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Feuille d’exercices

Prof : Yannick Le Bastard Classe : Terminale spé maths Année : 2024-2025

Calcul intégral

Rappels de cours :

1. Je ne rappelle pas la notion de fonction en escalier et la manière dont nous avons
défini l’intégrale de telles fonctions puis admise celle d’une fonction continue sur un
segment [a; b].

2. Si f est continue et positive sur [a; b], alors

∫ b

a

f(x)dx représente l’aire de la surface

comprise entre l’axe des abscisses et la courbe représentative de f , limitée par les
droites d’équation x = a et x = b.

3.

∫ a

a

f(x)dx = 0 et on pose par convention

∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

4. Relation de Chasles : soit I un intervalle, f : I → R une fonction continue sur

I et a, b, c trois réels de I. Alors :

∫ c

a

f(x)dx =

∫ b

a

f(x)dx+

∫ c

b

f(x)dx.

5. Linéarité de l’intégrale : Soit λ ∈ R et f, g deux fonctions continues sur [a; b].

Alors

∫ b

a

(λf(x) + g(x))dx = λ

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

6. Positivité et croissance de l’intégrale : Soient f, g : I → R deux fonctions

continues sur I et a ≤ b deux réels de I. Si f ≥ 0, alors

∫ b

a

f(t)dt ≥ 0 et si f ≤ g

sur I, alors

∫ b

a

f(t)dt ≤
∫ b

a

g(t)dt.

7. Soit f : [a; b] → R une fonction continue et F : [a; b] → R la fonction définie par

F (x) =

∫ x

a

f(t)dt. Alors F est l’unique primitive de f qui s’annule en a :

(∀x ∈ [a : b]) F ′(x) = f(x) et F (a) = 0.

8. Soit f : [a; b] → R Une fonction continue et F une primitive quelconque de f sur
[a; b], alors : ∫ b

a

f(x)dx = F (b)− F (a)

On note [F (x)]ba pour F (b)− F (a).

9. Valeur moyenne d’une fonction : Soit f : [a; b] → R une fonction continue :
1

b− a

∫ b

a

f(x)dx s’appelle la valeur moyenne de f sur [a; b].

10. Intégration par parties : Soient u, v deux fonctions dérivables sur [a; b] et dont
les dérivées u′ et v′ sont continues sur [a; b]. Alors :∫ b

a

u′(x)v(x)dx = [u(x)v(x)]ba −
∫ b

a

u(x)v′(x)dx
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■Exercice n◦1

Calculer la valeur exacte des intégrales suivantes (les questions 4 et 5 sont plus
délicates) :

1. (a)

∫ 2

0

(3x2 + 1)dx (b)

∫ 1

0

(
2

5
x4 − x3 +

1

4
x2 + x− 1

)
dx

2. (a)

∫ 1

0

3xex
2

dx (b)

∫ e2

e

(ln(x))2

x
dx

3. (a)

∫ e2

e

1

x ln(x)
dx (b)

∫ 1

0

ee
x+xdx (c)

∫ 2

1

1

x+
√
x
dx

4. (a)

∫ e

1

1

x
√

1 + ln(x)
dx (b)

∫ 1

0

√
x4 + x2dx

5.

∫ e3

e

ln(ln(x))

x
dx

■Exercice n◦2

Donner de tête la valeur des intégrales suivantes :

1.

∫ π

−π

sin(x)dx

2.

∫ π/2

−π/2

cos(x)dx

3.

∫ π

0

2 sin(2x)dx

4.

∫ e

1

1

x
dx

■Exercice n◦3

Soit f : [0; 1] → [0; 1] une fonction continue et l’équation

(E) :

∫ x

0

f(t)dt = 2x− 1

d’inconnue x ∈ [0; 1].

1. Démontrer que (E) possède une unique solution α.

2. Donner une valeur approchée de α à 10−3 près pour f(x) = x3.
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■Exercice n◦4

Soit f : [0; 1] → R une fonction continue. Prouver que lim
x→0

1

x

∫ x

0

f(t)dt = f(0).

Interpréter géométriquement le résultat.

■Exercice n◦5

Le but de cet exercice est d’utiliser la croissance de l’intégrale.

1. (a) On définit la fonction tangente sur D =
]
−π

2
;
π

2

[
par tan(x) =

sin(x)

cos(x)
.

Justifier que tan est dérivable surD et exprimer tan′(x) en fonction de tan(x).

(b) En déduire que pour tout x ∈
[
0;

π

2

[
: tan(x) ≥ x.

2. Prouver de même que pour tout x ≥ 0 :

(a) sin(x) ≤ x (b) cos(x) ≥ 1− x2

2
(c) cos(x) ≤ 1− x2

2
+

x4

24

■Exercice n◦6

1. Prouver que pour tout réel x, on a :

1

(ex + 1)2
= 1− ex

ex + 1
− ex

(ex + 1)2

2. Calculer l’intégrale I =

∫ 1

0

1

(ex + 1)2
dx.

3. Déterminer une primitive de la fonction x 7→ ex

(ex + 1)3
.

4. Calculer à l’aide d’une intégration par parties, l’intégrale J =

∫ 1

0

xex

(ex + 1)3
dx.

■Exercice n◦7

Calculer à l’aide d’une ou de deux intégrations par parties les intégrales suivantes :

1. I1 =

∫ 1

−1

(3− 2x)e−x+1dx

2. I2 =

∫ π/2

0

ex cos(x)dx

3. I3 =

∫ x

1

ln(t)dt

4. I4 =

∫ e

1

x2 ln(x)dx
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■Exercice n◦8

Le but de cet exercice est de calculer des intégrales par récurrence.

On pose I0 =

∫ π/3

0

1

cos(x)
dx et pour tout n ∈ N∗ : In =

∫ π/3

0

(sin(x))n

cos(x)
dx.

1. (a) Soit n ∈ N. Calculer
∫ π/3

0

(sin(x))n cos(x)dx.

(b) En déduire In+2 − In en fonction de n.

2. Calculer I1 et en déduire I3 et I5.

3. Justifier que la fonction f définie sur D =
[
0;

π

3

]
par f(x) =

ln
(
tan

(x
2
+

π

4

))
est une primitive de la fonction g définie sur D par

g(x) =
1

cos(x)
.

4. En déduire I0, puis I2 et I4.

■Exercice n◦9

On définit la fonction tangente sur D =
]
−π

2
;
π

2

[
par la relation tan(x) =

sin(x)

cos(x)
.

1. (a) Prouver que tan est dérivable sur D et exprimer tan′ en fonction de tan.

(b) Prouver que pour tout x ∈
[
0;

π

4

]
: 0 ≤ tan(x) ≤ 1.

On pose à présent un =

∫ π
4

0

tan2n(x)dx pour tout n ∈ N.

2. Calculer

∫ π
4

0

(1 + tan2(x)) tan2k(x)dx pour tout k ∈ N puis en déduire sans

récurrence que pour tout n ∈ N :

n∑
k=0

(−1)k

2k + 1
=

π

4
+ (−1)nun+1

3. (a) Prouver que la suite (un) est décroissante.

(b) Simplifier un+un+1 pour tout n ∈ N, puis prouver que 0 ≤ un+1 ≤
1

4n+ 2
.

(c) En déduire que lim
n→+∞

n∑
k=0

(−1)k

2k + 1
=

π

4
. On note :

+∞∑
k=0

(−1)k

2k + 1
=

π

4
.

4



■Exercice n◦10

Soit n un entier naturel non nul. On appelle fn la fonction définie sur [0 ; +∞[
par :

fn(x) = ln (1 + xn)

et on pose In =

∫ 1

0

ln (1 + xn) dx.

On note Cn la courbe représentative de fn dans un repère orthonormal (O; i⃗; j⃗).

1. (a) Déterminer la limite de f1 en +∞.

(b) Étudier les variations de f1 sur [0 ; +∞[.

(c) À l’aide d’une intégration par parties, calculer I1 et interpréter
graphiquement le résultat.

Pour le calcul de I1 on pourra utiliser le résultat suivant :

Pour tout x ∈ [0; 1] :
x

x+ 1
= 1− 1

x+ 1

2. (a) Montrer que pour tout entier naturel non nul n, on a : 0 ⩽ In ⩽ ln 2.

(b) Étudier les variations de la suite (In).

(c) En déduire que la suite (In) est convergente.

3. Soit g la fonction définie sur [0 ; +∞[ par :

g(x) = ln(1 + x)− x

(a) Étudier le sens de variation de g sur [0 ; +∞[.

(b) En déduire le signe de g sur [0 ; +∞[. Montrer alors que pour tout
entier naturel n non nul, et pour tout x réel positif, on a :

ln (1 + xn) ⩽ xn

(c) En déduire la limite de la suite (In).
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■Exercice n◦11

On considère la suite (In) définie par I0 =

∫ 1
2

0

1

1− x
dx et pour tout entier naturel

n non nul :

In =

∫ 1
2

0

xn

1− x
dx

1. Montrer que I0 = ln(2).

2. (a) Calculer I0 − I1.

(b) En déduire I1.

3. (a) Montrer que, pour tout entier naturel n, In − In+1 =

(
1
2

)n+1

n+ 1
.

(b) Proposer un algorithme permettant de déterminer, pour un entier na-
turel n donné, la valeur de In.

4. Soit n un entier naturel non nul.

On admet que si x appartient à l’intervalle
[
0 ; 1

2

]
alors 0 ⩽

xn

1− x
⩽

1

2n−1
.

(a) Montrer que pour tout entier naturel n non nul, 0 ⩽ In ⩽
1

2n
.

(b) En déduire la limite de la suite (In) lorsque n tend vers +∞.

5. Pour tout entier naturel n non nul, on pose :

Sn =
1

2
+

(
1
2

)2
2

+

(
1
2

)3
3

+ . . .+

(
1
2

)n
n

(a) Montrer que pour tout entier naturel n non nul, Sn = I0 − In.

(b) Déterminer la limite de Sn lorsque n tend vers +∞.
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■Exercice n◦12

On pose pour tout n ∈ N : an =

∫ 1

0

xn

√
1 + x2

dx.

1. (a) Démontrer que la dérivée de h;x 7→ ln(x +
√
1 + x2) est donnée par la

formule h′(x) =
1√

1 + x2
.

(b) Calculer a0 et a1.

2. Prouver que la suite (an) est décroissante, puis qu’elle converge.

3. Prouver que pour tout n ∈ N :
1

(n+ 1)
√
2
≤ an ≤ 1

n+ 1
.

En déduire la limite de (an).

4. (a) Prouver que pour tout n ∈ N : (n+ 2)an+2 =
√
2− (n+ 1)an.

(b) En déduire que pour tout n ∈ N : (2n+ 3)an+2 ≤
√
2.

(c) En déduire lim
n→+∞

nan.

5. On pose pour tout n ∈ N : bn = (n+ 1)anan+1 et Sn =
n∑

k=0

(−1)kak.

(a) Calculer lim
n→+∞

bn et vérifier que bn + bn+1 = an+1

√
2.

(b) En déduire l’existence et la valeur de lim
n→+∞

Sn.

(c) En déduire finalement

∫ 1

0

1

(1 + x)
√
1 + x2

dx.

************
********

****
**
*

Les exercices qui suivent sont destinés aux élèves qui se destinent à des études
fortement orientées maths : Licence de maths ou classes préparatoires.
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■Exercice n◦13

Ce problème a pour but d’étudier la suite de terme général
nne−n

n!
et de donner

une expression de ea comme limite d’une suite.

Pour tout n ∈ N∗, on note fn la fonction définie sur [0;+∞[ par fn(x) =
xne−x

n!
.

1. Étudier les variations de fn et démontrer que pour tout n ≥ 2, fn−1(n) =
fn(n).

2. Soit (un) la suite définie sur N∗ par un = fn(n). Démontrer que la suite (un)
est décroissante. Cette suite est-elle convergente ? (justifier la réponse).

3. Soit g la fonction définie sur I = [0; 1] par : g(t) = ln(1 + t)− t+
t2

4
.

a) En étudiant les variations de g, démontrer que pour tout t ∈ I :

ln(1 + t) ≤ t− t2

4
.

b) En déduire que pour tout entier n ≥ 1, on a :

(
1 +

1

n

)n

≤ e1−1/4n

4. Démontrer que pour tout entier n ≥ 1, on a :
un+1

un

≤ e−1/4n et en déduire

que pour tout entier n ≥ 2, on a :

un ≤ exp

(
−1− 1

4

(
1

n− 1
+

1

n− 2
+ · · ·+ 1

2
+ 1

))
5. a) Démontrer que pour tout entier n ≥ 2, on a :∫ n

1

dt

t
≤ 1 +

1

2
+ · · ·+ 1

n− 2
+

1

n− 1

(on pourra utiliser des considérations d’aire).

b) En déduire que pour tout entier n ≥ 2, on a : un ≤ exp

(
−1− 1

4
lnn

)
.

Quelle est la limite de la suite (un) ?

6. Pour tout entier n ≥ 1 et réel a ≥ 0, a fixé, on pose : In(a) =

∫ a

0

tne−t

n!
dt.

a) Calculer I1(a).
b) Démontrer que pour tout entier n ≥ 1 et tout réel t ≥ 0, on a :

0 ≤ fn(t) ≤
tn

n!
.

c) En déduire un encadrement de In(a).

7. Démontrer que pour tout entier n ≥ 1, on a :
1

n!
<

( e

n

)n

(on pourra utiliser

2.). Déterminer alors une nouvelle majoration de In(a) puis la limite de In(a)
quand n tend vers +∞.
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8 . a) En utilisant une intégration par parties, établir une relation entre In(a) et
In−1(a) pour tout entier n ≥ 2.
b) En déduire que pour tout entier n ≥ 2 :

In(a) = 1− e−a

(
1 +

a

1!
+ · · ·+ an

n!

)
Cette égalité reste-t-elle valable pour n = 1 ?

9 . Démontrer finalement que pour tout réel a ≥ 0, on a :

ea = lim
n→+∞

(
1 +

a

1!
+

a2

2!
+ · · ·+ an

n!

)
■Exercice n◦14

Soit f une fonction continue sur R.

Pour tout réel x, on pose I(x) =

∫ 2x

x

f(t)dt et J(x) =

∫ x2

x

f(t)dt.

1. Calculer I ′(x) et J ′(x).

2. Pour tout réel x, on pose F (x) =

∫ 2x

x

t2

t2 + sin2(t)
dt. Prouver que F est

impaire.

3. Pour tout réel x, on pose F (x) =

∫ x+2π

x

sin(t)dt. Prouver que F est nulle.

4. Étudier la fonction F définie sur R∗
+ par F (x) =

∫ x2

x

ln(t)dt.
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■Exercice n◦15

Soit f la fonction définie sur D = [0; 1] par f(0) = 0, f(1) = 1 et

f(t) =
t− 1

ln(t)
si 0 < t < 1.

On appelle C la courbe représentative de f dans un repère orthonormé (O; i⃗; j⃗).

Partie A) : Étude de f

1. (a) Démontrer que f est continue en 0 et en 1.
(b) Justifier que f est dérivable sur ]0; 1[ et calculer f ′(t).
(c) Prouver que f ′(t) a le même signe que la fonction ϕ définie sur ]0; 1[ par

ϕ(t) = ln(t)− 1 +
1

t
.

(d) Étudier les variations puis le signe de ϕ sur ]0; 1[ et en déduire le signe de
f ′.

2. Étudier la dérivabilité de f en 0. Que peut-on en déduire pour la tangente à
C à l’origine O ?

3. (a) Prouver que pour tout x ∈
[
0;

1

2

]
:

0 ≤ 1

1− x
− (1 + x) ≤ 2x2

En déduire que :

0 ≤ − ln(1− x)−
(
x+

x2

2

)
≤ 2x3

3

(b) Soit g la fonction définie sur ]0; 1] par g(x) =
1

f(x)
.

Prouver que pour tout h ∈
[
−1

2
; 0

]
:

0 ≤ g(1 + h)− g(1) +
h

2
≤ 2h2

3

En déduire que g est dérivable en 1 et préciser g′(1).

(c) En déduire que f est dérivable en 1 et prouver que f ′(1) =
1

2
.

4. Tracer la courbe C (unité graphique : 10cm)

Partie B) : Calcul de I =

∫ 1

0

f(t)dt

Pour tout x ∈]0; 1], on pose I(x) =

∫ 1

x

f(t)dt et J(x) =

∫ 1

x

f(t)

t
dt (nous ne chercherons
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pas à les calculer).

1. (a) Soit K la fonction définie sur ]0; 1] par K(x) =

∫ x2

x

f(t)

t
dt.

Exprimer K(x) à l’aide de J(x) puis démontrer que K ′(x) =
1

x
(f(x)− 2f(x2)).

(b) Prouver que pour tout x ∈]0; 1] : f(x)− 2f(x2) = −xf(x).

(c) En déduire que pour tout x ∈]0; 1[ : I(x) =
∫ x

x2

t− 1

t ln(t)
dt.

2. Calculer la dérivée de la fonction t 7→ ln(− ln(t)) sur ]0; 1[ et en déduire que pour

tout x ∈]0; 1[ :
∫ x

x2

−1

t ln(t)
dt = ln(2).

3. Prouver que pour tout x ∈]0; 1[ et tout t ∈]0;x[ : 0 ≤ − 1

ln(t)
≤ − 1

ln(x)
et en

déduire que pour tout x ∈]0; 1[ : 0 ≤
∣∣∣∣∫ x

x2

1

ln(t)
dt

∣∣∣∣ ≤ −x

ln(x)
.

4. En déduire la limite de I(x) lorsque x tend vers 0.

5. Démontrer que pour tout x ∈]0; 1] : I − I(x) =

∫ x

0

f(t)dt et en déduire que

0 ≤ I − I(x) ≤ x.

6. Prouver finalement que I = ln(2).
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