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Ce document va nous permettre via le théoréme des valeurs intermédiaires strictement mono-
tone, de construire & partir de la fonction exponentielle vue en premiére, la fonction logarithme
népérien.

Il s’agit d’'un cas particulier de fonction réciproque, comme les fonctions trigonométriques
inverses : arcsinus, arccos, arctan (Hors Programme).



1 Deéfinition de la fonction logarithme népérien

1.1 Rappels et compléments sur la fonction exponentielle

Nous avons défini en classe de premiére la fonction exponentielle comme étant I'unique fonction
f(x)=f(z) (VzeR)
f(0)=1

Nous notions provisoirement f = exp. Il fut établi que :

f dérivable sur R telle que {

1. Pour tous réels a et b : exp(a + b) = exp(a) exp(b) : exp "transforme" les sommes en
produits.

2. Pour tout réel a : exp(—a)exp(a) = 1.
En particulier, pour tout réel x : exp(z) > 0 et la fonction exp est strictement croissante
sur R.

exp(a)

exp(b)

3. Pour tous réels a et b : exp(a — b) = : exp "transforme" les différences en

quotients.
4. Pour tout réel a et pour tout entier relatif n : (exp(a))™ = exp(na), relation qui s’étend
en fait a tout rationnel r.
Remarques :

1. Posons e = exp(1) (le nombre d’Euler). Par la propriété 4 précédente, on a pour tout
r € Q : exp(r) = e". Nous étendons la notation a tous les réels = et nous utiliserons
alors indifferemment exp(z) ou e* pour désigner I’exponentielle du réel x.

2. La méthode d’Euler avait permis ensuite de tracer approximativement la courbe repré-
sentative de la fonction exponentielle.
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FIGURE 1 — Fonction exponentielle



Limites et croissances comparées :
1. La fonction exponentielle est (strictement) convexe sur R.
2. Pour tout réel z : e* > 1+ z.

3. lim e*=+ocoet lim e*=0.

r—r-+00 r—r—00
e’ —1
4. lim =1
z—0 X
62? X
5. lim — = 400 et plus généralement, pour tout n € N* : lim — = 400
rz—+oo I z—+oo "

1.2 La fonction logarithme népérien

La fonction exponentielle est continue et strictement croissante sur R, donc d’aprés le TVI
strictement monotone, tout réel k €] lim e”; lir+n €*[=]0; +o00[ admet un unique antécédent

T—r—00 T—r+00
par exp, que 'on note In(k).

Ceci permet de définir une fonction In de ]0; +oo[ (I’ensemble des valeurs prises par exp) sur

R (Pensemble de définition de exp).

FIGURE 2 — De exp & In

Définition 1 : La fonction In dont l'existence a été justifiée précédemment s’appelle la

fonction logarithme népérien ou fonction logarithme de base e.

Ainsi, par définition, pour tout réel k > 0 : ™) =k

Propriété 1 : Pour tout réel x : In(e®) = x



2 Courbe représentative
La définition de la fonction logarithme népérien nous permet d’affirmer que :

(k) € Coxp <= (k,2) € Ciy

Ainsi la courbe représentative Cp, de la fonction In est exactement la symétrique de la courbe

représentative Cexp de exp par rapport & la premiére bissectrice d’équation D : y = x.
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FIGURE 3 —exp et In
= e et que In(e) = 1.
In(e”) = x.

Remarquons que €’ =1 et In(1) = 0, que e
Plus généralement, d’aprés la propriété 1 : pour tout réel x
3 Propriétés calculatoires
exp In
et = e%? (a,b € R) In(ab) = In(a) + In(b) (a,b € RY)
1 1
—=e¢% (a eR) In (—) = —In(a) (a €RY)
a
) =In(a) —In(b) (a,be RY)
") =nln(a) (a € RY,ncZ)

ea
=eb (a,b€R) In
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(e)" =¢e" (aeR,neZ)



Démonstration : Nous supposons connu le résultat suivant :
(*) e =¢" <= u=wv (u,v € R). Notons que par stricte croissance de exp sur R, nous
pouvons remplacer le signe d’égalité par n’importe quel signe d’inégalité : <, <, >, >.

1. Soient a,b > 0 : d’une part e™@) = @b et d’autre part, e(@+n®) — cn(a)n®) — g,
Ainsi, d’aprés (*) : In(ab) = In(a) + In(d).

1
2. Il suffit de prendre b = — et d’appliquer le résultat précédent.
a

3. Combiner les deux résultats précédents.

4. Récurrence sur n € N puis utiliser le second résultat.
Exemple 1 : Exprimer en fonction de In(2) et de In(5) le réel A = In(500).
500 = 4 x 125 = 22 x 53, d’oi1 In(500) = In(22 x 53) = In(22) + In(5%) = 21n(2) + 31n(5).

Application : résolutions d’équations et d’inéquations

exp In
e"=¢€" <= u=v (u,v€R) In(u) = In(v)
eX=k < X=h(K) (KeERY)| In(X)=k

u=1v (u,veRY])
X =el (KeR)

Remarque : nous pouvons remplacer le signe d’égalité par n’importe quel signe d’inégalité
dans le tableau précédent. Par exemple, In(X) > k <= X > eX.

Exemple 2 : Résoudre les équations ou inéquations suivantes sur R :
) 1 ef=5

2. () : e ol = ¢lo+d
) €2 —3e*+2>0

Solution :

1. (E1) est bien définie pour toutes valeurs de z et e* =5 <= z = In(b).
Donc § = {In(5)}.

2. (E3) est bien définie pour toutes valeurs de z et e ¥ 1 = ¥ «— 3 -1 =
dr+4 <= x=—1. Donc § ={—-1}.

3. (E3) est bien définie pour toutes valeurs de z et (E3) <= (%)% — 3e® +2 > 0.
Posons X = e*. Clairement X2 —3X +2 =0 <= X = 1ou X = 2. De plus,
X2 -3X4+2>0 <= X<1louX>20re*=1<+= z=0cte* =2 < =
In(2), d’otr : S =] — o0; 0[U] In(2); +o0|.

Exemple 3 : Résoudre les équations suivantes sur R :
1. (E1) : In(x) =-5
2. (B2) : n((—z+2)(z—4))=-1
3. (B3) : In(z+3)+In(1—-22)=0



Solution :

1. (E1) est bien définie si et seulement si > 0. Sous cette condition, In(z) = -5 <=
r=e% Donc S = {e°}.

2. (E32) est bien définie si et seulement si (—z +2)(x —4) > 0 <= x €]2;4[.

1
Sous cette condition, et remarquant que In (> = —In(e) = -1,
e
1
(By) <= (—2+2)(x —4) == <= —ex?+6ex — (8e+1)=0.

e
2 —
Un calcul rapide améne a x = 3 + ve-e

e
1 1

tiennent a ]2;4[, donc S = {3 — /1 — —;3+4/1— -}
e e

1
=3+ 4/1— —. Les deux valeurs appar-
e
3>0
3. (E3) est bien définie si et seulement si v = T € ] —3; [
1-22>0

Sous cette condition, (E3) <= In((x +3)(1 —2z)) =1In(l) < (z+3)(1 —2z) = 1.

DN | =

1 :
Nous sommes donc amenés a résoudre sur | —3; 3 I'équation —222 — 52 + 2 = 0.

—5 — /41 —5+ VAL _

Aisément, cette derniére a deux solutions : 21 = — ~ —2,85et xg = 1
0,35. Donc S = {z1;x2}.

4 Propriétés de régularité et variations

4.1 Résultats fondamentaux

Rappelons que si f est une fonction définie sur D, f(D) désigne I'ensemble des valeurs prises
par f quand z parcourt D : f(D) = {f(z), € D}.

exp In
exp est définie sur R et exp(R) = R*. In est définie sur RY et In(R%}) =R
exp est strictement croissante sur R In est strictement croissante sur R*
exp est convexe sur R In est concave sur R*
exp est continue sur R In est continue sur R
T
exp est dérivable sur R et Vz € R, exp/(z) = exp(z) | In est dérivable sur R et Va € R%, In'(z) = —
X

Démonstration : Nous ne démontrerons que les résultats relatifs au logarithme népérien,
ceux concernant ’exponentielle étant supposés acquis.

1. Par définition de In.

2. Soient u,v > 0. Par stricte croissance de 'exponenticlle sur R : ™) < () «—
In(u) <1In(v) i.e v <v <= In(u) < In(v). Donc In est strictement croissante sur R .
3. Soient u,v > 0 et A € [0;1]. Comme exp est convexe sur R :
eAln(u)—&—(l—A) In(v) < Aeln(u) + (1 N )\)eln(v) ie 6>\111(1L)+(1—/\)1n(v) < M+ (1 o )\)’U
Par croissance de In sur RY : AMn(u) + (1 — A)In(v) < In(Au + (1 — A)v). Donc In est
concave sur RY .
4. Nous allons procéder en plusieurs étapes.

Etape 1 : Comme exp est convexe sur R, Cexp est au dessus de chacune de ses tangentes,
en particulier de sa tangente au point d’abscisse 0 qui a pour équation Ty : y = x4+ 1.



Donc pour tout réel x : e* > x + 1. Par croissance de In, nous en déduisons que pour
tout > —1: In(14+2z) < z (*). Relation qui équivaut a In(z) < z — 1 pour tout x > 0.
Etape 2 : Nous prouvons que In est continue en 1 i.e lim1 In(z) = In(l) = 0 =
- r—r

lim In(1 4+ h) =1In(1) = 0.
h—0

Limite a droite en 1 : Soit A > 0. D’aprés (*) : 0 <In(1 4+ h) =In(1 + h) —In(1) < h.

D’apres le théoréme d’encadrement : hlim+ In(1+h) =0.
—0

x
—In(z)+In(1) > 0. Faisant tendre z vers 1, on conclut grace au théoréme d’encadrement

que lim In(z) =0. D’ou lim In(1+ h) = 0 =1In(1) et In continue en 1.
x—1- h—0

Etape 3 : Nous prouvons que In est continue en n’importe quel réel zg > 0.
Remarquons que pour h assez petit afin que xg + h > 0 : In(xg + h) — In(zg) =

1 1
Limite & gauche en 1 : soit  €]0; 1[. Ainsi In(z) < 0. Donc par (*) : ——1>1In () =
x

h
In (1 + — | et nous sommes ramenés au cas précédent. Ce qui achéve la preuve.
Zo

5. Soit xp > 0 et h assez petit afin que o+ h > 0. Remarquons que In(zo+ h) —In(zg) =

In <1 + h).
o

h h
Posons u(h) = In <1 + ) ; lim 1 + — =1 et par continuité de In en 1, lim In(z) =
X0 h—0 X0 z—1

In(1) = 0. Donc par composition : }llin% u(h) = 0.
—

Il est temps de conclure!

1H($o+h)—1n(1‘0)_1ln<1+h> 11“<”£)>_1 u(h)

h h ro) w0 P woed® -1
zo
e’ — er(h) —1
Or lim u(h) = u(0) = 0 et lim = 1, donc par composition, lim ——— = 1.
h—0 =0 T h—0 u(h)
1 h)—1 1 1

Nous en déduisons que lim n(zo +h) —Infzo) _ 1 ieln'(zg) = —.

h—0 h ) Zo

Remarque : La démonstration de la dérivabilité de In n’est pas au programme. En revanche,
vous pouvez, admettant sa dérivabilité sur R, dériver la relation eln(@)
directement (formule de dérivation des fonctions composées) que pour tout réel x > 0 : eln(@)

In’(z) = 1ie zln'(z) = 1 et donc In'(z) = —.
x

= z. Nous obtenons

4.2 Deérivée logarithmique

Théoréme : Soit u une fonction dérivable et prenant des valeurs strictement positives sur
/
G

un intervalle I. Alors Inou est dérivable sur I et pour tout x € I : (Inou)'(x) =

La démonstration, se basant sur la dérivation des fonctions composées, ne pose aucune diffi-
culté.

Exemple 4 : Déterminer la dérivée de la fonction f définie par f(z) = In(e?* — 1).

Solution : u: x> e*® —1 est dérivable sur R, de dérivée u’ : x + 2€2*, mais f est dérivable
si et seulement si €2* —1 >0 < €2 >1 < z > 0.



2¢2®
e2r —1°

Ainsi, pour tout x > 0 : f/'(z) =

4.3 Autres logarithmes

Définition 2 : Soit a un réel strictement positif différent de 1. On appelle fonction logarithme de base a
1

la fonction log, définie sur R* par log,(z) = n(z)

~ In(a)’

La fonction logarithme de base 10 (logarithme décimal) est souvent notée log plutdt que log.

Remarque : le logarithme de base a a les mémes propriétés algébriques que le logarithme
népérien.

Remarquons que log,(a) =1 et que pour tout n € Z, log(10™) = n.

Attention! Si a €]0; 1], la fonction log, est strictement décroissante sur R .

=3 —_—

__y=logs(2)

FIGURE 4 — logarithmes de différentes bases

Le logarithme décimal a eu une grande importance dans les calculs numériques avant ’arrivée
des calculatrices.

Ce logarithme est trés utilisé en sciences expérimentales (acoustique, échelle de Richter en
géologie, pH en chimie) et en sciences humaines (loi de Fechner).

5 Limites et croissances comparées

Théoréme :
1. La fonction In est (strictement) convave sur R.
2. Pour tout réel z > —1 : In(1 + ) < z.

3. limIn(z) = —co et lim In(x) = +o0.
z—0 T——+00

4 tim 202

z—0 xT
1 1
5. lim n(z) = 0 et donc, pour tout n € N* :  lim n(z) =0
T—+00 ﬁ z—+oo "

6. lim zln(x) =0~

z—0t

=1




6 Exercices

Exercice 0 :
In(e) — 31In(e?
= In(3e) — 31n(e?

1. A=

Exercice 1 :

Simplifier au maximum les expressions suivantes :
)+ 51n(1)
) +61n(1)

Résoudre les équations suivantes sur R :

1. e* =4

2. el =2

3. 57" =2

4. e3v—1 = o
5. ezl — (ex)Q

Exercice 2 :

1 62z

Résoudre les équations suivantes sur R :

—3¢*+1=0

T _ 2y:1
9. & &
xy =2

Exercice 3 :

1. In(z)

Exercice 4 :

ANl o
—_
=

A~ A~ o/~~~
&

Résoudre les équations suivantes sur R :

4
+1)=3
=5

0

) = In(—2x)

Résoudre les équations ou inéquations suivantes sur R :

1. In(z — 2) +In(z + 3) =2

@@N@?ﬂr’;@!\’

—_
.O

21n(2) + In(x? — 1)
In(z — 2)
In(z) + In(z + 3) = 21n(2)
In(z +1) + In(z + 5)
In|z+1|+In|x + 5|
ln(er 1)+ In(z—3)—2In(x—2)=0
In(x? + 3) —
In(z? + 3) =
Inf(z +3)(z — 4)]

=In(4z — 1)
—In(z—-3)=1

= 1n(96)
= 1n(96)

ln(2x —3)=In(x+1)
In[(2z — 3)(z + 1)]
= In(—4z — 2)

T+ 2

—_
—_

. In

— 2> <In(zx+1)
12. (In(x))? + 31n(x)

—-4=0

13. In(x) + In(z% — 5) > In(2) + In(2? — 3)
14. cos(In(x)) =0



15. In(cos(x)) =

0
In(2?) + In(y?) = 21n(6)
16. 1

X
(& =
elty

17. In(32% — 2) < In(z + 1)
In(z) +2In(5) = In(12) — In(y)
7

rTt+y= 5
1 21 =1

19. { n(z) + 2In(y) n(m) oll m est un paramétre réel.
r+y=2—m

20. 2In%(2z) — 5In(2z) +3 <0
Exercice 5 : Etudier la fonction définie sur R par f(z) = In(1 +e™%).

Exercice 6 : Démontrer que les courbes représentatives des fonctions exponentielle et loga-
rithme népérien possédent deux tangentes communes.

Exercice 7 : Déterminer les limites des fonctions qui suivent :

1. f(x) = lnx(f) en +oo.

-1
2. g(z) :ln< 57 ) en +00

3r+1
3. h(z) = 2?In(23) en 0.
, In(z? + 1)
4. i(x) = ——3 — en +o00
o In(2? +1)
5. ](:E)T—i—l en +00
2
6. k(x) = (In(x)) en +oo
x
7. 4(z) =In(z)In(x + 1) en 0
8. m(z) = In(z) —1 en e
r—e

9. n(z) = Vrnd(z) en 0
_ In(z? — 22 + 1)

2
p— en

10. o(x)

Exercice 8 : On place une somme S au taux annuel (intéréts composés) de 4,5%. Au bout
de combien de temps la somme aura-t-elle doublé ?

Exercice 9 : Prouver que pour tous réels strictement positifs a et b (avec a # b) : In(a+b) >

In(2) + 2 (In(a) + In(b)).

Exercice 10 : Déterminer ’ensemble de définition puis la dérivée de la fonction f définie

par f(z) =In(x + V1 + 22).

10



Probléme : Sur le graphique ci-dessous, on a tracé dans le plan muni d’un repére ortho-
normé (O;i;7) la courbe représentative C d’une fonction f définie sur ]0; +ool.

_\.)>

-1

FIGURE 5 — courbe C

On dispose des informations suivantes :

— Les points A, B et C ont pour coordonnées respectives (1,0);(1,2) et (0,2).

— C passe par le point B et la droite (BC) est tangente a C en B.

— 1l existe deux nombres réels strictement positifs a et b tels que pour tout nombre réel

bl
x>0: f(z)= a+xn(:c).
1. a) En utilisant le graphique, déterminer f(1) et f/(1).
(b—a)—bln(x)

2

b) Vérifier que pour tout > 0 : f'(z) =

c¢) En déduire les réels a et b.
)

2. a) Justifier que pour tout z > 0, f'(x) a le méme signe que — In(z).
b) Déterminer les limites de f en 0 et en 4o0.

c) En déduire le tableau de variations de f.

)
3. a) Démontrer que ’équation f(x) = 1 a une unique solution « dans l'intervalle |0;1].
En donner un encadrement a 1072 prés.
b) En utilisant un raisonnement analogue, on démontre qu’il existe un unique réel 5 > 1
tel que f(B) = 1. Déterminer 'entier n tel que n < f < n + 1.

11
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