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Définissons :
H = {u ∈ C2([0; 1],R) | u(0) = u(1) = 0}

Si u ∈ H on note :
∥u∥0 = sup

t∈[0;1]
|u(t)|

et :

∥u∥1 =
(∫ 1

0
(u′2(t) + u2(t))dt

)1/2

On note enfin :

∥u∥2 =
(∫ 1

0
u′2(t)dt

)1/2

ADMIS : ∥.∥0 et ∥.∥1 sont des normes sur H et (H, ∥.∥1) est un espace de Banach.

1 Énoncé
Question 1 : Démontrer qu’il existe une constante c > 0 telle que pour tout u ∈ H :

∥u∥0 ≤ c∥u∥2

Question 2 : Démontrer que ∥.∥2 est une norme sur H.

Question 3 : Démontrer que les normes ∥.∥1 et ∥.∥2 sont équivalentes.

Question 4 : Les normes ∥.∥0 et ∥.∥1 sont-elles équivalentes ?

Question 5 : Dans toute la suite, on suppose que H est muni de la norme ∥.∥2.
Soit p ∈ N∗. Prouver que l’application

ϕp : u ∈ H 7→
∫ 1

0
up(t)dt ∈ R

est différentiable en tout point u ∈ H et que :

Dϕp(u).h = p

∫ 1

0
up−1(t)h(t)dt

Question 6 : Démontrer que ϕp est de classe C1 sur (H, ∥.∥2).
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2 Corrigé
Question 1 : Soit u ∈ H et t ∈ [0; 1]. D’après le théorème fondamental du calcul intégral :

u(t) − u(0)︸︷︷︸
=0

=
∫ t

0
u′(x)dx

D’où :

|u(t)| =
∣∣∣∣∫ t

0
u′(x)dx

∣∣∣∣ ≤
∫ t

0
1 × |u′(x)|dx ≤︸︷︷︸

Cauchy−Schwarz

(∫ t

0
12dx

)1/2 (∫ t

0
u′(x)2dx

)1/2

Donc :

(∀t ∈ [0; 1]) |u(t)| ≤
(∫ 1

0
12dx

)1/2 (∫ 1

0
u′(x)2dx

)1/2

Passant au sup à gauche, il vient :
∥u∥0 ≤ ∥u∥2

Question 2 : Soit u ∈ H et λ ∈ R. Clairement ∥u∥2 ≥ 0
1. ∥λu∥2 = |λ|∥u∥2 est immédiat.
2. Comme u ∈ H, alors u′ ∈ C1([0; 1],R) ⊂ C([0; 1],R).

∥u∥2 = 0 ⇐⇒
∫ 1

0 u′(x)2dx = 0. Comme u′2 ∈ C([0; 1],R) et u′2 ≥ 0 sur [0; 1], on a :
u′2 = 0 sur [0; 1]. Donc u′ = 0 sur [0; 1] et u constante sur [0; 1]. Or u(0) = 0, donc u
identiquement nulle sur [0; 1]. Réciproque immédiate.

3. Soient u, v ∈ H :

∥u + v∥2
2 =

∫ 1

0
(u′(t) + v′(t))2dt =

∫ 1

0
u′(t)2dt +

∫ 1

0
v′(t)2dt + 2

∫ 1

0
u′(t)v′(t)dt.

Or par Cauchy-Schwarz,
∣∣∣∣∫ 1

0
u′(t)v′(t)dt

∣∣∣∣ ≤
(∫ 1

0
u′(t)2dt

)1/2 (∫ 1

0
v′(t)2dt

)1/2
.

D’où ∥u + v∥2
2 ≤ ∥u∥2

2 + ∥v∥2
2 + 2∥u∥2.∥v∥2 = (∥u∥2 + ∥v∥2)2, et donc :

∥u + v∥2 ≤ ∥u∥2 + ∥v∥2.

Ainsi, ∥.∥2 est une norme sur H.

Question 3 : Clairement : (∀u ∈ H) ∥u∥2 ≤ ∥u∥1.

Puis ∥u∥2
1 = ∥u∥2

2 +
∫ 1

0
u(t)2dt ≤ ∥u∥2

2 + ∥u∥2
0.

Or par 1) ∥u∥0 ≤ ∥u∥2. D’où ∥u∥2
1 ≤ 2∥u∥2

2.
On en déduit que(∀u ∈ H) ∥u∥2 ≤ ∥u∥1 ≤

√
2∥u∥2.

Les normes ∥.∥1 et ∥.∥2 sont équivalentes.

Question 4 : Donnons d’abord quelques rappels d’analyse fonctionnelle . . .
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Continuité d’une application linéaire entre deux evn

Soient (E, ∥.∥E) et (F, ∥.∥F ) deux espaces de Banach. On notera Lc(E, F ) l’espace
vectoriel des applications linéaires continues de E dans F que l’on munit de la norme
∥u∥Lc(E,F ) = sup

x ̸=0

∥u(x)∥F

∥x∥E
= sup

∥x∥E=1
∥u(x)∥F .

Rappel : Une application linéaire u de E dans F ’Banach ou non) est continue ssi :

(∃M > 0)(∀x ∈ E) ∥u(x)∥F ≤ M∥x∥E

ce qui équivaut par définition de ∥.∥Lc(E,F ) à :

∥u∥Lc(E,F ) < ∞

Par 1) et 3) nous obtenons que (∀u ∈ H) ∥u∥0 ≤ ∥u∥1.
Cette dernière inégalité nous assure que l’identité Id est continue de (H, ∥.∥1) dans (H, ∥.∥0).

Posons pour tout n ∈ N∗ : un :

[0; 1] → R

t 7→ sin(nπt)
n

Après calculs : ∥un∥0 = 1
n

, ∥un∥2
2 = π2

2 et
∫ 1

0
u2

n(t)dt = 1
2n2 . D’où ∥un∥2

1
∥un∥2

0
≡ (πn)2

2 → +∞

quand n → +∞

Les normes ∥.∥0 et ∥.∥1 ne sont PAS équivalentes.

Question 5 : Démontrer la différentiabilité d’une application entre deux evn.

Différentielle d’une application entre deux Banach

Soient (E, ∥.∥E) et (F, ∥.∥F ) deux espaces de Banach, U un ouvert de E et f : U ⊂
E → F une application de U dans F . On dit que f est différentiable en a ∈ U s’il
existe une application linéaire continue ℓ ∈ Lc(E, F ) telle qu’au voisinage de 0 :

f(a + h) = f(a) + ℓ(h) + o(∥h∥)

Cette application linéaire ℓ est alors unique, on l’appelle la différentielle de f en a,
et on note ℓ = Df(a) ou ℓ = Dfa.

Nous écrirons souvent Dfa.h ou Df(a).h plutôt que Df(a)(h) ou Dfa(h).

Soit p ∈ N∗ et ϕp :
{

H → R
u 7→

∫ 1
0 up(t)dt

.

Soient u, h ∈ H. Alors u + h ∈ H et par la formule du binôme de Newton :

ϕp(u + h) =
∫ 1

0
(u + h)p(t)dt =

∫ 1

0

p∑
k=0

(
p

k

)
(uk.hp−k)(t)dt

Soit :
ϕp(u + h) =

∫ 1

0
(up(t) + pup−1(t)h(t) + h2(t)ϵ(t))dt
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où ϵ est une fonction continue sur le compact [0; 1], donc bornée sur [0; 1]. Notons M = ∥ϵ∥0
(qui est même atteinte).

ϕp(u + h) = ϕp(u) + p

∫ 1

0
up−1(t)h(t)dt +

∫ 1

0
h2(t)ϵ(t)dt

Posons Lu :
{

H → R
h 7→ p

∫ 1
0 up−1(t)h(t)dt

1. Lu est une application linéaire de H dans R
2. |ϕp(u + h) − ϕp(u) − Lu(h)| ≤ M∥h∥2

0 ≤ M∥h∥2
2.

Ainsi : ϕp(u + h) − ϕp(u) − Lu(h) = o(∥h∥2).

3. Enfin, |Lu(h)| ≤ p

(∫ 1

0
u2p−2(t)dt

)1/2 (∫ 1

0
h2(t)dt

)1/2
≤ pMp−1∥h∥0 ≤ pMp−1∥h∥2

Ainsi, ϕp est différentiable en n’importe quel u ∈ H et Dϕp(u).h = p
∫ 1

0 up−1(t)h(t)dt.

Question 6 : Où l’on retravaille la norme d’une application linéaire entre deux evn !

Application de classe C1

Soient (E, ∥.∥E) et (F, ∥.∥F ) deux espaces de Banach, U un ouvert de E et f : U → F
une application de U dans F . On dit que f est de classe C1 sur U si

Df : a ∈ U 7→ Df(a) ∈ Lc(E, F ) est continue

Attention, en général Df n’est PAS une application linéaire.

Pour prouver que ϕp est de classe C1 sur H, on prouvera que pour tout u, v ∈ H :
lim
v→u

∥Dϕp(v) − Dϕp(u)∥Lc(H) = 0.

Soit u ∈ H fixé, v ∈ H et h ∈ H (h ̸= 0).

|Dϕp(v).h − Dϕp(u).h| = p

∣∣∣∣∫ 1

0
(up−1(t) − vp−1(t))h(t)dt

∣∣∣∣
D’après Cauchy-Schwarz, nous avons :

∣∣∣∣∫ 1

0
(up−1(t) − vp−1(t))h(t)dt

∣∣∣∣ ≤
(∫ 1

0
(up−1(t) − vp−1(t))2dt

)1/2 (∫ 1

0
h(t)2dt

)1/2

≤ ∥up−1 − vp−1∥0.∥h∥0

≤ ∥up−1 − vp−1∥2.∥h∥2

Divisant |Dϕp(v).h − Dϕp(u).h| par ∥h∥2 et passant au sup, nous obtenons que :

∥Dϕp(v) − Dϕp(u)∥Lc(H) ≤ p∥up−1 − vp−1∥2 → 0 lorsque v → u

Ainsi, ϕp est de classe C1 sur (H, ∥.∥2).
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