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Une initiation à la convexité niveau Terminale spécialité maths. Les résultats hors-programme,
mais nécessaires pour démontrer ceux qui le sont, sont donnés en annexe. La plupart sont
d’ailleurs abordables au niveau mentionné, mais restent très techniques. Le lecteur ou la lectrice
courageux(se) pourra les consulter avec profit.
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1 Introduction

1.1 Parties convexes du plan

Définition 1 : On dit qu’une partie C du plan est convexe si pour tout couple de points A
et B appartenant à C, le segment [AB] est entièrement contenu dans C.

On donne ci-dessous plusieurs parties C du plan. Déterminez celles qui sont convexes.

Figure 1 – Convexes ou non ?

Mais comment décrire un segment [AB] du plan ?
Commençons par décrire un segment [a; b] de la droite réelle :

1.2 Paramétrisation d’un segment

Soient a ≤ b deux réels.

Définition 2 : Le segment [a; b] est l’ensemble des réels x tels que a ≤ x ≤ b :
[a; b] = {x ∈ R | a ≤ x ≤ b}

Nous pouvons imaginer une version dynamique où partant de a, nous souhaitons aller jusqu’à
b, autrement dit nous ajoutons au réel a une fraction de la longueur b− a du segment [a; b].

Ainsi, a+
1

2
(b− a) =

a+ b

2
nous mène au milieu de [a; b].

De même, a+
3

4
(b− a) =

1

4
a+

3

4
b nous mène aux 3/4 du segment [a; b] en partant de a.

Figure 2 – Paramétrisation d’un segment
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Propriété 1 : [a; b] = {a+ t(b− a) | 0 ≤ t ≤ 1} = {(1− t)a+ tb | 0 ≤ t ≤ 1}

Remarquons que nous pouvons aussi partir de b et rajouter à b une fraction de a−b (attention,
ce n’est plus b− a).
Nous avons alors : [a; b] = {b+ t(a− b) | 0 ≤ t ≤ 1} = {ta+ (1− t)b | 0 ≤ t ≤ 1}

Bref, le segment [0, 1] joue un rôle de référence par rapport à tous les autres segments. Mais
ce n’est qu’une convention pratique !

2 Fonctions convexes

2.1 Intervalles

Définition 2 : On dit qu’une partie I de R est un intervalle si pour tout (x, y) ∈ I2,
[x; y] ⊂ I.

Exemples :
1. I =]−∞; 10] est un intervalle.
2. J = [0; 1]∪]1, 001; 2] n’en est pas un.

2.2 Cordes et sécantes

Dans toute la suite, I désigne un intervalle (non vide) de R et f une fonction à valeurs réelles
définie sur I.

Définition 3 :
1. Le segment d’extrémités A(x, f(x)) et B(y, f(y)) que l’on peut paramétrer par :

[AB] =

{
tx+ (1− t)y

tf(x) + (1− t)f(y)
, t ∈ [0; 1]

est appelé une corde de f .

2. La droite (AB) est appelée sécante de f .

Figure 3 – corde d’une courbe
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2.3 Fonctions convexes et concaves

Soit f : I −→ R une fonction, x, y ∈ I et A(x, f(x)) et B(y, f(y)).

Définition 4 :

1. f est convexe si pour tout (x, y) ∈ I2 et pour tout t ∈ [0; 1] :

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

ou de manière équivalente

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

Géométriquement : Cf est en-dessous chacune de ses cordes [AB].
2. f est concave si pour tout (x, y) ∈ I2 et pour tout t ∈ [0; 1] :

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

ou de manière équivalente

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y)

Géométriquement : Cf est au-dessus chacune de ses cordes [AB].

Remarques :

1. On appelle épigraphe de f , noté Epi(f) l’ensemble des points (x, y) situés au-dessus la
courbe représentative Cf de f . Dire que la fonction f est convexe équivaut à dire que
Epi(f) est une partie convexe du plan (exercice 0).

2. f est convexe si et seulement si −f est concave.

Figure 4 – Fonctions convexe et concave
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La définition de fonction convexe nous permet de préciser la position de la courbe de f par
rapport à chacune de ses sécantes.

Propriété 2 : Soit (x, y) ∈ I2 tels que x < y, f : I −→ R une fonction convexe sur I de
courbe représentative Cf et A(x, f(x)) et B(y, f(y)). Alors :

— Cf en-dessous de (AB) sur [x; y].
— Cf au-dessus de (AB) sur ]−∞;x] ∩ I

⋃
[y; +∞[∩I.

Figure 5 – Fonction convexe et ses sécantes

Démonstration : Soit t ∈ [y; +∞[∩I. Le point de (AB) d’abscisse t a pour ordonnée f(x)+
f(y)− f(x)

y − x
(t− x). Nous souhaitons prouver que f(t) ≥ f(x) +

f(y)− f(x)

y − x
(t− x).

Or y ∈ [x; t], donc il existe λ ∈ [0, 1] tel que y = (1 − λ)x + λt. En fait λ > 0 car t ≥ y > x.

Ainsi y − x = λ(t− x), d’où λ =
y − x

t− x
puis 1− λ =

t− y

t− x
. Par convexité de f sur I :

f(y) ≤ (1− λ)f(x) + λf(t), d’où λ(f(t)− f(x)) ≥ f(y)− f(x) ⇐⇒ f(t) ≥ 1

λ
(f(y)− f(x)) +

f(x) ⇐⇒ f(t) ≥ f(x) +
f(y)− f(x)

y − x
(t− x). Même raisonnement si t ∈]−∞;x] ∩ I.

2.4 Critères de convexité

Dans cette section, seuls les théorèmes et leurs corollaires sont au programme.
Nous donnons au lecteur curieux ou à la lectrice curieuse les lemmes qui en sont à la base et
les renvoyons à l’annexe pour leurs démonstrations (Hors Programme).

Lemme 1 (des trois pentes) : Soient a < b < c trois réels de l’intervalle I et f une
fonction convexe sur I. Alors :

f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
≤ f(c)− f(b)

c− b

La réciproque est vraie.

5



Figure 6 – Lemme des trois pentes

Lemme 2 (croissance de la pente) : Soit a un réel de l’intervalle I et f une fonction

convexe sur I. Alors τa :

I \ {a} → R

x 7→ f(x)− f(a)

x− a

est croissante. La réciproque est vraie.

Lemme 3 (convexité et dérivabilité) : Soit f une fonction convexe sur un intervalle I.
Alors f est dérivable à gauche et à droite en chaque point intérieur à I.
En particulier, f est continue en tout point intérieur à I.

Remarque : Attention ! Nous n’avons rien précisé sur les bords de I. Par exemple, la "fonc-

tion smiley" définie sur [-1 ;1] par f(x) =

{
x2 si x ∈]− 1; 1[

2 si x ∈ {−1; 1}
est convexe, continue sur ]−1; 1[,

mais discontinue en −1 et en 1.
Par contre, si l’intervalle I est ouvert, alors si f est convexe sur I, f est continue sur I.
La réciproque est bien entendue fausse (donner un contre-exemple).

Voici le premier théorème dont il convient de parfaitement retenir l’énoncé.

Théorème 1 : Soit f une fonction dérivable sur un intervalle I.
Alors f est convexe sur I si et seulement si f ′ est croissante sur I.

Corollaire fondamental : Soit f une fonction deux fois dérivable sur un intervalle I.
Alors f est convexe sur I si et seulement si f ′′ ≥ 0 sur I.

Théorème 2 (convexité et tangentes) : Soit f une fonction dérivable sur un intervalle
I. Alors f est convexe sur I si et seulement si Cf est au-dessus de chacune de ses tangentes.
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Figure 7 – Fonction convexe et ses tangentes

La position d’une fonction convexe / concave par rapport à ses sécantes / tangentes est à
retenir absolument.

Résumons donc les propriétés essentielles d’une fonction convexe définie sur un intervalle I.
On note a < b deux réels appartenant à I et A(a; f(a)) et B(b; f(b)).

1. Cf est en-dessous chacune de ses cordes [AB] (si a ≤ x ≤ b), mais au-dessus de sa sécante
sur (AB) \ [AB] (si x < a ou si x > b).
En particulier, si f(a) < f(b) alors lim

x→+∞
f(x) = +∞.

Alors que si f(a) > f(b), nous avons : lim
x→−∞

f(x) = +∞.

2. Si f est dérivable sur I, alors Cf est au-dessus de chacune de ses tangentes.
3. f est continue sur l’intérieur de I.

2.5 Point d’inflexion

La notion suivante illustre le changement de concavité d’une fonction en un point.

Définition 5 : Soit I un intervalle et f : I −→ R une fonction réelle.
Le réel a ∈ I est appelé point d’inflexion de f si au voisinage de a l’une des deux situations
suivantes se présente :

1. f est convexe puis concave,
2. f est concave puis convexe.

Bref, si f change de concavité au voisinage de a.

Remarque : En un point d’inflexion, la courbe représentative de f est traversée par sa
tangente.

Théorème 3 : Soit I un intervalle et f : I −→ R une fonction deux fois dérivable sur I.
Alors a ∈ I est un point d’inflexion pour f si f ′′(a) s’annule en changeant de signe.
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(a) Fonction convexe puis concave (b) Fonction concave puis convexe

Figure 8 – Points d’inflexion

3 Applications de la convexité

3.1 Inégalités et limites

Les positions relatives des fonctions usuelles par rapport à leurs sécantes ou tangentes sont
une source inépuisable pour prouver des inégalités.

Exemple 1 : Pour tout réel x : ex ≥ 1 + x.

Démonstration : La fonction exponentielle est convexe sur R car deux fois dérivable sur R
et égale à sa dérivée seconde qui est strictement positive (corollaire fondamental). Nous en
déduisons que Cexp est au-dessus de chacune de ses tangentes (Théorème 2). En particulier,
Cexp est au-dessus de sa tangente au point d’abscisse 0 qui a pour équation y = exp′(0)(x −
0) + exp(0) i.e y = x+ 1.
En conséquence : (∀x ∈ R) ex ≥ x + 1 et comme lim

x→+∞
(x + 1) = +∞, nous obtenons par

comparaison que lim
x→+∞

ex = +∞.

Exemple 2 : Pour tout réel x > 0, ln(x) ≤ x− 1.

Démonstration : La fonction ln est deux fois dérivable sur R∗
+ et pour tout x > 0 :

ln′′(x) = − 1

x2
< 0, donc d’après le corollaire fondamental, ln est concave sur R∗

+. Nous en
déduisons que Cln est en-dessous de chacune de ses tangentes (Théorème 2). En particulier, Cln
est en-dessous de sa tangente au point d’abscisse 1 qui a pour équation y = ln′(1)(x−1)+ln(1)
i.e y = x− 1.
En conséquence : (∀x ∈ R∗

+) ln(x) ≤ x− 1.

3.2 Croissances comparées

Les inégalités de convexité comparent f(x) et l’expression d’une fonction affine : Cf au-dessus
ou en-dessous ses cordes / tangentes. Il est parfois nécessaire d’avoir plus de précision pour
conclure. Il est alors possible de conclure grâce aux théorèmes de comparaison ou d’encadre-
ment. Donnons de suite un exemple !
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Exemple résolu : Nous souhaitons démontrer que lim
x→+∞

ex

x
= +∞.

En étudiant la fonction g définie sur R par g(x) = ex− 1−x− x2

2
, prouver que pour tout réel

x : g(x) ≥ 0. En déduire le résultat annoncé.

Solution : La fonction g est dérivable sur R, et pour tout réel x : g′(x) = ex − 1 − x =
ex−(x+1). Or par convexité de exp, nous avons prouvé que pour tous réels x : ex−(x+1) ≥ 0.
Donc g est croissante sur R. Or g(0) = 0, donc pour tout réel x : g(x) ≥ 0.

Ainsi, pour tout réel x : ex ≥ 1 + x+
x2

2
. Divisant par x > 0 :

ex

x
≥ 1

x
+ 1 +

x

2
.

Or lim
x→+∞

1

x
+ 1 +

x

2
= +∞, donc par comparaison : lim

x→+∞

ex

x
= +∞.

Nous pouvons en déduire que pour tout n ≥ 2 : lim
x→+∞

ex

xn
= +∞.

Démonstration : En effet, pour tout n ≥ 2 fixé :
(
ex

x

)n

=
enx

xn
= nn.

enx

(nx)n
.

Nous en déduisons que lim
x→+∞

enx

(nx)n
= +∞. Le lecteur conclura aisément.

Exercice : Prouver que lim
x→+∞

ln(x)√
x

= 0.
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4 Exercices

Exercice 0 : Justifier qu’une fonction f définie sur un intervalle I est convexe si et seulement
si son épigraphe Epi(f) = {(x; y) ∈ I × R | f(x) ≤ y} est une partie convexe de R2.

Exercice 1 : En revenant à la définition de la convexité, démontrez que la fonction carrée
est convexe sur R et que la fonction racine carrée est concave sur R+.

Indication : on pourra utiliser le fait que pour tous réels x et y : xy ≤ 1

2
(x2 + y2).

Exercice 2 : Prouver que pour tout x, y > 1 :
√
ln(x) ln(y) ≤ ln

(
x+ y

2

)
.

Exercice 3 : En étudiant la fonction définie sur R∗
+ par f(x) = x ln(x), prouver que pour

tous réels strictement positifs a, b, x, y :

(x+ y) ln

(
x+ y

a+ b

)
≤ x ln

(x
a

)
+ y ln

(y
b

)
Exercice 4 : Soit I un intervalle. Déterminer l’ensemble des fonctions à la fois convexes et
concaves sur I.

Exercice 5 : Démontrer que pour tout réel x ∈
[
0;

π

2

]
:
2

π
x ≤ sin(x) ≤ x.

Exercice 6 : Étudier la convexité / concavité des fonctions définies sur R par :
1. f(x) = x3 − 2x2 + 3x+ 1

2. g(x) = xe−x

3. h(x) = (x2 + 2)ex

Exercice 7 : La courbe C ci-dessous est celle d’une fonction f définie sur ]0; +∞[.
Son maximum est atteint en x = 3 et son unique point d’inflexion est le point P d’abscisse 5.

Figure 9 – Fonction inconnue

Déterminer la ou les assertions correctes en les justifiant.
1. Pour tout x ∈]0; 5[, f(x) et f ′(x) sont de même signe.
2. Pour tout x ∈]5; +∞[, f(x) et f ′(x) sont de même signe.
3. Pour tout x ∈]0; 5[, f ′(x) et f ′′(x) sont de même signe.
4. Pour tout x ∈]5; +∞[, f ′(x) et f ′′(x) sont de même signe.
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Exercice 8 : On considère une fonction f deux fois dérivable sur l’intervalle [−4 ; 2]. On
note f ′ la fonction dérivée de f et f ′′ la dérivée seconde de f .

On donne ci-dessous la courbe représentative C′ de la fonction dérivée f ′ dans un repère du
plan. On donne de plus les points A(−2 ; 0), B(1 ; 0) et C(0 ; 5).

Figure 10 – Fonction inconnue bis

1. La fonction f est :

a. concave sur
[−2 ; 1] ;

b. convexe sur
[−4 ; 0] ;

c. convexe sur
[−2 ; 1] ;

d. convexe sur
[0 ; 2].

2. On admet que la droite (BC) est la tangente
à la courbe C′ au point B. On a :

a. f ′(1) < 0 ; b. f ′(1) = 5 ;
c. f ′′(1) > 0 ; d. f ′′(1) = −5.

Exercice 9 : On pose f(0) = 0 puis f(x) =
1

ln(x)
pour tout x ∈]0; 1[.

1. f est-elle continue en 0 ?

2. f est-elle dérivable en 0 ?

3. Justifier que f est deux fois dérivable sur ]0; 1[ et calculer f ′(x) puis f ′′(x).

4. Étudier la convexité / concavité de f , ses points d’inflexion et donner l’équation des
tangentes en ces points.

5. Donner l’allure du graphe de f .
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5 Annexes

5.1 Démonstration des lemmes Hors-Programme

Lemme 1 des trois pentes :
1. Sens direct : Supposons f convexe sur un intervalle I non réduit à un point, et soient

a < b < c trois réels de I.
— b ∈]a : c[, donc il existe t ∈]0; 1[ tel que b = ta+ (1− t)c (1).
— Par convexité de f : f(b) ≤ tf(a) + (1− t)f(c) (2).

D’après (2) : f(b)− f(a) ≤ (t− 1)f(a) + (1− t)f(c) = (1− t)(f(c)− f(a)).

D’après (1) : b− a = (t− 1)a+ (1− t)c = (1− t)(c− a). D’où : 1− t =
b− a

c− a
.

D’où f(b)− f(a) ≤ b− a

c− a
(f(c)− f(a)) et donc

f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
.

De même en soustrayant c à (1) et f(c) à (2), on prouve que :
f(c)− f(a)

c− a
≤ f(c)− f(b)

c− b
2. Sens réciproque : Supposons que pour tous réels a < b < c de l’intervalle I, la fonction

f vérifie :
f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
≤ f(c)− f(b)

c− b

Soit (a, c) ∈ I2 tel que a < c (le cas a = c n’a aucun intérêt) et λ ∈ [0; 1]. On peut
supposer λ ∈]0; 1[, les cas extrêmes étant aussi sans intérêt. Donc b = (1−λ)a+λc ∈]a; c[.

On remarque que b− a = λ(c− a) et donc :
f(b)− f(a)

λ(c− a)
≤ f(c)− f(a)

c− a
.

D’où f(b) − f(a) ≤ λ(f(c) − f(a)) ⇐⇒ f(b) ≤ (1 − λ)f(a) + λf(c). Ce qui prouve la
convexité de f sur I.

Lemme 2 : Soit a un réel de l’intervalle I, f : I −→ R et τa :

I \ {a} → R

x 7→ f(x)− f(a)

x− a

.

1. Sens direct : Supposons f convexe sur I. Soient (b, c) ∈ (I \ {a})2 tels que b < c. En
distinguant les trois cas (1) b < c < a, (2) b < a < c et (3) a < b < c et en utilisant le
lemme des trois pentes, on prouve la croissance de τa sur I \ {a}.

2. Sens réciproque : Supposons τa croissante sur I \ {a}. Soient (b, c) ∈ (I \ {a})2 tels que

b < c. Alors :
f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
.

En raisonnant de même avec la fonction τc croissante sur I\{c}, on prouve que
f(c)− f(a)

c− a
≤

f(c)− f(b)

c− b
. D’où l’inégalité des trois pentes. Or par le lemme 1, ceci équivaut à la

convexité de f sur I.

Pour le coup, la démonstration du dernier lemme est vraiment inabordable en terminale. Car
il nous manque un gros résultat sur les fonctions numériques. Mais pas de panique ! Vous avez
admis ce fait avec les suites numériques : Toute suite croissante (resp. décroissante) et
majorée (resp. minorée) est convergente. Citons-le dans le cas croissant :

Théorème de la limite monotone : Soit I un intervalle et f : I −→ R une fonction
croissante. Alors f admet en tout réel a intérieur à I une limite à gauche f(a−) et une limite
à droite f(a+) et nous avons f(a−) ≤ f(a) ≤ f(a+).
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Lemme 3 : Soit x un point intérieur à I. Il existe donc deux réels a et b appartenant à I
tels que x ∈]a; b[.

— D’après l’inégalité des trois pentes :
f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
≤ f(x)− f(b)

x− b
— D’après le lemme 2 et en utilisant le théorème de la limite monotone appliqué à la fonction

τx sur I∩]−∞;x[ et sur I∩]x; +∞[, nous avons, faisant tendre indépendamment a vers
x par valeurs inférieures puis b vers x par valeurs supérieures : f ′

g(x) ≤ f ′
d(x).

Théorème 1 : f est supposée dérivable sur un intervalle I.

1. Sens direct : Supposons f convexe sur I. Soient x, y ∈ I avec x < y et t ∈]x; y[. Alors

par le lemme des trois pentes :
f(t)− f(x)

t− x
≤ f(y)− f(x)

y − x
≤ f(y)− f(t)

y − t
.

Faisant tendre indépendamment t vers x à droite et t vers y à gauche, nous obtenons :

f ′(x) ≤ f(y)− f(x)

y − x
≤ f ′(y). Et f ′ est croissante sur I.

2. Sens réciproque : Supposons f ′ croissante sur I. Soient x < y deux réels de I et λ ∈]0; 1[.

Posons t = (1− λ)x+ λy ∈]x; y[. Nous avons λ =
t− x

y − x
et 1− λ =

y − t

y − x
.

Or d’après le théorème des accroissements finis (Hors programme de terminale lui aussi),
il existe cx ∈]x; t[ et cy ∈]t; y[ tels que f(t) − f(x) = (t − x)f ′(cx) et f(y) − f(t) =
(y − t)f ′(cy).

Comme f ′ croissante sur I et du fait que c′x < c′y, alors f ′(cx) =
f(t)− f(x)

t− x
≤ f ′(cy) =

f(y)− f(t)

y − t
. D’où

f(t)− f(x)

λ(y − x)
≤ f(y)− f(t)

(1− λ)(y − x)
. Et donc :

(1− λ)(f(t)− f(x)) ≤ λ(f(y)− f(t)) ⇐⇒ f(t) ≤ (1− λ)f(x) + λf(y). Ce qui achève
la preuve, les cas λ = 0 et λ = 1 étant triviaux.

Remarque : corollaire fondamental se déduit immédiatement du théorème 1 (bon exercice).

Théorème 2 : Soit f dérivable sur l’intervalle I.
Sens direct : Supposons f convexe sur I et a ∈ I. Nous souhaitons prouver que pour tout réel
x ∈ I : f(x) ≥ f(a) + (x− a)f ′(a). Le cas x = a étant trivial, on peut supposer x ̸= a.

Cas 1 : Soit x ∈ I∩]a; +∞[ et b ∈]a;x[. D’après l’inégalité des trois pentes :
f(b)− f(a)

b− a
≤

f(x)− f(a)

x− a
. Or τa : b 7→ f(b)− f(a)

b− a
tend vers f ′(a), donc f ′(a) ≤ f(x)− f(a)

x− a
.

D’où pour tout x > a : f(x) ≥ f(a) + f ′(a)(x− a).

Cas 2 : Soit x ∈ I∩]−∞; a[ (donc x− a < 0). Comme τa : x 7→ f(x)− f(a)

x− a
est croissante et

tend vers f ′(a), on a pour tout x ∈ I∩]a; +∞[ :
f(x)− f(a)

x− a
≤ f ′(a), et donc, au vu du signe

de x− a, f(x) ≥ f(a) + f ′(a)(x− a).
Ce qui achève la preuve.

5.2 Compléments

Les applications de la convexité sont très nombreuses. Citons notamment l’optimisation convexe,
très utile en économie pour maximiser un chiffre d’affaires.
Nous en verrons une introduction lors des mini-séminaires avec l’algorithme du simplexe.
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Dans un autre registre, plus technique, donnons un moyen rapide de déterminer les coeffi-
cients λ ∈ [0; 1] et 1−λ que nous avons recalculés à chaque fois dans les preuves. Ceci s’appuie
sur la notion de barycentre qui n’est plus au programme du secondaire, mais que l’on peut
reformuler différemment et très visuellement : Le principe du levier repose sur la relation
entre la distance du pivot à la charge et la force appliquée, où un bras de levier plus long
nécessite moins de force pour soulever une charge.

Figure 11 – Le principe du levier

Nous allons le prendre sous un autre angle : étant donnés trois réels a < b < c, quel poids
1− λ et λ (avec 0 ≤ λ ≤ 1) doit-on affecter aux réels a et c, b jouant le rôle du pivot, afin que
le système levier-pivot soit en équilibre ?

Ceci revient à déterminer λ ∈ [0; 1] tel que (1− λ)(a− b) + λ(c− b) = 0 ⇐⇒ λ =
b− a

c− a
.

Et donc 1− λ =
c− b

c− a

Figure 12 – Le principe du levier sur un segment
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