|[z) et (F1,|.||r) sont des espaces de
Banach. Enfin, pour tout u € E (resp. pour tout v € F'), on pose :

I(u) =u— (/1 wl(s)u(s)ds> wi

-1

Prouver que IT : £ — Ej (resp. Il : F' — F}) est une application linéaire continue.



Question 6 : a) Démontrer que pour tout f € F}, il existe une unique solution de :

(34) - {w”—i—)\lw—f sur | — 1;1]
" |w(=1) =w(1) =0

qui appartient a Ej.

b) Prouver que l'application qui & f € F} associe la solution w € Ej est linéaire continue.

Indication : Apres avoir justifié existence de la formule ci-dessous, on pourra établir que w
est donnée par :

w(t) = wr (1) /t () / " wr(s) f(s)dsdr

-1

Question 7 : a) Démontrer que pour tout u € F :

d*u d?
II{— | =51
(dt2 ) a1
b) En déduire que pour tout (A, u,u) € R x R x Fy :

TN (A w4 pwn)) = a” + M+ (A — Ap)pewr +TT[(u + pewr)?]
| —

erreur 7 =07

Question 8 : En utilisant les questions précédentes, démontrer que pour tout (\,u) € R?,
dans un voisinage de (A1, 0), il existe une unique solution u; € E; de

(N (A ug + pw)) =0

On notera uj (A, p) cette solution.

Question 9 : Démontrer que pour tout A proche de A1, on a u;(A,0) = 0.
En déduire qu’il existe une fonction (A, ) — ¥ (A, p) continue, définie dans un voisinage de
(A1,0) telle que :

[ ) (6 + por(s))2ds = 200,

-1

Indication : on pourra appliquer une formule de Taylor.

Question 10 : On suppose maintenant que I'on est au voisinage de la solution (Ag,0).
Démontrer que pour tout (A, g, u) € R xR x Ej :

N(/\ u—l—,uwl):() — {H[N()‘au+ﬂwl)] =0

JLH NG U+ pwr)(s)wi (s)ds = 0

Question 11 : Déterminer I'ensemble des solutions de N (A, u) = 0 au voisinage de (A1, 0).



2 Indications

Question 1 : Rappelons quelques définitions ...

Différentielle d’une application entre deux Banach

Soient (E,|.||[g) et (F,|.]|r) deux espaces de Banach, U un ouvert de E et f : U C
E — F une application de U dans F. On dit que f est différentiable en a € U s’il
existe une application linéaire continue ¢ € L.(E, F) telle qu’au voisinage de 0 :

fla+h) = f(a) +£(h) + o([]])

Cette application linéaire ¢ est alors unique, on 'appelle la différentielle de f en a,
et on note { = Df(a) ou = Df,.

Nous écrirons souvent D f,.h ou D f(a).h plutoét que Df(a)(h) ou D fq(h).

\. J

Pour démontrer que N est différentiable en (\,u) € R x E quelconque, on peut revenir a la
définition en exprimant N (A + v, u + h) — N(A,u) comme un terme linéaire L(v, h) en (v, h)
plus un petit o(||(vy, h)||), puis prouver que L est continue a I’aide de la caractérisation de la
continuité des AL dans les evn.

Attention : étre linéaire en (v, h), ce n’est pas étre linéaire séparément par rapport a v puis
par rapport a h! On peut aussi remarquer que N est la somme d'un terme linéaire et d’un
terme quadratique, tous deux différentiables . ..

Application de classe C*

Soient (E,||.||g) et (F,|.||r) deux espaces de Banach, U un ouvert de F et f: U — F
une application de U dans F. On dit que f est de classe C' sur U si

Df : ae€Uw— Df(a) € L(E,F) est continue

Attention, en général D f n’est PAS une application linéaire.

Pour prouver que N est de classe C! sur R x E, on prouvera que pour tout (A\,u) € R x E,

lim Df(N.v) — Df(Au i
(/\’,v)—>(A,u)|| ut ) fs ).y, p)

Question 2 : Commencer par 'unicité, ce qui amenera a une EDO linéaire du second ordre
a coefficients constants, puis se servir de la formule proposée pour 'existence.

Question 3 : Il s’agit de connaitre la notion de différentielle partielle de maniére a pouvoir
utiliser le théoréme des fonctions implicites.

Remarquons qu’en dimension infinie, la continuité des applications linéaires n’est pas auto-
matique. L’outil phare est le théoreme de Banach.

Théoréme de Banach

Soient (E,|.|g) et (F,|.||r) deux espaces de Banach. Si u € L.(E;F) est bijective,

alors u~! est continue de F' dans E.
Bref, u est un isomorphisme d’evn.




Différentielle partielle

Soient (E, ||.||g), (F,||.||F) et (G, ||.|lc) trois espaces de Banach, U un ouvert de E'x F' et
f:U — G,(z,y) — f(z,y) une application différentiable de U dans G et a = (a1,a2) €
U. Alors f(.,a2) : E — G est différentiable en a; et on note D f,, (a1,a2) € L.(F,G) la
différentielle de f(.,az) au point a; € E.

On l'appelle la différentielle partielle de f en la premiére variable en (ai,as) :

flar + h1,a2) = f(a1,a2) + D fa, (a1, a2).h1 + o(||h1| &)

Si de plus, f est de classe C! sur U, alors f(.,az) 'est aussi sur U N (E x {as}).

Nous avons pour tout a = (a1,a2) € U :

Df(a).(h1, ha) = Dfa,(a).h1 + Dfa,(a).ha

Théoréme des fonctions implicites

Soient E,F et G trois espaces de Banach, U un ouvert de £ x F et f : U — G
une application de classe C'. Soit (a,b) € U tel que f(a,b) = 0. On suppose que
Dyf(a,b) : F — G est un isomorphisme d’evn. Alors :

1. Tl existe V' C U voisinage ouvert de (a,b),
2. Il existe W C FE voisinage ouvert de a,

3. Il existe une application ¢ : W — G de classe C! telle que :
[(z,y) e Vet flx,y) =0] <= [z € W et y = ¢(z)], avec ¢p(a) = b.

De plus, pour z proche de a : Dé(z) = —[Dy f(z, ¢(x))] " o Dy f(z, d(x)).

Question 4 : Vérifier d’abord que (Aj,w;) vérifie les conditions demandées, puis prouver

2
. . / 7-‘-
I'unicité : on pourra se ramener au cas A € [0; ] .
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Question 5 : Il s’agit d’utiliser la caractérisation d’une application linéaire continue entre
deux evn E et F' en effectuant des majorations adéquates; prouver qu’il existe C' > 0 tel que
pour tout u € E : |II(u)||g, < C||u||g. Pareil avec F et Fj.

Question 6 : 1) On vérifie que si u € F, alors II(u) € F; et que w; € Ej.

2) Le fait que II soit linéaire ne pose pas de probléme.

3) Nous pouvons remarquer alors que IT est la projection de E sur Ej (resp. de F sur F}),
parallelement & Rw;. Mais étant en dimension infinie, il nous reste a prouver la continuité de

I1.
Question 7 : Simple calcul.

Question 8 : L’énoncé suggere d’utiliser le théoréme des fonctions implicites a une fonction
bien choisie.

Question 9 :



Question 10 : Un sens est évident. Pour 'autre, se rappeler que 11 est la projection sur £y
parallelement a Rw;.

Question 11 : RAS



3 Résolution détaillée

Question 1 : FE C F et (Vu € E) max(||u”||p, |v/||F, ||u||r) < ||ul|g et ||| est une norme
d’algebre i.e vérifiant : [|u.v||p < ||u||p.||lv]|]F (Vu,v € F).
On se donne (A, u) € R x E quelconque.
1. Soit (y,h) ERX E: N(A+v,u+h) =N\, pn) + (W + A+ yu + 2uh) + (vh + h?).

Posons L(v,h) = h" + Ah + yu + 2uh et R(vy,h) = vh + h?.

Nous noterons ||(, h)|| plutdt que ||(7, h)||rxE-

— L est linéaire en (v, h) et une majoration simple conduit a :

IL(y, h)|lr < (14 |A| + 3||ullg)]| (7, k)] Donc L est continue.
— De méme, ||R(y,h)||lr < 2[|(v,h)||*. Donc R(y, k) = o(|| (v, h)]))-
Ainsi; N est différentiable en (A, u) et DN (A, u).(y,h) = h" + Ah + yu + 2uh.

2. Soient (A, u), (N,v) € R x E et soit (y,h) € R x E de norme 1 :
DN (A u).(y,h) — DN(XN,v).(v,h) = A = XN)h +v(u —v) +2(u — v)h
On en déduit que :

S IDAT )., DN 0.0 Wl < 3mas(A-X ] fuvle) = 310X u-)]
v,h)||=1

!/

Le terme majorant tendant vers 0 lorsque (A, u) — (N, v).

Ainsi, NV est de classe C! sur R x E.

C’est une question relativement technique qui demande néanmoins beaucoup de soin lorsque
I’'on jongle avec les normes pour obtenir des majorations.
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Question 2 : Soit donc A € [O; % l Ainsi cos(v/A) > 0 et sin(v/A) > 0.

a) Unicité : Supposons qu’il existe deux solutions wy et wy de (*). Posons alors w = wy — we.
Alors w est solution de :

CJw" +dw =0 sur]—1;1]
(Pbo) {w(—l) —w(1)=0

(Pbg) a pour équation caractéristique 2 + \ = 0.

Cas1l:)X>0.

L’équation caractéristique admet deux racines complexes conjuguées : iv/\.
Les solutions de w” + Aw = 0 sont les fonctions définies sur [—1;1] par :
w:t— Acos(vVAt) + Bsin(vAt).

Or w(+1) = 0, ce qui conduit au systéme :

{Acos(ﬁ) + Bsin(v/A) =0
Acos(v/A) — Bsin(v/A) =0

On a alors immédiatement A = B = 0 et donc w = w; — w9y = 0 i.e w1 = wy et 'unicité.

Cas2: A=0.
On a immédiatement w(t) = At + B



Les conditions initiales nous amenent au systéme :
A+B=0
{—A +B=0
ce qui conduit a A = B =0 et donc w = w; — w2 = 0 et 'unicité.
b) Existence :

Nous allons utiliser la formule proposée par ’énoncé (un bon exercice est de comprendre d’ou
elle provient).

Nous cherchons donc w sous la forme :

t r
w(t) = acos(VAt) + bsin(VAt) + cos(\f)\t)/ (cos(ﬁr))_Q/ cos(VAs) f(s)dsdr
—1 -1
Un calcul simple conduit & : w”(t) = —Aw(t) + f(t), donc w” + Aw = f sur | — 1;1][.
Il reste a déterminer a et b afin que w soit solution de (*).
La condition aux limites w(£1) = 0 conduit au systéme :

{a cos(vVA) — bsin(v/A) = 0
acos(vVX) + bsin(v/A) + cos(vVA) [, (cos(vVAr)) 2 [T cos(v/As) f(s)dsdr = 0

On en déduit apres calculs :

a= —% I1 (cos(VAr)) =2 7, cos(V/As) f(s)dsdr

_COS(;@ I (cos(vVAr)) 2 [T cos(V/As) f(s)dsdr

Conclusion : il existe une unique solution de (*) quelle que soit f € F.

b:

La correspondance qui a f € F associe w solution de (*) est donc une fonction (on aurait dit
application avant). Il est clair qu’elle est linéaire. De plus, U'inégalité || f||r < (1 + |A|)||w| £
nous assure sa continuité.

Question 3 :  Soit A\g € [0; A[. On a N(Xp,0) = 0.
D’apres la question 1, on a : DyN (Ao, 0).h = b + X\oh (Vh € E).
———

€F
D’apres la question 2, (Vf € F) (3h € E) D, N ()Xo, 0) est une bijection linéaire de E dans F.
De plus, N est de classe C! sur R x E, donc D, N'()g,0) est continue sur E.
Le théoréme de Banach nous assure que [Dy, N (Ao, 0)] 7! est continue.
Ainsi, DN (Ao, 0) est un isomorphisme d’evn de F sur F.

D’apres le Théoréme des fonctions implicites (TFI),
— Il existe V C R x E voisinage ouvert de (\g,0),
— Il existe W C R voisinage ouvert de Ay,
— Tl existe ¢ : W — E de classe C! tel que :
(Nu) eVet N\ u)=0) < (A€W et u=¢(\) et p(Ag) =0).
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Question 4 : On pose \; = % et wi(t) = cos(mt/2).

Existence : )

t
a) wi(t) = —% cos (7;) = —%wl(t). Dot wf + Mw; =0 sur | — 1;1[.

mt T T

b) De plus, wi(£1) = 0. Et comme ¢ €] — 1;1], 5 E]—Q; 5 {, donc wy(t) > 0 sur | — 1;1].

t)+1 1
c) On a w(t) = COS(W2)+, d’ou / wi(t)dt = 1.

-1

Ainsi, (A1, w1) est solution de w” + Aw = 0 sur | — 1; 1], avec w(£1) =0, w(t) > 0 sur | — 1;1]
1

et/ Wi (t)dt = 1.
-1

Unicité : .
Soit (A,w) une solution de (*) vérifiant w(t) > 0 sur | — 1;1] et / Wi(t)dt = 1.
-1
L’énoncé ne donne aucune précision sur le signe de A mais un raisonnement par I’absurde, en

distinguant les cas A = 0 et A\ < 0 contredit w > 0 sur | — 1; 1[. On peut donc supposer A > 0

2
et méme)\G]O;Z].

L’équation caractéristique de w” + Aw = 0 sur | — 1; 1] étant 72 + A\ = 0, admet pour solutions
les fonctions ¢ +— A cos(v/At) + Bsin(v/At). Les conditions w(£1) = 0 amene au systéme :

{A cos(v/A) + Bsin(v/A) =0
Acos(VA) — Bsin(v/A) =0

Dot : {Acos(ﬁ) =0 (1)
| Bsin(vA) =0 (2)

2
Supposons A # WZ, alors comme v\ € }0; ;T[ : sin(v/A) > 0, on en déduit B = 0 et comme

cos(VA) > 0 également, on a A = 0. D’ott w = 0. Contredit w > 0 sur | — 1;1[.
Ainsi A = )\1.

On a donc w(t) = Acos (gt) + Bsin (gt)

Les conditions w(+1) = 0 donnent w(t) = Acos <72Tt> Comme (V¢ €] — 1;1[) cos (gt) >0
et par hypotheése w(t) > 0sur ] —1;1[,ona: A > 0.
1 1 A2 1
Enfin, / GEt)dt =1 — A2/ cos? (gt) =1 <« 7/ (1 + cos(mt))dt =1 «—
—1 -1 -1
A2 =1.Dot A =1 puis w = w;.
Conclusion : Ainsi, (A\1,w;) est 'unique solution de w” + Aw = 0 sur | — 1;1[, qui vérifie

1
w(xl) =0, w>0sur ]| —1;1] et / Wi(t)dt = 1.
-1

1
Question 5 : Rappelons que Fy = {u € F | / wi(s)u(s)ds = 0} et
-1

1
Fr={uekF| / wi(s)u(s)ds = 0}, espaces vectoriels munis respectivement des normes
-1



E — E1
U u— (fil wl(s)u(s)ds> w1
On vérifie que si v € E, alors II(u) € E;. En effet :

/11 w1 (8)I(u)(s)ds = /11 w(s)u(s)ds — (/11 wl(s)u(s)ds) (/11 w%(s)ds) =0

et que w; € Fj car :

II.llz et ||.||F. Enfin, IT : {

La linéarité de II ne pose aucun probleme.
De plus, F = F1 & Rw;. En effet :
1. Siue E:u=1II(u) + (f_ll wl(s)u(s)ds> w1 € B + Rwy

1
pwi(s)ds = 0. Dot :
1

2. Soit u € Ey NRwy : (Fu € R) u = pw et/
1 1 -
/ pwi(s)ds = ,u/ wi(s)ds = 0 et partant u = 0.
-1 -1 1
Ainsi, IT est U'opérateur de projection sur E; parallelement a Rw;. Prouvons la continuité de
In: £ — E.

On a pour tout ¢t € [—1;1] :

— [(w)](t) = u(t) - ( I wl(s)u(s)ds) wi(t)
— [I(w))'(t) = ' (t) — g ( I wl(s)u(s)ds> sin (g)

7'('2
— M@))(8) = () + T (S wn()uls)ds ) wn t)

Remarquons de plus que | [, w;(s)u(s)ds| < 2||ulo et que |jwi|| < 1. Nous en déduisons que :
— [M()]loo < 3lulloo

— @) Nloo < flulloo + mllzlloc
™
— @) oo < lle"lloo + 5 lfulloo

On en déduit que :

7T2
M (w)|[z < <3+7T+ < | lule

Donc II est continue de E dans Ej.
De la méme maniere, IT est continue de F' dans F.

Remarque : En fait, un vrai opérateur projection est un endomorphisme de E, nous avons
donc travaillé avec sa co-restriction sur le sous-espace de E sur lequel on projette : Eq, qui
est muni de la méme norme que celle de FE.

Question 6 : a) Le procédé est identique & celui exposé a la question 2. Pour gagner un
peu de temps, nous ne le détaillerons pas a nouveau.

b) Linéarité : Soient f,g € Fj et u € R. L’unique solution de (**) associée au second membre
pf + g est clairement pwyr + wy, olt wy et wy sont les solutions de (**) respectivement avec

10



pour second membre f puis g.

Continuité : Soit f € Fy : || f|lr < max(1,\1)||w||g = A\1|lw|| . Donc l'application f € F}
w e FEy de:

(s) {w”—i—)\lfw =f sur|—1;1]
" |w(=1) =w(1) =0

est continue.

Question 7 : a) Soit u € E.

Effectuant une premiere IPP :

/1 wi(s)u”(s)ds = [wl(s)u’(s)]l_l — /1 W (s)u'(s)ds

-1 —_—— -1
=0
2
Utilisant le fait que w” = _Zwl = —\jw1, nous avons avec une seconde IPP :

1 ! / 1 [
/_1 wy (s)u'(s)ds = [u(s)wy(s)]”, o /_1 u(s)wi(s)ds

=0

D’ou :
M(u”) =u” 4+ 7;2 (/1 u(s)wl(s)ds> w1
Soit enfin : ,
(") = [u _ ( / u(s)wl(s)d8> wl] — [T(w)]”

b) Soit (A, p,u) € R xR x Ej :

N\ u+ pwr) = (u+ pwr)” + AMu + pwr) + (u+ pwr)?, soit
N u+ pwr) = u” — phiwr + M+ Apwy + (w4 pwr)? ie
N u+ pwr) =u” 4+ Au+ (A — M) pwr + (u+ pwr)?.

D’ou par linéarité de II et ce qui précede :
TNV (A w + per)) = T(u)” + AT(u) + (X = Ap)pll(wr) + II{(u + por)?))-
Or si u € Ey, alors II(u) = w et II(w;) = 0, d’ou :

TN (A, w4 puwr)) = w” + M+ T (u + pwr)?)]
Question 8 : Considérons ¥ : R x R x Ey, (A, p,u) — I[N (A, u+ pwi)].

Définissons :
1. ¢ RxRx E; - RxE, (A p,u)— (A u+ pw)
2.N : RxE—F, (\u) = u”+ M+ u?

11



3.M: F->F, u—ur—u— (fil wl(s)u(s)ds> w1
Ainsi: W =IToNo¢ : Rx R x E; — F|. Notons que II et ¢ sont linéaires.

U(A,0,u+h)—U(A,0,u) = TNA,u+h)] — N (A, u)]
ON (A1, u+ k) — N(A, )]
[(u+h)" + M(u+h) + (u+ h)? —u” — \u —u?]
II[A” + Ah + 2uh + h?]
= R+ \h+ 2II(uh) 4+ I1(h%) par 7)

——

—o(h)
On en déduit immédiatement (ou presque) que pour tout h € Ey : Dy, ¥(A1,0,0).h = h”+ A\ h.
La question 6) et le théoréme de Banach nous assurent que D, ¥ (A1, 0,0) est un isomorphisme

d’evn de E; sur Fi.
Or U est de classe C! comme composée d’applications de classe C! et U(A1,0,0) = 0.

Le théoréme des fonctions implicites nous dit alors que :
— Tl existe V. C R x R x Fj voisinage ouvert de (A1, 0,0),
— 1l existe W C R? voisinage ouvert de (A, 0)
— Tl existe w : W — E; de classe C! telle que :
A pu) € Vet wh pyu) =0 <= [ue W et u=w(A ) et w(A,0) =0]

Donc pour (A, 1) dans un voisinage de (A1, 0), il existe un unique u; € Eq tel que W(\, p,uq) =
0 i.e IIIN (A, ug + pwi)] = 0. On notera uy = ug (A, p).

Question 9 : On a u;(A,0) = 0.

J’admets que pour A proche de A1, on a ui(\,0) = 0. Au voisinage de (A1,0), on a d’apres la
formule de Taylor avec reste intégral pour ui(, ) de classe C? :

) 1,2 62
mMJOzuﬂ&m+u52Mﬁ%ﬁ/‘Lﬂ—02&?uﬂ&0ﬁ

1 2!
=0
=0
Bref : 0 o
1% 207Uy
= — 1 —
mO) =5 [ (-G Ot
1 (1—t)282u1 . .. < . .

Or¢: (\p)— /71 5 o2 (A, t)dt est continue au voisinage de (A1,0) (& justifier).

Ce qui suit est un brouillon d’idées!
1

Par définition : TI[(uy + uw1)?] = (ug + pwr)? — / w1 (8)(u1 + pwy)?ds
-1

Or par 7) H[./\/()\,ul + ,uwl)] = ul” + )\ul + H[(ul + ,uwl)z].
D’apres 8) pour (A, ) dans un voisinage de (A1, 0) : TIIN (A, u1 + pwi)] = 0.
Donc pour (A, ) dans un voisinage de (Aq,0) :

0=u1” + Aug + (ur + pen)® — /11 wi(s)(ur (A, p)(s) + peor (s))?ds

Et donce :
TNV i () + )] = [ en(s) O )(s) + pn(s) s

To be continued ...
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Question 10 : Le sens direct (= ) est évident.

TN, u+ )] =0 (1)

LN u+ ) (s)wi(s)ds =0 (2)
La premiere condition (1) implique que N (A, u + pwi) € Rwi, donc il existe o € R tel que
N u+ pwr) = aw;.

Reportant dans (2) et se servant du fait que fil w?(s)ds = 1, on en déduit que a = 0. D’ot
N\ u+ pw) =0.

Réciproquement, supposons que dans un voisinage de (A1, 0) : {

Question 11 : Se servant du fait que £ = F; & Rwy, on déduit de la question 10 qu’au
voisinage de (A1, 0) ’ensemble des solutions de N'(\, u) = 0 est la fonction nulle.
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