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Le présent document présente un problème de calcul différentiel destiné à la résolution d’une
EDP avec conditions de Dirichlet en dimension 1. Nous ne nous servirons que des outils étudiés
en L3 de mathématiques, que nous rappellerons au cours de l’exposé.

Dans tout ce problème, E désigne le R-espace vectoriel :

E = {u ∈ C2([−1; 1]) | u(−1) = u(1) = 0}

que l’on munit de la norme

∥u∥E = sup
[−1;1]

|u′′(t)| + sup
[−1;1]

|u′(t)| + sup
[−1;1]

|u(t)|

Nous noterons F = C0([−1; 1]) l’espace muni de la norme ∥u∥F = sup
[−1;1]

|u(t)|.

On pourra admettre sans démonstration que (E, ∥.∥E) et (F, ∥.∥F ) sont deux espaces de
Banach. On notera Lc(E,F ) l’espace vectoriel des applications linéaires continues de E dans

F que l’on munit de la norme ∥u∥Lc(E,F ) = sup
x ̸=0

∥u(x)∥F

∥x∥E
= sup

∥x∥E=1
∥u(x)∥F .

Une application linéaire u de E dans F est continue ssi :

(∃M > 0)(∀x ∈ E) ∥u(x)∥F ≤ M∥x∥E

ssi :
u est bornée sur la sphère unité

Ce problème est l’examen de Juin 1996 du certificat de calcul différentiel en licence de ma-
thématiques (L3 actuellement) de l’Université Paris XII (Créteil / Marne-la-Vallée), créé par
l’esprit tordu ;-) de Franck Pacard, actuellement directeur de l’école Polytechnique.
Le but est de résoudre sur R × E l’équation d’inconnues (λ, u) :

u” + λu+ u2 = 0

La correction est la mienne et donc toutes les erreurs qui pourraient advenir sont
de mon fait !
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1 Énoncé du problème
Question 1 : On munit R × E de la norme produit ∥(λ, u)∥R×E = max(|λ|, ∥u∥E).
Prouver que l’application

N : (λ, u) ∈ R × E 7→ u′′ + λu+ u2 ∈ F

est de classe C1 sur R × E et déterminer sa différentielle.

Question 2 : On suppose que λ ∈
[
0; π

2

4

[
.

a) Démontrer que pour tout f ∈ F , il existe une unique solution de

(∗) :
{
w′′ + λw = f sur ] − 1; 1[
w(−1) = w(1) = 0

qui appartient à E.

b) Démontrer que l’application qui à f ∈ F associe la solution w ∈ E de (*) est linéaire
continue.

Indication : On pourra chercher w sous la forme :

w(t) = a cos(
√
λt) + b sin(

√
λt) + cos(

√
λt)

∫ t

−1
(cos(

√
λr))−2

∫ r

−1
cos(

√
λs)f(s)dsdr

où les coefficients a et b restent à déterminer.

Question 3 : On note pour toute la suite λ1 = π2

4 .
Démontrer que pour tout λ0 ∈ [0;λ1[, DuN (λ0, 0), la différentielle partielle de N par rapport
à u, calculée au point (λ0, 0) est un isomorphisme d’evn de E sur F .
En déduire l’ensemble des solutions de N (λ, u) = 0 au voisinage de (λ0, 0).

Question 4 : On note pour toute la suite ω1(t) = cos(πt/2).
Vérifier que (λ1, ω1) est l’unique solution de (*) telle que :{

ω(t) > 0 sur ] − 1; 1[∫ 1
−1 ω

2(t)dt = 1

Question 5 : On note

E1 = {u ∈ E |
∫ 1

−1
w1(s)u(s)ds = 0}

et
F1 = {u ∈ F |

∫ 1

−1
w1(s)u(s)ds = 0}

Ces espaces vectoriels sont respectivement munis des normes ∥.∥E et ∥.∥F .
Vous pourrez utiliser sans démonstration que (E1, ∥.∥E) et (F1, ∥.∥F ) sont des espaces de
Banach. Enfin, pour tout u ∈ E (resp. pour tout u ∈ F ), on pose :

Π(u) = u−
(∫ 1

−1
ω1(s)u(s)ds

)
ω1

Prouver que Π : E → E1 (resp. Π : F → F1) est une application linéaire continue.

2



Question 6 : a) Démontrer que pour tout f ∈ F1, il existe une unique solution de :

(∗∗) :
{
w′′ + λ1w = f sur ] − 1; 1[
w(−1) = w(1) = 0

qui appartient à E1.

b) Prouver que l’application qui à f ∈ F1 associe la solution ω ∈ E1 est linéaire continue.

Indication : Après avoir justifié l’existence de la formule ci-dessous, on pourra établir que ω
est donnée par :

ω(t) = ω1(t)
∫ t

−1
(ω1(r))−2

∫ r

−1
ω1(s)f(s)dsdr

Question 7 : a) Démontrer que pour tout u ∈ E :

Π
(
d2u

dt2

)
= d2

dt2
Π(u)

b) En déduire que pour tout (λ, µ, u) ∈ R × R × E1 :

Π(N (λ, u+ µω1)) = u′′ + λu+ (λ− λ1)µω1︸ ︷︷ ︸
erreur ? = 0 ?

+Π[(u+ µω1)2]

Question 8 : En utilisant les questions précédentes, démontrer que pour tout (λ, µ) ∈ R2,
dans un voisinage de (λ1, 0), il existe une unique solution u1 ∈ E1 de

Π(N (λ, u1 + µω1)) = 0

On notera u1(λ, µ) cette solution.

Question 9 : Démontrer que pour tout λ proche de λ1, on a u1(λ, 0) = 0.
En déduire qu’il existe une fonction (λ, µ) 7→ ψ(λ, µ) continue, définie dans un voisinage de
(λ1, 0) telle que : ∫ 1

−1
ω1(s)(u1(λ, µ)(s) + µω1(s))2ds = µ2ψ(λ, µ)

Indication : on pourra appliquer une formule de Taylor.

Question 10 : On suppose maintenant que l’on est au voisinage de la solution (λ1, 0).
Démontrer que pour tout (λ, µ, u) ∈ R × R × E1 :

N (λ, u+ µω1) = 0 ⇐⇒
{

Π[N (λ, u+ µω1)] = 0∫ 1
−1 N (λ, u+ µω1)(s)ω1(s)ds = 0

Question 11 : Déterminer l’ensemble des solutions de N (λ, u) = 0 au voisinage de (λ1, 0).
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2 Indications
Question 1 : Rappelons quelques définitions . . .

Différentielle d’une application entre deux Banach

Soient (E, ∥.∥E) et (F, ∥.∥F ) deux espaces de Banach, U un ouvert de E et f : U ⊂
E → F une application de U dans F . On dit que f est différentiable en a ∈ U s’il
existe une application linéaire continue ℓ ∈ Lc(E,F ) telle qu’au voisinage de 0 :

f(a+ h) = f(a) + ℓ(h) + o(∥h∥)

Cette application linéaire ℓ est alors unique, on l’appelle la différentielle de f en a,
et on note ℓ = Df(a) ou ℓ = Dfa.

Nous écrirons souvent Dfa.h ou Df(a).h plutôt que Df(a)(h) ou Dfa(h).

Pour démontrer que N est différentiable en (λ, u) ∈ R × E quelconque, on peut revenir à la
définition en exprimant N (λ+ γ, u+ h) − N (λ, u) comme un terme linéaire L(γ, h) en (γ, h)
plus un petit o(∥(γ, h)∥), puis prouver que L est continue à l’aide de la caractérisation de la
continuité des AL dans les evn.
Attention : être linéaire en (γ, h), ce n’est pas être linéaire séparément par rapport à γ puis
par rapport à h ! On peut aussi remarquer que N est la somme d’un terme linéaire et d’un
terme quadratique, tous deux différentiables . . .

Application de classe C1

Soient (E, ∥.∥E) et (F, ∥.∥F ) deux espaces de Banach, U un ouvert de E et f : U → F
une application de U dans F . On dit que f est de classe C1 sur U si

Df : a ∈ U 7→ Df(a) ∈ Lc(E,F ) est continue

Attention, en général Df n’est PAS une application linéaire.

Pour prouver que N est de classe C1 sur R × E, on prouvera que pour tout (λ, u) ∈ R × E,
lim

(λ′,v)→(λ,u)
∥Df(λ′, v) −Df(λ, u)∥Lc(R×E,F ) = 0.

Question 2 : Commencer par l’unicité, ce qui amènera à une EDO linéaire du second ordre
à coefficients constants, puis se servir de la formule proposée pour l’existence.

Question 3 : Il s’agit de connaître la notion de différentielle partielle de manière à pouvoir
utiliser le théorème des fonctions implicites.
Remarquons qu’en dimension infinie, la continuité des applications linéaires n’est pas auto-
matique. L’outil phare est le théorème de Banach.

Théorème de Banach

Soient (E, ∥.∥E) et (F, ∥.∥F ) deux espaces de Banach. Si u ∈ Lc(E;F ) est bijective,
alors u−1 est continue de F dans E.
Bref, u est un isomorphisme d’evn.
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Différentielle partielle

Soient (E, ∥.∥E), (F, ∥.∥F ) et (G, ∥.∥G) trois espaces de Banach, U un ouvert de E×F et
f : U → G, (x, y) 7→ f(x, y) une application différentiable de U dans G et a = (a1, a2) ∈
U . Alors f(., a2) : E → G est différentiable en a1 et on note Dfa1(a1, a2) ∈ Lc(E,G) la
différentielle de f(., a2) au point a1 ∈ E.
On l’appelle la différentielle partielle de f en la première variable en (a1, a2) :

f(a1 + h1, a2) = f(a1, a2) +Dfa1(a1, a2).h1 + o(∥h1∥E)

Si de plus, f est de classe C1 sur U , alors f(., a2) l’est aussi sur U ∩ (E × {a2}).

Nous avons pour tout a = (a1, a2) ∈ U :

Df(a).(h1, h2) = Dfa1(a).h1 +Dfa2(a).h2

Théorème des fonctions implicites

Soient E,F et G trois espaces de Banach, U un ouvert de E × F et f : U → G
une application de classe C1. Soit (a, b) ∈ U tel que f(a, b) = 0. On suppose que
Dyf(a, b) : F → G est un isomorphisme d’evn. Alors :

1. Il existe V ⊂ U voisinage ouvert de (a, b),
2. Il existe W ⊂ E voisinage ouvert de a,
3. Il existe une application ϕ : W → G de classe C1 telle que :

[(x, y) ∈ V et f(x, y) = 0] ⇐⇒ [x ∈ W et y = ϕ(x)], avec ϕ(a) = b.

De plus, pour x proche de a : Dϕ(x) = −[Dyf(x, ϕ(x))]−1 ◦Dxf(x, ϕ(x)).

Question 4 : Vérifier d’abord que (λ1, ω1) vérifie les conditions demandées, puis prouver

l’unicité : on pourra se ramener au cas λ ∈
[
0; π

2

4

]
.

Question 5 : Il s’agit d’utiliser la caractérisation d’une application linéaire continue entre
deux evn E et F en effectuant des majorations adéquates ; prouver qu’il existe C > 0 tel que
pour tout u ∈ E : ∥Π(u)∥E1 ≤ C∥u∥E . Pareil avec F et F1.

Question 6 : 1) On vérifie que si u ∈ E, alors Π(u) ∈ E1 et que ω1 ∈ E1.
2) Le fait que Π soit linéaire ne pose pas de problème.
3) Nous pouvons remarquer alors que Π est la projection de E sur E1 (resp. de F sur F1),
parallèlement à Rω1. Mais étant en dimension infinie, il nous reste à prouver la continuité de
Π.

Question 7 : Simple calcul.

Question 8 : L’énoncé suggère d’utiliser le théorème des fonctions implicites à une fonction
bien choisie.

Question 9 :
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Question 10 : Un sens est évident. Pour l’autre, se rappeler que Π est la projection sur E1
parallèlement à Rω1.

Question 11 : RAS
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3 Résolution détaillée
Question 1 : E ⊂ F et (∀u ∈ E) max(∥u′′∥F , ∥u′∥F , ∥u∥F ) ≤ ∥u∥E et ∥.∥F est une norme
d’algèbre i.e vérifiant : ∥u.v∥F ≤ ∥u∥F .∥v∥F (∀u, v ∈ F ).
On se donne (λ, u) ∈ R × E quelconque.

1. Soit (γ, h) ∈ R × E : N (λ+ γ, u+ h) = N (λ, µ) + (h′′ + λh+ γu+ 2uh) + (γh+ h2).
Posons L(γ, h) = h′′ + λh+ γu+ 2uh et R(γ, h) = γh+ h2.
Nous noterons ∥(γ, h)∥ plutôt que ∥(γ, h)∥R×E .
— L est linéaire en (γ, h) et une majoration simple conduit à :

∥L(γ, h)∥F ≤ (1 + |λ| + 3∥u∥E)∥(γ, h)∥. Donc L est continue.
— De même, ∥R(γ, h)∥F ≤ 2∥(γ, h)∥2. Donc R(γ, h) = o(∥(γ, h)∥).
Ainsi, N est différentiable en (λ, u) et DN (λ, u).(γ, h) = h′′ + λh+ γu+ 2uh.

2. Soient (λ, u), (λ′, v) ∈ R × E et soit (γ, h) ∈ R × E de norme 1 :

DN (λ, u).(γ, h) −DN (λ′, v).(γ, h) = (λ− λ′)h+ γ(u− v) + 2(u− v)h

On en déduit que :

sup
∥(γ,h)∥=1

∥DN (λ, u).(γ, h)−DN (λ′, v).(γ, h)∥F ≤ 3 max(|λ−λ′|, ∥u−v∥E) = 3∥(λ−λ′, u−v)∥

Le terme majorant tendant vers 0 lorsque (λ, u) → (λ′, v).

Ainsi, N est de classe C1 sur R × E.
C’est une question relativement technique qui demande néanmoins beaucoup de soin lorsque
l’on jongle avec les normes pour obtenir des majorations.

Question 2 : Soit donc λ ∈
[
0; π

2

4

[
. Ainsi cos(

√
λ) > 0 et sin(

√
λ) ≥ 0.

a) Unicité : Supposons qu’il existe deux solutions ω1 et ω2 de (*). Posons alors ω = ω1 −ω2.
Alors ω est solution de :

(Pb0) :
{
w′′ + λw = 0 sur ] − 1; 1[
ω(−1) = ω(1) = 0

(Pb0) a pour équation caractéristique r2 + λ = 0.

Cas 1 : λ > 0.
L’équation caractéristique admet deux racines complexes conjuguées : ±i

√
λ.

Les solutions de w′′ + λw = 0 sont les fonctions définies sur [−1; 1] par :
ω : t 7→ A cos(

√
λt) +B sin(

√
λt).

Or ω(±1) = 0, ce qui conduit au système :{
A cos(

√
λ) +B sin(

√
λ) = 0

A cos(
√
λ) −B sin(

√
λ) = 0

On a alors immédiatement A = B = 0 et donc ω = ω1 − ω2 = 0 i.e ω1 = ω2 et l’unicité.

Cas 2 : λ = 0.
On a immédiatement ω(t) = At+B
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Les conditions initiales nous amènent au système :{
A+B = 0
−A+B = 0

ce qui conduit à A = B = 0 et donc ω = ω1 − ω2 = 0 et l’unicité.

b) Existence :
Nous allons utiliser la formule proposée par l’énoncé (un bon exercice est de comprendre d’où
elle provient).

Nous cherchons donc ω sous la forme :

w(t) = a cos(
√
λt) + b sin(

√
λt) + cos(

√
λt)

∫ t

−1
(cos(

√
λr))−2

∫ r

−1
cos(

√
λs)f(s)dsdr

Un calcul simple conduit à : ω′′(t) = −λω(t) + f(t), donc ω′′ + λω = f sur ] − 1; 1[.
Il reste à déterminer a et b afin que ω soit solution de (*).
La condition aux limites ω(±1) = 0 conduit au système :

{
a cos(

√
λ) − b sin(

√
λ) = 0

a cos(
√
λ) + b sin(

√
λ) + cos(

√
λ)
∫ 1

−1(cos(
√
λr))−2 ∫ r

−1 cos(
√
λs)f(s)dsdr = 0

On en déduit après calculs :
a = −1

2
∫ 1

−1(cos(
√
λr))−2 ∫ r

−1 cos(
√
λs)f(s)dsdr

b = −cos(
√
λ)

2
∫ 1

−1(cos(
√
λr))−2 ∫ r

−1 cos(
√
λs)f(s)dsdr

Conclusion : il existe une unique solution de (*) quelle que soit f ∈ F .

La correspondance qui à f ∈ F associe ω solution de (*) est donc une fonction (on aurait dit
application avant). Il est clair qu’elle est linéaire. De plus, l’inégalité ∥f∥F ≤ (1 + |λ|)∥ω∥E

nous assure sa continuité.

Question 3 : Soit λ0 ∈ [0;λ[. On a N (λ0, 0) = 0.
D’après la question 1, on a : DuN (λ0, 0).h = h′′ + λ0h︸ ︷︷ ︸

∈F

(∀h ∈ E).

D’après la question 2, (∀f ∈ F ) (∃h ∈ E) DuN (λ0, 0) est une bijection linéaire de E dans F .
De plus, N est de classe C1 sur R × E, donc DuN (λ0, 0) est continue sur E.
Le théorème de Banach nous assure que [DuN (λ0, 0)]−1 est continue.
Ainsi, DuN (λ0, 0) est un isomorphisme d’evn de E sur F .

D’après le Théorème des fonctions implicites (TFI),
— Il existe V ⊂ R × E voisinage ouvert de (λ0, 0),
— Il existe W ⊂ R voisinage ouvert de λ0,
— Il existe ϕ : W → E de classe C1 tel que :

((λ, u) ∈ V et N (λ, u) = 0) ⇐⇒ (λ ∈ W et u = ϕ(λ) et ϕ(λ0) = 0).
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Question 4 : On pose λ1 = π2

4 et ω1(t) = cos(πt/2).

Existence :
a) ω′′

1(t) = −π2

4 cos
(
πt

2

)
= −π2

4 ω1(t). D’où ω′′
1 + λ1ω1 = 0 sur ] − 1; 1[.

b) De plus, ω1(±1) = 0. Et comme t ∈] − 1; 1[, πt2 ∈
]
−π

2 ; π2

[
, donc ω1(t) > 0 sur ] − 1; 1[.

c) On a ω2
1(t) = cos(πt) + 1

2 , d’où
∫ 1

−1
ω2

1(t)dt = 1.

Ainsi, (λ1, ω1) est solution de ω′′ + λω = 0 sur ] − 1; 1[, avec ω(±1) = 0, ω(t) > 0 sur ] − 1; 1[

et
∫ 1

−1
ω2(t)dt = 1.

Unicité :
Soit (λ, ω) une solution de (*) vérifiant ω(t) > 0 sur ] − 1; 1[ et

∫ 1

−1
ω2(t)dt = 1.

L’énoncé ne donne aucune précision sur le signe de λ mais un raisonnement par l’absurde, en
distinguant les cas λ = 0 et λ < 0 contredit ω > 0 sur ] − 1; 1[. On peut donc supposer λ > 0

et même λ ∈
]
0; π

2

4

]
.

L’équation caractéristique de ω′′ + λω = 0 sur ] − 1; 1[ étant r2 + λ = 0, admet pour solutions
les fonctions t 7→ A cos(

√
λt) +B sin(

√
λt). Les conditions ω(±1) = 0 amène au système :{

A cos(
√
λ) +B sin(

√
λ) = 0

A cos(
√
λ) −B sin(

√
λ) = 0

D’où :
{
A cos(

√
λ) = 0 (1)

B sin(
√
λ) = 0 (2)

Supposons λ ̸= π2

4 , alors comme
√
λ ∈

]
0; π2

[
: sin(

√
λ) > 0, on en déduit B = 0 et comme

cos(
√
λ) > 0 également, on a A = 0. D’où ω = 0. Contredit ω > 0 sur ] − 1; 1[.

Ainsi λ = λ1.

On a donc ω(t) = A cos
(
π

2 t
)

+B sin
(
π

2 t
)

.

Les conditions ω(±1) = 0 donnent ω(t) = A cos
(
π

2 t
)

. Comme (∀t ∈] − 1; 1[) cos
(
π

2 t
)
> 0

et par hypothèse w(t) > 0 sur ] − 1; 1[, on a : A > 0.

Enfin,
∫ 1

−1
ω2(t)dt = 1 ⇐⇒ A2

∫ 1

−1
cos2

(
π

2 t
)

= 1 ⇐⇒ A2

2

∫ 1

−1
(1 + cos(πt))dt = 1 ⇐⇒

A2 = 1. D’où A = 1 puis ω = ω1.

Conclusion : Ainsi, (λ1, ω1) est l’unique solution de ω′′ + λω = 0 sur ] − 1; 1[, qui vérifie

ω(±1) = 0, ω > 0 sur ] − 1; 1[ et
∫ 1

−1
ω2(t)dt = 1.

Question 5 : Rappelons que E1 = {u ∈ E |
∫ 1

−1
w1(s)u(s)ds = 0} et

F1 = {u ∈ F |
∫ 1

−1
w1(s)u(s)ds = 0}, espaces vectoriels munis respectivement des normes
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∥.∥E et ∥.∥F . Enfin, Π :

E → E1

u 7→ u−
(∫ 1

−1w1(s)u(s)ds
)
ω1

On vérifie que si u ∈ E, alors Π(u) ∈ E1. En effet :∫ 1

−1
ω1(s)Π(u)(s)ds =

∫ 1

−1
w1(s)u(s)ds−

(∫ 1

−1
w1(s)u(s)ds

)(∫ 1

−1
ω2

1(s)ds
)

︸ ︷︷ ︸
=1

= 0

et que ω1 ∈ E1 car :

Π(ω1) = ω1 −
(∫ 1

−1
ω2

1(s)ds
)
ω1︸ ︷︷ ︸

=1

= 0

La linéarité de Π ne pose aucun problème.
De plus, E = E1 ⊕ Rω1. En effet :

1. Si u ∈ E : u = Π(u) +
(∫ 1

−1w1(s)u(s)ds
)
ω1 ∈ E1 + Rω1

2. Soit u ∈ E1 ∩ Rω1 : (∃µ ∈ R) u = µω1 et
∫ 1

−1
µω2

1(s)ds = 0. D’où :∫ 1

−1
µω2

1(s)ds = µ

∫ 1

−1
ω2

1(s)ds︸ ︷︷ ︸
=1

= 0 et partant u ≡ 0.

Ainsi, Π est l’opérateur de projection sur E1 parallèlement à Rω1. Prouvons la continuité de
Π : E → E1.

On a pour tout t ∈ [−1; 1] :
— [Π(u)](t) = u(t) −

(∫ 1
−1w1(s)u(s)ds

)
ω1(t)

— [Π(u)]′(t) = u′(t) − π

2
(∫ 1

−1w1(s)u(s)ds
)

sin
(
πt

2

)
— [Π(u)]′′(t) = u′′(t) + π2

4
(∫ 1

−1w1(s)u(s)ds
)
ω1(t)

Remarquons de plus que |
∫ 1

−1w1(s)u(s)ds| ≤ 2∥u∥∞ et que ∥ω1∥ ≤ 1. Nous en déduisons que :
— ∥Π(u)∥∞ ≤ 3∥u∥∞
— ∥[Π(u)]′∥∞ ≤ ∥u′∥∞ + π∥u∥∞

— ∥[Π(u)]′′∥∞ ≤ ∥u′′∥∞ + π2

2 ∥u∥∞

On en déduit que :

∥Π(u)∥E ≤
(

3 + π + π2

2

)
∥u∥E

Donc Π est continue de E dans E1.
De la même manière, Π est continue de F dans F1.

Remarque : En fait, un vrai opérateur projection est un endomorphisme de E, nous avons
donc travaillé avec sa co-restriction sur le sous-espace de E sur lequel on projette : E1, qui
est muni de la même norme que celle de E.

Question 6 : a) Le procédé est identique à celui exposé à la question 2. Pour gagner un
peu de temps, nous ne le détaillerons pas à nouveau.

b) Linéarité : Soient f, g ∈ F1 et µ ∈ R. L’unique solution de (**) associée au second membre
µf + g est clairement µωf + ωg, où ωf et ωg sont les solutions de (**) respectivement avec
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pour second membre f puis g.

Continuité : Soit f ∈ F1 : ∥f∥F ≤ max(1, λ1)∥ω∥E = λ1∥ω∥E . Donc l’application f ∈ F1 7→
ω ∈ E1 de :

(∗∗) :
{
w′′ + λ1w = f sur ] − 1; 1[
w(−1) = w(1) = 0

est continue.

Question 7 : a) Soit u ∈ E.

Π(u”) = u”(t) −
(∫ 1

−1
ω1(s)u”(s)ds

)
ω1

Effectuant une première IPP :∫ 1

−1
ω1(s)u”(s)ds =

[
ω1(s)u′(s)

]1
−1︸ ︷︷ ︸

=0

−
∫ 1

−1
ω′

1(s)u′(s)ds

Utilisant le fait que ω1” = −π2

4 ω1 = −λ1ω1, nous avons avec une seconde IPP :

∫ 1

−1
ω′

1(s)u′(s)ds =
[
u(s)ω′

1(s)
]1
−1︸ ︷︷ ︸

=0

+π2

4

∫ 1

−1
u(s)ω1(s)ds

D’où :

Π(u”) = u” + π2

4

(∫ 1
u(s)ω1(s)ds

)
ω1

Soit enfin :

Π(u”) =
[
u−

(∫ 1

−1
u(s)ω1(s)ds

)
ω1

]”
= [Π(u)]”

b) Soit (λ, µ, u) ∈ R × R × E1 :

N (λ, u+ µω1) = (u+ µω1)” + λ(u+ µω1) + (u+ µω1)2, soit :
N (λ, u+ µω1) = u” − µλ1ω1 + λu+ λµω1 + (u+ µω1)2 i.e
N (λ, u+ µω1) = u” + λu+ (λ− λ1)µω1 + (u+ µω1)2.

D’où par linéarité de Π et ce qui précède :
Π(N (λ, u+ µω1)) = Π(u)” + λΠ(u) + (λ− λ1)µΠ(ω1) + Π[(u+ µω1)2)].
Or si u ∈ E1, alors Π(u) = u et Π(ω1) = 0, d’où :

Π(N (λ, u+ µω1)) = u” + λu+ Π[(u+ µω1)2)]

Question 8 : Considérons Ψ : R × R × E1, (λ, µ, u) 7→ Π[N (λ, u+ µω1)].

Définissons :
1. ϕ ; R × R × E1 → R × E, (λ, µ, u) 7→ (λ, u+ µω1)
2. N : R × E → F, (λ, u) 7→ u” + λu+ u2

11



3. Π : F → F1, u 7→ u 7→ u−
(∫ 1

−1w1(s)u(s)ds
)
ω1

Ainsi : Ψ = Π ◦ N ◦ ϕ : R × R × E1 → F1. Notons que Π et ϕ sont linéaires.

Ψ(λ1, 0, u+ h) − Ψ(λ1, 0, u) = Π[N (λ1, u+ h)] − Π[N (λ1, u)]
= Π[N (λ1, u+ h) − N (λ1, u)]
= Π[(u+ h)” + λ1(u+ h) + (u+ h)2 − u” − λ1u− u2]
= Π[h” + λ1h+ 2uh+ h2]
= h” + λ1h+ 2Π(uh) + Π(h2)︸ ︷︷ ︸

=o(h)

par 7)

On en déduit immédiatement (ou presque) que pour tout h ∈ E1 : DuΨ(λ1, 0, 0).h = h”+λ1h.
La question 6) et le théorème de Banach nous assurent que DuΨ(λ1, 0, 0) est un isomorphisme
d’evn de E1 sur F1.
Or Ψ est de classe C1 comme composée d’applications de classe C1 et Ψ(λ1, 0, 0) = 0.

Le théorème des fonctions implicites nous dit alors que :
— Il existe V ⊂ R × R × E1 voisinage ouvert de (λ1, 0, 0),
— Il existe W ⊂ R2 voisinage ouvert de (λ1, 0)
— Il existe w : W → E1 de classe C1 telle que :

(λ, µ, u) ∈ V et w(λ, µ, u) = 0 ⇐⇒ [u ∈ W et u = w(λ, µ) et w(λ1, 0) = 0]
Donc pour (λ, µ) dans un voisinage de (λ1, 0), il existe un unique u1 ∈ E1 tel que Ψ(λ, µ, u1) =
0 i.e Π[N (λ, u1 + µω1)] = 0. On notera u1 = u1(λ, µ).

Question 9 : On a u1(λ1, 0) = 0.

J’admets que pour λ proche de λ1, on a u1(λ, 0) = 0. Au voisinage de (λ1, 0), on a d’après la
formule de Taylor avec reste intégral pour u1(λ, µ) de classe C2 :

u1(λ, µ) = u1(λ, 0)︸ ︷︷ ︸
=0

+µ ∂u1
∂µ

(λ, 0)︸ ︷︷ ︸
=0

+
∫ 1

−1

µ2

2! (1 − t)2∂
2u1
∂µ2 u1(λ, t)dt

Bref :
u1(λ, µ) = µ2

2

∫ 1

−1
(1 − t)2∂

2u1
∂µ2 (λ, t)dt

Or ψ : (λ, µ) 7→
∫ 1

−1

(1 − t)2

2
∂2u1
∂µ2 (λ, t)dt est continue au voisinage de (λ1, 0) (à justifier).

Ce qui suit est un brouillon d’idées !

Par définition : Π[(u1 + µω1)2] = (u1 + µω1)2 −
∫ 1

−1
ω1(s)(u1 + µω1)2ds

Or par 7) Π[N (λ, u1 + µω1)] = u1” + λu1 + Π[(u1 + µω1)2].
D’après 8) pour (λ, µ) dans un voisinage de (λ1, 0) : Π[N (λ, u1 + µω1)] = 0.
Donc pour (λ, µ) dans un voisinage de (λ1, 0) :

0 = u1” + λu1 + (u1 + µω1)2 −
∫ 1

−1
ω1(s)(u1(λ, µ)(s) + µω1(s))2ds

Et donc :
Π[N (λ, u1(λ, µ) + µω1)] =

∫ 1

−1
ω1(s)(u1(λ, µ)(s) + µω1(s))2ds

To be continued . . .
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Question 10 : Le sens direct ( =⇒ ) est évident.

Réciproquement, supposons que dans un voisinage de (λ1, 0) :
{

Π[N (λ, u+ µω1)] = 0 (1)∫ 1
−1 N (λ, u+ µω1)(s)ω1(s)ds = 0 (2)

La première condition (1) implique que N (λ, u + µω1) ∈ Rω1, donc il existe α ∈ R tel que
N (λ, u+ µω1) = αω1.
Reportant dans (2) et se servant du fait que

∫ 1
−1 ω

2
1(s)ds = 1, on en déduit que α = 0. D’où

N (λ, u+ µω1) = 0.

Question 11 : Se servant du fait que E = E1 ⊕ Rω1, on déduit de la question 10 qu’au
voisinage de (λ1, 0) l’ensemble des solutions de N (λ, u) = 0 est la fonction nulle.
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