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1 Énoncé du devoir

1.1 Exercice 1

Résoudre les équations ou inéquations suivantes :

1. ln(3x− 1) = −2

2. a) Prouver que pour tout réel x : x3 − 2x2 − 5x+ 6 = (x− 1)(x2 − x− 6),
b) Puis résoudre ln(x) + ln(x2 − 5) > ln(2) + ln(x2 − 3)

3. ln(x+ 3)(x− 4) = ln(−4x− 2)

4. ex − 4e−x = −3

1.2 Exercice 2

Soit f la fonction définie sur I =]0;+∞[ par f(x) = x2 + 6
ln(x)

x
.

On note C la courbe représentative de f dans un repère orthogonal (O; i⃗; j⃗), l’unité étant de
2cm sur l’axe des abscisses et de 0,5cm sur l’axe des ordonnées.

1. Calculer les limites de f en 0 et en +∞.

2. a) Étudier les variations de la fonction g définie sur I par g(x) = x3 + 3− 3 ln(x).
b) En déduire que pour tout x > 0 : g(x) > 0.

3. Calculer f ′(x) et en se servant de la question précédente, en déduire le sens de variation
de f . Vous établirez son tableau de variation.

4. Déterminer l’équation réduite de la tangente T1 à C au point d’abscisse 1.

5. a) Étudier la position relative de la courbe C par rapport à la demi-parabole CP d’équa-
tion y = x2, x > 0.
b) Déterminer lim

x→+∞
(f(x)− x2) et interpréter géométriquement le résultat obtenu.
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6. Tracer proprement sur le même graphique C, T et CP .

7. Justifier graphiquement que pour tout réel m, l’équation f(x) = m a une unique solution
αm > 0. Donner pour m = 0 un encadrement à 10−1 près de α0.

1.3 Exercice 3

Soit f la fonction définie sur [0; +∞[ par f(x) =


x ln(x)

x+ 1
si x > 0

0 si x = 0, bref f(0) = 0

1. Justifier brièvement que f est dérivable sur ]0; +∞[.

2. Étudier la continuité de f en 0.

3. Étudier la dérivabilité de f en 0.

4. Soit g la fonction définie sur ]0; +∞[ par g(x) = ln(x) + x+ 1
a) Calculer g′(x) pour x > 0 et en déduire les variations de g.
b) Démontrer que g s’annule en un unique réel β et en donner un encadrement à 0,01

près.
c) Pour tout x > 0, exprimer f ′(x) en fonction de g(x) et en déduire les variations de
f . Vous dresserez son tableau de variation en précisant les limites aux bornes de son
ensemble de définition.
d) Justifier que g est concave et en déduire que pour tout réel x > 0 : g(x) ≤ 2x.

5. f admet-elle un ou plusieurs points d’inflexion ? (Toute trace de raisonnement, même
inabouti, sera prise en compte)
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2 Corrigé

2.1 Exercice 1

1. (E) : ln(3x− 1) = −2 est bien définie si 3x− 1 > 0 ⇐⇒ x ∈ D =

]
1

3
;+∞

[
.

Sous cette condition : (E) ⇐⇒ 3x− 1 = e−2 ⇐⇒ x =
1 + e−2

3
.

Comme x ∈ D : S(E) = {1 + e−2

3
}

2. a) En développant (x − 1)(x2 − x − 6), on obtient facilement que x3 − 2x2 − 5x + 6 =
(x− 1)(x2 − x− 6).
b) Posons (I) : ln(x) + ln(x2 − 5) > ln(2) + ln(x2 − 3).

(I) bien définie si


x > 0

x2 − 5 > 0

x2 − 3 > 0

⇐⇒


x > 0

x ∈]−∞;−
√
5[∪]

√
5;+∞[

x ∈]−∞;−
√
3[∪]

√
3;+∞[

⇐⇒ x >
√
5.

Sous cette condition : (I) ⇐⇒ lnx(x2−5) > ln(2x2−6) ⇐⇒ x(x2−5) > 2x2−6 ⇐⇒
x3 − 2x2 − 5x+ 6 > 0 ⇐⇒ (x− 1)(x2 − x− 6) > 0.
Or x2 − x − 6 = 0 ⇐⇒ x = −2 ou x = 3. Nous pouvons alors déterminer le signe de
x3 − 2x2 − 5x+ 6 dans le tableau :

x

x − 1

x2 − x − 6

x3−2x2−5x+6

−∞ −2 1 3 +∞

− − 0 + +

+ 0 − − 0 +

− 0 + 0 − 0 +

Ainsi, sur ]
√
5;+∞[ : x3 − 2x2 − 5x+ 6 > 0 ⇐⇒ x > 3. Donc S(I) =]3;+∞[

3. (E) : ln(x + 3)(x − 4) = ln(−4x − 2) est bien définie si

{
(x+ 3)(x− 4) > 0

−4x− 2 > 0
⇐⇒x ∈]−∞;−3[∪]4; +∞[

x < −1

2

⇐⇒ x < −3.

Sous cette condition, (E) ⇐⇒ (x+ 3)(x− 4) = −4x− 2 ⇐⇒ x2 + 3x− 10 = 0.
Or x2 + 3x− 10 = 0 ⇐⇒ x = −5 ou x = 2. Comme x < −3, on a S(E) = {−5}

4. (E) : ex − 4e−x = −3 est définie sur R et pour tout réel x :
(E) ⇐⇒ (ex)2 − 4 = −3ex ⇐⇒ (ex)2 + 3ex − 4 = 0.

Alors (E) ⇐⇒

{
X2 + 3X − 4 = 0

X = ex
⇐⇒

{
X = −4 ou X = 1

X = ex
⇐⇒ ex = 1 ⇐⇒

x = 0. Donc S(E) = {0}
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2.2 Exercice 2

1. En 0 : nécessairement x tend vers 0 par valeurs supérieures.

lim
x→0

ln(x) = −∞ et lim
x→0

6

x
= +∞, donc par produit : lim

x→0

6 ln(x)

x
= −∞.

Or lim
x→0

x2 = 0, donc par somme lim
x→0

f(x) = −∞

La droite D : x = 0 est asymptote verticale pour Cf .

En +∞ : Par croissance comparée lim
x→+∞

ln(x)

x
= 0 et comme lim

x→+∞
x2 = +∞, on a par

somme lim
x→+∞

f(x) = +∞

2. a) g est dérivable sur I et pour tout x ∈ I : g′(x) = 3x2 − 3

x
=

3

x
(x3 − 1) =

3(x2 + x+ 1)

x
(x− 1) du signe de x− 1.

On en déduit que g′(x) < 0 sur ]0; 1[ et g′(x) > 0 sur ]1; +∞[. Ainsi :
g est strictement décroissante sur ]0; 1] et strictement croissante sur [1; +∞[.

b) g a donc un minimum global en x = 1 et comme g(1) = 4 > 0, on a ∀x > 0 : g(x) > 0 .

3. f est dérivable sur I et pour tout x ∈ I : f ′(x) = 2x+6
1− ln(x)

x2
=

2

x2
g(x) > 0 d’après

2)b). On en déduit que f est strictement croissante sur I.

x

f ′(x)

f

0 +∞

+

11

+∞+∞

4. L’équation réduite de la tangente T1 à C au point d’abscisse 1 a pour équation :
y = f ′(1)(x− 1) + f(1), soit y = 8(x− 1) + 1 i.e y = 8x− 7

5. a) Il s’agit d’étudier sur I le signe de f(x)− x2 = 6
ln(x)

x2
qui est du signe de ln(x).

Ainsi, si x ∈]0; 1[, alors f(x)− x2 < 0 et C est en-dessous de CP .
Si x > 1, C est au-dessus de CP et C coupe CP au point d’abscisse 1, qui a pour coordon-
nées (1, 1).

b) lim
x→+∞

(f(x)− x2) = lim
x→+∞

6
ln(x)

x2
= 0 par croissance comparée.

On en déduit que C et CP sont asymptotes en +∞.
6. Graphiques des trois courbes : en annexe.
7. Graphiquement : C et la droite Dm : y = m ont un unique point d’intersection d’abs-

cisse αm.
Pour m = 0, on lit : 0, 8 < α0 < 0, 9 .

2.3 Exercice 3

1. f est dérivable sur ]0; +∞[ comme quotient de deux fonctions dérivables sur ]0; +∞[,
dont celle au dénominateur ne s’annule pas.
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2. Soit x > 0 : lim
x→0

x ln(x) = 0 par croissance comparée et lim
x→0

x+1 = 1, donc par quotient

lim
x→0

f(x) = 0 = f(0). Ainsi f est continue en 0.

3. Soit x > 0 :
f(x)− f(0)

x
=

ln(x)

x+ 1
.

Or lim
x→0

ln(x) = −∞ et lim
x→0

x+ 1 = 1, donc par quotient lim
x→0

f(x)− f(0)

x
= −∞. Ainsi,

f n’est pas dérivable en 0, mais possède une demi-tangente verticale.

4. a) g est dérivable sur ]0; +∞[ comme somme de fonctions dérivables sur ]0; +∞[ et pour

tout réel x > 0 : g′(x) =
1

x
+ 1 > 0. On en déduit que g est strictement croissante sur

]0; +∞[.
b) *) D’une part, lim

x→0
ln(x) = −∞ et lim

x→0
x+ 1 = 1, donc par somme lim

x→0
g(x) = −∞.

D’autre part, lim
x→+∞

ln(x) = +∞ et lim
x→+∞

x+1 = +∞, donc par somme lim
x→0

g(x) = +∞.

**) g est continue sur ]0; +∞[
***) g est strictement croissante sur ]0; +∞[.

D’après le TVI strictement monotone, tout réel k ∈
]
lim
x→0

g(x); lim
x→+∞

g(x)

[
=]−∞; +∞[

a un unique antécédent par g. En particulier il existe un unique réel β > 0 tel que
g(β) = 0. En utilisant la calculatrice : 0, 27 < β < 0, 28.
c) Posons pour tout réel x > 0, u(x) = x ln(x) et v(x) = x+ 1. Ainsi u′(x) = ln(x) + 1

et v′(x) = 1, d’où f ′(x) =
(x+ 1)(ln(x) + 1)− x ln(x)

(x+ 1)2
=

g(x)

(x+ 1)2
.

Comme (x+ 1)2 > 0, on en déduit que f ′ est du même signe que g sur ]0; +∞[, et donc
f est strictement décroissante sur ]0;β] et strictement croissante sur [β; +∞[.

De plus lim
x→+∞

x

x+ 1
= 1 et lim

x→+∞
ln(x) = +∞, on a par produit : lim

x→+∞
f(x) = +∞.

D’où le tableau de variations de f :

x

f ′(x)

f

0 β +∞

− 0 +

00

f(β)f(β)

+∞+∞

d) g est deux fois dérivable sur ]0; +∞[ et pour tout réel x > 0 : g′′(x) = − 1

x2
< 0. Donc

g est concave sur ]0; +∞[. La courbe représentative de g est donc en-dessous de chacune
de ses tangentes, en particulier en-dessous sa tangente au point d’abscisse 1, d’équation
réduite y = g′(1)(x− 1) + g(1) i.e y = 2(x− 1) + 2 i.e y = 2x .

5. f est deux fois dérivable sur ]0; +∞[ et comme pour tout réel x > 0 : f ′(x) =
g(x)

(x+ 1)2
,

on a : f ′′(x) =
(x+ 1)2g′(x)− 2(x+ 1)g(x)

(x+ 1)4
=

(x+ 1)g′(x)− 2g(x)

x(x+ 1)3
, soit après calculs :

f ′′(x) =
1− x2 − 2x ln(x)

x(x+ 1)3
du signe de h(x) = 1− x2 − 2x ln(x).
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Clairement, f ′′(1) = h(1) = 0, donc h s’annule en 1.

Étudions h sur ]0; +∞[ :
h est dérivable et pour tout x > 0 : h′(x) = −2x − 2(ln(x) + 1) = −2g(x) ; donc h′ est
du signe opposé de g sur ]0; +∞[.
D’après la question 4) c) h′(x) > 0 si 0 < x < β, h′(β) = 0 et h′(x) < 0 si x > β.
D’où le tableau de variations de h :

x

h′(x)

h

0 β +∞

+ 0 −

11

h(β)h(β)

−∞−∞

Comme h(β) > 0, f ′′ s’annule en 1 en changeant de signe, donc 1 est point d’inflexion
de f et c’est le seul car h donc f ′′ ne s’annule pas sur ]0;β[.

Annexe de l’exercice 2

Figure 1 – Graphes de C, CP et T
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