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Les sentiers mathématiques : randonnée exceptionnelle
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Énoncé du développement -1

Cadre théorique - prérequis

1 Différentiabilité d’une application f : Rp → Rn,

2 Applications de classe C1 de Rp dans Rn, C1-difféomorphisme,

3 Théorème d’inversion locale,

4 Suites de Cauchy,

5 Algèbre linéaire et topologie en dimension finie.

Un résultat d’inversion globale

Où moyennant une condition d’ellipticité, le travail en dimension finie
permet de relier le local au global !
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Énoncé du développement -2

Un théorème d’inversion globale

Dans Rn, on note (.|.) le produit scalaire euclidien et ∥.∥ la norme
associée. On considère une application f : Rn → Rn de classe C1 telle que
il existe k > 0 :

∀(x , y) ∈ Rn × Rn : (f (x)− f (y)|x − y) ≥ k∥x − y∥2

Alors f est un C1-difféomorphisme de Rn dans lui-même.
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Démonstration du développement

Étape 1

∀(x , y) ∈ Rn × Rn : (df (x)(h)|h) ≥ k∥h∥2

f étant de classe C1 sur Rn est différentiable en tout point x ∈ Rn et on a

df (x)(h) = lim
t→0

f (x + th)− f (x)

t
.

Soit donc t ̸= 0 : par ce qui précède, (f (x + th)− f (x)|th) ≥ kt2∥h∥2.

Divisant par t2 :

(
f (x + th)− f (x)

t
|h
)

≥ k∥h∥2.

Par continuité de t 7→
(
f (x + th)− f (x)

t
|h
)
, on a en faisant tendre t

vers 0 : (df (x)(h)|h) ≥ k∥h∥2.
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Démonstration du développement

Étape 2

df (x) est un isomorphisme de l’evn Rn dans lui-même.

Soit h ∈ Ker(df (x)), alors d’après l’étape 1 : h = 0 et df (x) ∈ L(Rn) est
injective.

Or en dimension finie, un endomorphisme est injectif si et seulement si il
est bijectif. Donc (∀x ∈ Rn) df (x) est bijective.

Toujours grâce au fait que nous soyons en dimension finie, df (x) est un
isomorphisme d’espace vectoriel Norméa (ici de Rn dans lui-même).

aPas besoin d’utiliser le théorème de Banach ! En dimension finie, toutes les AL sont
continues.
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Démonstration du développement

Étape 3

L’image de f est un ouvert de Rn

Soit y ∈ im(f ) = f (Rn). Alors il existe x ∈ Rn telle que y = f (x).

Comme f : Rn → Rn est de classe C1 et df (x) est un isomorphisme de Rn

sur lui-même, le théorème d’inversion locale nous assure l’existence de
deux ouverts U0 et V0 de Rn contenant respectivement x et y tels que f
soit un C1-difféomorphisme de U0 sur V0. De plus,
df −1(y) = [df (f −1(y))]−1 = [df (x)]−1.

Comme V0 est ouvert, il existe r > 0 tel que
B(y ; r) ⊂ V0 = f (U0) ⊂ im(f ).
Ainsi, l’image de f est un ouvert de Rn.
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Démonstration du développement

Étape 4

L’image de f est un fermé de Rn

Nous allons utiliser la caractérisation séquentielle des fermés. Soit
(f (xn))n≥0 une suite d’éléments de Im(f ) convergeant vers y dans Rn.
Ainsi, (f (xn))n≥0 est une suite de Cauchy de Rn. Or par hypothèse :

∀(p, q) ∈ N2 : (f (xp)− f (xq)|xp − xq) ≥ k∥xp − xq∥2 et par Cauchy -
Schwarz : (f (xp)− f (xq)|xp − xq) ≤ ∥f (xp)− f (xq)∥.∥xp − xq∥.

D’où ∥xp − xq∥ ≤ 1

k
∥f (xp)− f (xq)∥ et (xn)n≥0 est de Cauchy dans Rn

complet.
Donc il existe x ∈ Rn tel que xn → x .
Par continuité de f : f (xn) → f (x).
Par unicité de la limite : y = f (x).
D’où le résultat.
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Démonstration du développement

Conclusion

f est un C1-difféomorphisme de Rn

1 Im(f ) ̸= ∅ est ouvert et fermé dans Rn connexe, donc f (Rn) = Rn.

2 L’hypothèse (∀x , y ∈ Rn) (f (x)− f (y)|x − y) ≥ k∥x − y∥2 entrâıne
l’injectivité de f , ainsi f est une bijection (de classe C1) de Rn dans
lui-même.

3 D’après l’étape 3 : (∀y ∈ Rn), f −1 est différentiable en y et
df −1(y) = [df (f −1(y))]−1.

4 Enfin, par composition d’applications continuesa, y 7→ [df (f −1(y))]−1

est continue, donc f −1 est de classe C1 sur Rn.

D’où le résultat annoncé.

asavoir le détailler.
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Un exercice similaire

Énoncé

On considère f : R → R de classe C1 qui vérifie :

(∀t ∈ R) |f ′(t)| ≤ θ

où θ ∈]0; 1[ est un réel fixé.

Soit g :

{
R2 −→ R2

(x , y) 7→ (x + f (y); y + f (x))
.

Alors g est bijective et g−1 est continue.
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Peut être recasé dans les leçons . . .

1 Leçon 204 : Connexité. Exemples d’applications.

2 Leçon 206 : Exemples d’utilisation de la notion de dimension finie en
analyse

3 Leçon 214 : Théorème d’inversion locale, théorème des fonctions
implicites. Illustrations en analyse et en géométrie.
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