
Fonction logarithme népérien

Yannick Le Bastard (LEGTA Frédéric Bazille)

21 décembre 2024

Table des matières

1 Définition de la fonction logarithme népérien 2
1.1 Rappels et compléments sur la fonction exponentielle . . . . . . . . . . . . . . . 2
1.2 La fonction logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Courbe représentative 4

3 Propriétés calculatoires 4

4 Propriétés de régularité et variations 6
4.1 Résultats fondamentaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Dérivée logarithmique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Autres logarithmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Limites et croissances comparées 8

6 Exercices 9

Ce document va nous permettre via le théorème des valeurs intermédiaires strictement mono-
tone, de construire à partir de la fonction exponentielle vue en première, la fonction logarithme
népérien.
Il s’agit d’un cas particulier de fonction réciproque, comme les fonctions trigonométriques
inverses : arcsinus, arccos, arctan (Hors Programme).
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1 Définition de la fonction logarithme népérien

1.1 Rappels et compléments sur la fonction exponentielle

Nous avons défini en classe de première la fonction exponentielle comme étant l’unique fonction

f dérivable sur R telle que

{
f ′(x) = f(x) (∀x ∈ R)
f(0) = 1

.

Nous notions provisoirement f = exp. Il fut établi que :

1. Pour tous réels a et b : exp(a + b) = exp(a) exp(b) : exp "transforme" les sommes en
produits.

2. Pour tout réel a : exp(−a) exp(a) = 1.
En particulier, pour tout réel x : exp(x) > 0 et la fonction exp est strictement croissante
sur R.

3. Pour tous réels a et b : exp(a − b) =
exp(a)

exp(b)
: exp "transforme" les différences en

quotients.

4. Pour tout réel a et pour tout entier relatif n : (exp(a))n = exp(na), relation qui s’étend
en fait à tout rationnel r.

Remarques :

1. Posons e = exp(1) (le nombre d’Euler). Par la propriété 4 précédente, on a pour tout
r ∈ Q : exp(r) = er. Nous étendons la notation à tous les réels x et nous utiliserons
alors indifféremment exp(x) ou ex pour désigner l’exponentielle du réel x.

2. La méthode d’Euler avait permis ensuite de tracer approximativement la courbe repré-
sentative de la fonction exponentielle.

Figure 1 – Fonction exponentielle
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Limites et croissances comparées :

1. La fonction exponentielle est (strictement) convexe sur R.

2. Pour tout réel x : ex ≥ 1 + x.

3. lim
x→+∞

ex = +∞ et lim
x→−∞

ex = 0.

4. lim
x→0

ex − 1

x
= 1

5. lim
x→+∞

ex

x
= +∞ et plus généralement, pour tout n ∈ N∗ : lim

x→+∞

ex

xn
= +∞

1.2 La fonction logarithme népérien

La fonction exponentielle est continue et strictement croissante sur R, donc d’après le TVI
strictement monotone, tout réel k ∈] lim

x→−∞
ex; lim

x→+∞
ex[=]0;+∞[ admet un unique antécédent

par exp, que l’on note ln(k).
Ceci permet de définir une fonction ln de ]0; +∞[ (l’ensemble des valeurs prises par exp) sur
R (l’ensemble de définition de exp).

Figure 2 – De exp à ln

Définition 1 : La fonction ln dont l’existence a été justifiée précédemment s’appelle la
fonction logarithme népérien ou fonction logarithme de base e.

Ainsi, par définition, pour tout réel k > 0 : eln(k) = k

Propriété 1 : Pour tout réel x : ln(ex) = x
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2 Courbe représentative

La définition de la fonction logarithme népérien nous permet d’affirmer que :

(x, k) ∈ Cexp ⇐⇒ (k, x) ∈ Cln

Ainsi la courbe représentative Cln de la fonction ln est exactement la symétrique de la courbe
représentative Cexp de exp par rapport à la première bissectrice d’équation D : y = x.

Figure 3 – exp et ln

Remarquons que e0 = 1 et ln(1) = 0, que e1 = e et que ln(e) = 1.
Plus généralement, d’après la propriété 1 : pour tout réel x : ln(ex) = x.

3 Propriétés calculatoires

exp ln

ea+b = eaeb (a, b ∈ R) ln(ab) = ln(a) + ln(b) (a, b ∈ R∗
+)

1

ea
= e−a (a ∈ R) ln

(
1

a

)
= − ln(a) (a ∈ R∗

+)

ea

eb
= ea−b (a, b ∈ R) ln

(a
b

)
= ln(a)− ln(b) (a, b ∈ R∗

+)

(ea)n = ena (a ∈ R, n ∈ Z) ln(an) = n ln(a) (a ∈ R∗
+, n ∈ Z)
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Démonstration : Nous supposons connu le résultat suivant :
(*) eu = ev ⇐⇒ u = v (u, v ∈ R). Notons que par stricte croissance de exp sur R, nous
pouvons remplacer le signe d’égalité par n’importe quel signe d’inégalité : <,≤, >,≥.

1. Soient a, b > 0 : d’une part eln(ab) = ab et d’autre part, eln(a)+ln(b) = eln(a)eln(b) = ab.
Ainsi, d’après (*) : ln(ab) = ln(a) + ln(b).

2. Il suffit de prendre b =
1

a
et d’appliquer le résultat précédent.

3. Combiner les deux résultats précédents.

4. Récurrence sur n ∈ N puis utiliser le second résultat.

Exemple 1 : Exprimer en fonction de ln(2) et de ln(5) le réel A = ln(500).

500 = 4× 125 = 22 × 53, d’où ln(500) = ln(22 × 53) = ln(22) + ln(53) = 2 ln(2) + 3 ln(5).

Application : résolutions d’équations et d’inéquations

exp ln

eu = ev ⇐⇒ u = v (u, v ∈ R) ln(u) = ln(v) ⇐⇒ u = v (u, v ∈ R∗
+)

eX = k ⇐⇒ X = ln(K) (K ∈ R∗
+) ln(X) = k ⇐⇒ X = eK (K ∈ R)

Remarque : nous pouvons remplacer le signe d’égalité par n’importe quel signe d’inégalité
dans le tableau précédent. Par exemple, ln(X) > k ⇐⇒ X > eK .

Exemple 2 : Résoudre les équations ou inéquations suivantes sur R :

1. (E1) : ex = 5

2. (E2) : e−x−1 = e4x+4

3. (E3) : e2x − 3ex + 2 > 0

Solution :

1. (E1) est bien définie pour toutes valeurs de x et ex = 5 ⇐⇒ x = ln(5).
Donc S = {ln(5)}.

2. (E2) est bien définie pour toutes valeurs de x et e−x−1 = e4x+4 ⇐⇒ −x − 1 =
4x+ 4 ⇐⇒ x = −1. Donc S = {−1}.

3. (E3) est bien définie pour toutes valeurs de x et (E3) ⇐⇒ (ex)2 − 3ex + 2 > 0.
Posons X = ex. Clairement X2 − 3X + 2 = 0 ⇐⇒ X = 1 ou X = 2. De plus,
X2 − 3X + 2 > 0 ⇐⇒ X < 1 ou X > 2. Or ex = 1 ⇐⇒ x = 0 et ex = 2 ⇐⇒ x =
ln(2), d’où : S =]−∞; 0[∪] ln(2);+∞[.

Exemple 3 : Résoudre les équations suivantes sur R :

1. (E1) : ln(x) = −5

2. (E2) : ln((−x+ 2)(x− 4)) = −1

3. (E3) : ln(x+ 3) + ln(1− 2x) = 0
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Solution :

1. (E1) est bien définie si et seulement si x > 0. Sous cette condition, ln(x) = −5 ⇐⇒
x = e−5. Donc S = {e−5}.

2. (E2) est bien définie si et seulement si (−x+ 2)(x− 4) > 0 ⇐⇒ x ∈]2; 4[.

Sous cette condition, et remarquant que ln

(
1

e

)
= − ln(e) = −1,

(E2) ⇐⇒ (−x+ 2)(x− 4) =
1

e
⇐⇒ −ex2 + 6ex− (8e+ 1) = 0.

Un calcul rapide amène à x = 3 ±
√
e2 − e

e
= 3 ±

√
1− 1

e
. Les deux valeurs appar-

tiennent à ]2; 4[, donc S = {3−
√
1− 1

e
; 3 +

√
1− 1

e
}.

3. (E3) est bien définie si et seulement si

{
x+ 3 > 0

1− 2x > 0
⇐⇒ x ∈

]
−3;

1

2

[
.

Sous cette condition, (E3) ⇐⇒ ln((x+ 3)(1− 2x)) = ln(1) ⇐⇒ (x+ 3)(1− 2x) = 1.

Nous sommes donc amenés à résoudre sur
]
−3;

1

2

[
l’équation −2x2 − 5x+ 2 = 0.

Aisément, cette dernière a deux solutions : x1 =
−5−

√
41

4
≈ −2, 85 et x2 =

−5 +
√
41

4
≈

0, 35. Donc S = {x1;x2}.

4 Propriétés de régularité et variations

4.1 Résultats fondamentaux

Rappelons que si f est une fonction définie sur D, f(D) désigne l’ensemble des valeurs prises
par f quand x parcourt D : f(D) = {f(x), x ∈ D}.

exp ln

exp est définie sur R et exp(R) = R∗
+ ln est définie sur R∗

+ et ln(R∗
+) = R

exp est strictement croissante sur R ln est strictement croissante sur R∗
+

exp est convexe sur R ln est concave sur R∗
+

exp est continue sur R ln est continue sur R∗
+

exp est dérivable sur R et ∀x ∈ R, exp′(x) = exp(x) ln est dérivable sur R∗
+ et ∀x ∈ R∗

+, ln′(x) =
1

x

Démonstration : Nous ne démontrerons que les résultats relatifs au logarithme népérien,
ceux concernant l’exponentielle étant supposés acquis.

1. Par définition de ln.

2. Soient u, v > 0. Par stricte croissance de l’exponentielle sur R : eln(u) < eln(v) ⇐⇒
ln(u) < ln(v) i.e u < v ⇐⇒ ln(u) < ln(v). Donc ln est strictement croissante sur R∗

+.

3. Soient u, v > 0 et λ ∈ [0; 1]. Comme exp est convexe sur R :
eλ ln(u)+(1−λ) ln(v) ≤ λeln(u) + (1− λ)eln(v) i.e eλ ln(u)+(1−λ) ln(v) ≤ λu+ (1− λ)v.
Par croissance de ln sur R∗

+ : λ ln(u) + (1 − λ) ln(v) ≤ ln(λu + (1 − λ)v). Donc ln est
concave sur R∗

+.

4. Nous allons procéder en plusieurs étapes.
Étape 1 : Comme exp est convexe sur R, Cexp est au dessus de chacune de ses tangentes,
en particulier de sa tangente au point d’abscisse 0 qui a pour équation T0 : y = x+1.
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Donc pour tout réel x : ex ≥ x + 1. Par croissance de ln, nous en déduisons que pour
tout x > −1 : ln(1+x) ≤ x (*). Relation qui équivaut à ln(x) ≤ x− 1 pour tout x > 0.
Étape 2 : Nous prouvons que ln est continue en 1 i.e lim

x→1
ln(x) = ln(1) = 0 ⇐⇒

lim
h→0

ln(1 + h) = ln(1) = 0.

Limite à droite en 1 : Soit h > 0. D’après (*) : 0 ≤ ln(1 + h) = ln(1 + h)− ln(1) ≤ h.
D’après le théorème d’encadrement : lim

h→0+
ln(1 + h) = 0.

Limite à gauche en 1 : soit x ∈]0; 1[. Ainsi ln(x) < 0. Donc par (*) :
1

x
−1 ≥ ln

(
1

x

)
=

− ln(x)+ln(1) > 0. Faisant tendre x vers 1, on conclut grâce au théorème d’encadrement
que lim

x→1−
ln(x) = 0. D’où lim

h→0
ln(1 + h) = 0 = ln(1) et ln continue en 1.

Étape 3 : Nous prouvons que ln est continue en n’importe quel réel x0 > 0.
Remarquons que pour h assez petit afin que x0 + h > 0 : ln(x0 + h) − ln(x0) =

ln

(
1 +

h

x0

)
et nous sommes ramenés au cas précédent. Ce qui achève la preuve.

5. Soit x0 > 0 et h assez petit afin que x0+h > 0. Remarquons que ln(x0+h)− ln(x0) =

ln

(
1 +

h

x0

)
.

Posons u(h) = ln

(
1 +

h

x0

)
; lim
h→0

1 +
h

x0
= 1 et par continuité de ln en 1, lim

x→1
ln(x) =

ln(1) = 0. Donc par composition : lim
h→0

u(h) = 0.
Il est temps de conclure !

ln(x0 + h)− ln(x0)

h
=

1

h
ln

(
1 +

h

x0

)
=

1

x0

ln

(
1 +

h

x0

)
1 +

h

x0
− 1

=
1

x0

u(h)

eu(h) − 1
.

Or lim
h→0

u(h) = u(0) = 0 et lim
x→0

ex − 1

x
= 1, donc par composition, lim

h→0

eu(h) − 1

u(h)
= 1.

Nous en déduisons que lim
h→0

ln(x0 + h)− ln(x0)

h
=

1

x0
i.e ln′(x0) =

1

x0
.

Remarque : La démonstration de la dérivabilité de ln n’est pas au programme. En revanche,
vous pouvez, admettant sa dérivabilité sur R∗

+, dériver la relation eln(x) = x. Nous obtenons
directement (formule de dérivation des fonctions composées) que pour tout réel x > 0 : eln(x)×
ln′(x) = 1 i.e x ln′(x) = 1 et donc ln′(x) =

1

x
.

4.2 Dérivée logarithmique

Théorème : Soit u une fonction dérivable et prenant des valeurs strictement positives sur

un intervalle I. Alors ln ◦u est dérivable sur I et pour tout x ∈ I : (ln ◦u)′(x) = u′(x)

u(x)
.

La démonstration, se basant sur la dérivation des fonctions composées, ne pose aucune diffi-
culté.

Exemple 4 : Déterminer la dérivée de la fonction f définie par f(x) = ln(e2x − 1).

Solution : u : x 7→ e2x−1 est dérivable sur R, de dérivée u′ : x 7→ 2e2x, mais f est dérivable
si et seulement si e2x − 1 > 0 ⇐⇒ e2x > 1 ⇐⇒ x > 0.
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Ainsi, pour tout x > 0 : f ′(x) =
2e2x

e2x − 1
.

4.3 Autres logarithmes

Définition 2 : Soit a un réel strictement positif différent de 1. On appelle fonction logarithme de base a

la fonction loga définie sur R∗
+ par loga(x) =

ln(x)

ln(a)
.

La fonction logarithme de base 10 (logarithme décimal) est souvent notée log plutôt que log10.

Remarque : le logarithme de base a a les mêmes propriétés algébriques que le logarithme
népérien.
Remarquons que loga(a) = 1 et que pour tout n ∈ Z, log(10n) = n.
Attention ! Si a ∈]0; 1[, la fonction loga est strictement décroissante sur R∗

+.

Figure 4 – logarithmes de différentes bases

Le logarithme décimal a eu une grande importance dans les calculs numériques avant l’arrivée
des calculatrices.
Ce logarithme est très utilisé en sciences expérimentales (acoustique, échelle de Richter en
géologie, pH en chimie) et en sciences humaines (loi de Fechner).

5 Limites et croissances comparées

Théorème :
1. La fonction ln est (strictement) convave sur R.
2. Pour tout réel x > −1 : ln(1 + x) ≤ x.
3. lim

x→0
ln(x) = −∞ et lim

x→+∞
ln(x) = +∞.

4. lim
x→0

ln(1 + x)

x
= 1

5. lim
x→+∞

ln(x)√
x

= 0 et donc, pour tout n ∈ N∗ : lim
x→+∞

ln(x)

xn
= 0

6. lim
x→0+

x ln(x) = 0−
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6 Exercices

Exercice 0 : Simplifier au maximum les expressions suivantes :

1. A = ln(e)− 3 ln(e4) + 5 ln(1)

2. B = ln(3e)− 3 ln(e2) + 6 ln(1)

Exercice 1 : Résoudre les équations suivantes sur R :

1. ex = 4

2. e3x−1 = 2

3. e5x
2
= 2

4. e3x−1 = ex
2

5. e−x+1 = (ex)2

Exercice 2 : Résoudre les équations suivantes sur R :

1. e2x − 3ex + 1 = 0

2.

{
ex − e2y = 1

xy = 2

Exercice 3 : Résoudre les équations suivantes sur R :

1. ln(x) = 2

2. ln(3x) = −4

3. ln(−5x+ 1) = 3

4. ln(2x2) = 5

5. ln(x2) = 0

6. ln(3x− 1) = ln(−2x)

Exercice 4 : Résoudre les équations ou inéquations suivantes sur R :

1. ln(x− 2) + ln(x+ 3) = 2

2. 2 ln(2) + ln(x2 − 1) = ln(4x− 1)

3. ln(x− 2)− ln(x− 3) = 1

4. ln(x) + ln(x+ 3) = 2 ln(2)

5. ln(x+ 1) + ln(x+ 5) = ln(96)

6. ln |x+ 1|+ ln |x+ 5| = ln(96)

7. ln(x+ 1) + ln(x− 3)− 2 ln(x− 2) = 0

8. ln(x2 + 3)− ln(2x− 3) = ln(x+ 1)

9. ln(x2 + 3) = ln[(2x− 3)(x+ 1)]

10. ln[(x+ 3)(x− 4)] = ln(−4x− 2)

11. ln

(
x+ 2

x− 2

)
< ln(x+ 1)

12. (ln(x))2 + 3 ln(x)− 4 = 0

13. ln(x) + ln(x2 − 5) > ln(2) + ln(x2 − 3)

14. cos(ln(x)) = 0
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15. ln(cos(x)) = 0

16.

ln(x2) + ln(y2) = 2 ln(6)

ex =
1

e1+y

17. ln(3x2 − x) ≤ ln(x+ 1)

18.

ln(x) + 2 ln(5) = ln(12)− ln(y)

x+ y =
7

5

19.

{
ln(x) + 2 ln(y) = ln(m)

x+ y = 2−m
où m est un paramètre réel.

20. 2 ln2(2x)− 5 ln(2x) + 3 ≤ 0

Exercice 5 : Étudier la fonction définie sur R par f(x) = ln(1 + e−x).

Exercice 6 : Démontrer que les courbes représentatives des fonctions exponentielle et loga-
rithme népérien possèdent deux tangentes communes.

Exercice 7 : Déterminer les limites des fonctions qui suivent :

1. f(x) =
ln(x)

x3
en +∞.

2. g(x) = ln

(√
3x− 1

3x+ 1

)
en +∞

3. h(x) = x2 ln(x3) en 0.

4. i(x) =
ln(x2 + 1)

x2
en +∞

5. j(x)
ln(x2 + 1)

2x+ 1
en +∞

6. k(x) =
(ln(x))2

x
en +∞

7. ℓ(x) = ln(x) ln(x+ 1) en 0

8. m(x) =
ln(x)− 1

x− e
en e

9. n(x) =
√
x ln3(x) en 0

10. o(x) =
ln(x2 − 2x+ 1)

x− 2
en 2

Exercice 8 : On place une somme S au taux annuel (intérêts composés) de 4,5%. Au bout
de combien de temps la somme aura-t-elle doublé ?

Exercice 9 : Prouver que pour tous réels strictement positifs a et b (avec a ̸= b) : ln(a+b) >

ln(2) +
1

2
(ln(a) + ln(b)).

Exercice 10 : Déterminer l’ensemble de définition puis la dérivée de la fonction f définie
par f(x) = ln(x+

√
1 + x2).

10



Problème : Sur le graphique ci-dessous, on a tracé dans le plan muni d’un repère ortho-
normé (O; i⃗; j⃗) la courbe représentative C d’une fonction f définie sur ]0; +∞[.

Figure 5 – courbe C

On dispose des informations suivantes :
— Les points A, B et C ont pour coordonnées respectives (1, 0); (1, 2) et (0, 2).
— C passe par le point B et la droite (BC) est tangente à C en B.
— Il existe deux nombres réels strictement positifs a et b tels que pour tout nombre réel

x > 0 : f(x) =
a+ b ln(x)

x
.

1. a) En utilisant le graphique, déterminer f(1) et f ′(1).

b) Vérifier que pour tout x > 0 : f ′(x) =
(b− a)− b ln(x)

x2
.

c) En déduire les réels a et b.

2. a) Justifier que pour tout x > 0, f ′(x) a le même signe que − ln(x).
b) Déterminer les limites de f en 0 et en +∞.
c) En déduire le tableau de variations de f .

3. a) Démontrer que l’équation f(x) = 1 a une unique solution α dans l’intervalle ]0; 1].
En donner un encadrement à 10−2 près.
b) En utilisant un raisonnement analogue, on démontre qu’il existe un unique réel β > 1
tel que f(β) = 1. Déterminer l’entier n tel que n < β < n+ 1.
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