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Ce petit document inaugure une série de cinq articles scientifiques à portée des lycéens et des
étudiants en BTSA qui se destinent à la classe passerelle ATS Bio ou à des études de sciences
naturelles ; il propose modestement quelques situations de modélisation en dimension 1 de
phénomènes continus intervenant en physique ou biologie-écologie. Leur résolution théorique
explicite ou leur analyse numérique n’est pas le but principal. Nous nous contentons ici
essentiellement du passage délicat de l’observation à l’écriture mathématique.
Leur modélisation probabiliste sera aussi abordée avec le concours du logiciel Python. Une
bibliographie / webographie est à disposition du lecteur pour qui souhaite se lancer dans cette
passionnante aventure de modéliser le réel, certes de manière très simplifiée. Après tout, la
carte n’est pas le territoire ! Un complément théorique sur la notion de diffusion à destination
des enseignants ou des plus curieux est prévu en fin de document.
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1 Prérequis

Nous ne supposons pas le lecteur totalement novice en ce qui concerne les outils mathéma-
tiques fondamentaux vus dans le secondaire : nombre dérivé et fonction dérivée, fonction
exponentielle, logarithme népérien, primitives et intégration, équations différentielles linéaires
du premier ordre ; ce qui nous mène à un niveau normalement acquis à l’issue d’un cours de
terminale spécialité maths ou maths complémentaires.
L’année de BTSA est très riche en contenu pratique, ce qui est un plus indéniable pour ap-
préhender la "déraisonnable efficacité des mathématiques", mais amène à s’éloigner de leur
aspect théorique, pourtant nécessaire pour justement mieux comprendre ce qui lie théorie et
pratique.
Ce papier a pour but de combler cette lacune pour l’étudiant qui voudra bien se replonger
avec abnégation et sérieux dans ses cours du secondaire, et surtout développer son intuition
sur la notion de dérivée en tant que taux d’accroissement (au sens algébrique) ponctuel pour
modéliser des phénomènes on ne peut plus concrets ! Il ou Elle n’en sera que gagnant !

1.1 L’interprétation de la dérivée

La notion de nombre dérivé est abordée dès la classe de première et joue un rôle central dans
le programme d’analyse mathématique du secondaire. Mais c’est aussi un outil indispensable
en sciences physiques, en sciences du vivant, en économie, etc., car décrivant un taux de
variation instantané. Il convient ici de revenir sur son interprétation intuitive (aspect local) :
vitesse instantanée, densité de population ponctuelle, et ensuite de s’attarder sur la notion de
fonction dérivée (aspect global) dont le signe nous indique les variations de la fonction dont
elle est issue.

Théorème et définition : Soit f une fonction définie sur I (I désigne un intervalle ou une
réunion d’intervalles). Soit a un réel appartenant à I. On dit que f est dérivable en a s’il

existe un réel ℓ tel que lim
h→0

f(a+ h)− f(a)

h
= ℓ. Ce réel ℓ est unique et se note f ′(a). C’est le

nombre dérivé de f en a.

Interprétations du nombre dérivé

Exemple 1 :
Une voiture effectue un trajet de Montpellier à Perpignan. La distance entre ces deux villes
est de 160 km.

1. Sachant que l’automobiliste a mis 1h40 pour effectuer le trajet, quelle était sa vitesse
moyenne en km/h ?

2. Pour autant, la vitesse de la voiture a varié au cours du trajet : accélération, décéléra-
tion, arrêt aux péages... Comment comprenez-vous le terme "vitesse moyenne" ?

3. Quel est l’indicateur de la "vitesse instantanée" ?

4. Généralisons ce qui précède. On appelle d la fonction définie sur [0; +∞[ et qui à chaque
instant t associe la distance parcourue d(t) entre l’instant 0 et l’instant t. Donnez à l’aide
de d l’expression de la vitesse moyenne entre deux instants t1 et t2, puis celle de la vi-
tesse instantanée à l’instant t0.
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Exemple 2 :
On verse du mercurochrome le long d’un fil absorbant, pas nécessairement homogène. Le
mercurochrome se disperse ainsi dans le fil en étant plus ou moins concentré à certains endroits.
Une fois l’équilibre atteint, on note q(x) la quantité de mercurochrome présente sur le fil au
point (en fait sur une très petite longueur autour du point) d’abscisse x.
La densité linéique c de mercurochrome mesure la quantité de mercurochrome (en moles) par
unité de longueur (en m).

1. Quel sens donnez-vous à la densité linéique c ?

2. Si l’on note a une position sur le fil assimilé à une droite, trouvez une relation reliant
q à c en a.

Le nombre dérivé exprime ainsi une variation instantanée d’une quantité.
Graphiquement, il s’interprète comme la pente de la tangente en un point donné.

Figure 1 – De la corde à la tangente

Si f désigne la quantité variant en fonction de la variable x, la variation instantanée en a se

note f ′(a) ou encore
df

dx
(a) ou en cinématique ḟ(a).

1.2 Du nombre dérivé à la fonction dérivée

Définition : Si en chaque réel x ∈ I, f ′(x) existe, on définit une fonction de I dans R, notée
f ′ et appelée fonction dérivée de f .

Nous pouvons comprendre la notion de fonction dérivée comme celle d’une fonction lisse :
elle possède en chacun de ses points une tangente (non verticale).
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Contre exemple classiques :

1. la fonction valeur absolue n’est pas dérivable en 0 (mais admet une demi-tangente à
droite et une demi-tangente à gauche).

2. La fonction racine carrée n’est pas dérivable en 0 car lim
x→0

√
x

x
= +∞.

1.3 La fonction exponentielle et les EDO du premier ordre

Théorème 1-3-1 : Les propositions suivantes sont équivalentes :

1. Il existe une unique fonction f dérivable sur R telle que f ′ = f et f(0) = 1.

2. Il existe une unique fonction f dérivable sur R telle que pour tous réels x et y : f(x+y) =
f(x)f(y) et f(0) > 0.

f est strictement croissante et définit une bijection de R sur R∗
+. L’unique réel x tel que

f(x) = 1 est noté e (nombre d’Euler) et f s’appelle la fonction exponentielle de base e ;
f(x) = exp(x).
On prouve que pour tout rationnel r : exp(r) = er. Utilisant la densité de Q dans R (hors
programme au lycée), on peut justifier la notation exp(x) = ex pour tout réel x.

Théorème 1-3-2 : Soit f une fonction continue sur un intervalle I (donc f est primitivable)
et F une primitive de f sur I.

1. Les solutions de l’équation différentielle (E) : y′ = f sont les fonctions définies sur
I par y(x) = F (x) + C, où C est une constante. Cette constante est déterminée de
manière unique si on dispose d’une condition initiale y(x0) = y0 (exercice).

2. Les solutions de (E0) : y′ = ay (a ∈ R) sont les fonctions de la forme y(x) = Ceax, où
C est une constante réelle. En particulier, si y(0) = y0, alors LA solution de (E0) est
définie par y(x) = y0e

ax.

3. Soit (E) : y′ = ay + f (a ∈ R). Les solutions de (E) s’écrivent comme somme d’une
solution de (E0) et d’une solution particulière fP de I : y(x) = Ceax + fP (x).
Cas particulier : la fonction f est constante de valeur b. Alors les solutions de (E) sont

les fonctions définies sur I par y(x) = Ceax − b

a
.

La constante C est déterminée de manière unique si on dispose d’une condition initiale
y(x0) = y0.

Théorème 1-3-3 (Hors-programme) : Soit f et a deux fonctions continues sur un in-
tervalle I et A une primitive de a sur I.
(E0) : y′ = a(x)y et (E) : y′ = a(x)y + f .
Les solutions de (E0) sont les fonctions définies sur I par f(x) = CeA(x), où C est une constante
réelle.
Les solutions de (E) s’écrivent comme somme d’une solution de (E0) et d’une solution parti-
culière fP de (E) : y(x) = CeA(x) + fP (x).

Méthode de "variation de la constante" : Pour déterminer une solution particulière de
(E), on cherche fP sous la forme fP (x) = C(x)eA(x).
Mais alors f ′

P (x) = C ′(x)eA(x) + C(x)a(x)eA(x) = a(x)fP (x) + f(x).
D’où C ′(x) = f(x)e−A(x). On détermine alors une primitive C(x) de x 7→ f(x)e−A(x) et fP (x)

s’en déduit, puis partant y(x) aussi : y(x) = eA(x)

(∫ x

x0

f(t)e−A(t) + constante
)

.
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2 Premier exemple : la décroissance radioactive

2.1 Mise en place du modèle

En 1896, Henri Becquerel découvre que certaines substances émettent spontanément des rayon-
nements capables de traverser la matière. Pierre et Marie Curie étudieront notamment un de
ces éléments qui prendra le nom de radium.

La radioactivité est d’origine naturelle. L’intégralité des éléments présents sur Terre, y compris
les noyaux radioactifs, ont été formés :

— dans la phase de nucléosynthèse aux premiers instants de l’univers, pour les éléments
légers (hydrogène et hélium),

— dans les étoiles, pour les éléments jusqu’au fer,
— lors de l’explosion des étoiles, marquant la fin de vie de celles-ci, pour les éléments

au-delà du fer.
Un échantillon radioactif peut émettre trois types de particules associées à un rayonnement
électromagnétique :

1. Particules α : noyaux d’hélium 4 émis avec une vitesse de 20 000 Km/s, facilement
arrêtés avec une feuille de papier.

2. Particules β : se déclinent en deux sous particules, à savoir :
Les particules β−, des électrons émis a une vitesse de 280 000 km/s, arrêtés par une

feuille d’aluminium.
Les particules β+, des positrons émis a une vitesse de 280 000 km/s, facilement arrêtés

(dès qu’ils rencontrent de la matière : il y a annihilation !)

3. Rayonnement γ : une onde électromagnétique de λ = 10−4nm. Pour les arrêter il faut
quelques mètres de béton.

Les noyaux stables gardent "indéfiniment" la même composition. En revanche, les noyaux in-
stables, entre autre radioactifs, se désintègrent (transforment) en émettant spontanément des
particules α ou β souvent accompagnées d’un rayonnement γ.
Sur 350 noyaux naturels, environ 60 sont instables, ainsi que presque tous les noyaux artificiels.

Voici la situation qui va particulièrement nous intéresser mathématiquement. Il s’agit, étant
donné un élément radioactif A

ZX d’étudier l’évolution du nombre d’atomes radioactifs restants
(ne s’étant pas désintégrés) en fonction du temps t d’observation.
Nous noterons N0 le nombre initial d’atomes radioactifs de l’élément A

ZX.

N(t) désigne le nombre d’atomes radioactifs du même élément à l’instant t.
Notre temps d’observation entre t = 0 et T est subdivisé en sous-intervalles de temps réguliers

∆t =
T

n
, autrement dit, on observera le nombre d’atomes radioactifs restants de A

ZX aux
instants : 0, ∆t, 2∆t, . . . n∆t = T .
Pendant la durée ∆t, la variation ∆N(t) du nombre d’atomes radioactifs est égale à :

∆N(t) = N(t+∆t)−N(t)

Remarquons que pour tout instant t, ∆N(t) < 0.

L’activité moyenne A(t) exprimée en Becquerels (Bq) est le nombre moyen de désintégrations

par seconde : A(t) = −∆N(t)

∆t
. (d’où vient le signe "moins" ?)

Elle est proportionnelle au nombre d’atomes radioactifs restants à l’instant t : A(t) = λN(t),
avec λ constante radioactive qui dépend uniquement du nucléide radioactif considéré (Il s’agit
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de la loi de Rutherford et Soddy (1902)) et s’exprime en s−1.
Ainsi, on a :

∆N(t)

∆t
= −λN(t) (∗)

Remarques :

1. La loi de Rutherford-Soddy traduit que la probabilité pour un atome radioactif de se
désintégrer pendant un intervalle de temps ∆t est égale à λ∆t.

2. On parle d’activité "sans mémoire".

Faisant tendre ∆t vers 0 dans (*), on obtient l’équation :

N ′(t) = −λN(t)

Cette équation faisant intervenir une fonction N et sa dérivée N ′ est une équation où l’in-
connue est une fonction ! On parle d’équation différentielle.

Quelques valeurs de λ exprimées en s−1 ou jour−1 ou an−1 :
— pour l’uranium : λ = 1, 5× 10−10 an−1

— pour le carbone 14 : λ = 1, 2× 10−4 an−1

— pour l’iode 131 : λ = 8, 5× 10−2 jour−1

Récapitulons : Pour λ donné, on cherche une fonction N définie ici sur [0; +∞[ telle que :{
N ′(t) = −λN(t)

N(0) = N0

t ∈ [0; +∞[

On rencontre très fréquemment la notation
dN(t)

dt
à la place de N ′(t) et nous emploierons

indifféremment l’une comme l’autre.

2.2 Le point de vue probabiliste

La probabilité qu’un atome d’iode 131 se désintègre par jour est égale 0,0085.
L’unité de temps étant le jour, voici un script écrit en Python, qui sur 100 jours détermine
jour par jour, la quantité d’iode 131 restante.

# desintegration radioactive
import matplotlib.pyplot as plt
from random import *
N = 2500 #2500 atomes d'iode 131 au debut

5 listex, listey = [0], [2500]

# fonction modelisant le processus de desintegration
def desintegration(N):

Nb = N
10 n = 0

liste = [random() for i in range(N)] #liste d'atomes non desintegres
for j in range(len(liste)) : #plusieurs atomes peuvent se desintegrer

if liste[j] <= 0.0085 : #pendant la meme unite de temps
n += 1

15 Nb = N - n
return Nb
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# programme principal
i = 0

20 while i <= 100 and N >= 0 :
N = desintegration(N)
i += 1
listex.append(i)
listey.append(N)

25 plt.plot(listex,listey)
plt.title("Nombre d'atomes d'iode 131 restants en fonction du temps")
plt.xlabel('nombre de jours')
plt.ylabel("nombre d'atomes d'iode 131 restants")
plt.grid()

30 plt.legend()
plt.show()

Figure 2 – Désintégration de l’iode 131
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3 Second exemple : Dynamique des populations et cuves

Cette partie est largement inspirée par l’excellent livre de Lionel Roques : Modèles de réaction-
diffusion pour l’écologie spatiale (éditions Quae).

Préliminaire : aussi élémentaire soit-elle, nous aurons très souvent à considérer la notion de
densité. Que ce soit en biologie, en chimie ou en physique, nous comprenons la densité comme
un nombre d’individus, de moles ou de particules par unité de longueur (resp. de surface, de
volume). On parle alors de densité linéïque (resp. surfacique, volumique). On peut également
considérer les variations du nombre d’individus N(t) d’une population au cours du temps. La
variation instantanée N ′(t) de ce nombre d’individus a donc pour dimension : nombre d’indi-
vidus par unité de temps.

On note N(t) la population à l’instant t. On suppose que les nombres de naissances et de
morts par unité de temps sont constants sur un petit intervalle de temps δt.
On notera L.t−1 (resp. D.t−1) le nombre de naissances (resp. de morts) par unité de temps.
Ainsi, N(t+ δt)−N(t) = (L.t−1 −D.t−1)δt.
Divisant par δt que l’on fait tendre vers 0, on obtient :

(1) N ′(t) = (L.t−1 −D.t−1)

3.1 Mise en place des modèles

A) Un premier modèle : le modèle de Malthus (1826) Irréaliste !

Dans An essay on the principle of population en 1826, Thomas Malthus émet l’hypothèse
qu’une population croît proportionnellement au nombre de personnes composant cette popu-
lation.
Ainsi, si l’on note N0 l’effectif de la population à l’instant initial (t = 0) d’observation : il
existe une certaine constante r > 0 tel que pour tout réel t ≥ 0, N ′(t) = rN(t).

Détaillons un peu . . .
On suppose ici que les nombres de naissances et de morts par unité de temps sont proportion-
nels à la taille de la population à chaque instant t : L.t−1 = aN(t) et D.t−1 = bN(t).
Mais alors, l’équation (1) se réécrit :

(2) N ′(t) = (a− b)N(t)

Définition 3-1-1 : On pose r := a− b.
1. a > 0 (resp. b > 0) s’appelle le taux de natalité (resp. taux de mortalité) intrinsèque.
2. r ∈ R s’appelle le taux de croissance intrinsèque.

Proposition 3-1-2 : Si N0 est la population initiale, alors on a N(t) = N0e
rt (∀t ≥ 0).

On a ainsi une croissance ou décroissance exponentielle selon le signe de r. Ce modèle est
irréaliste en dynamique des populations, car il ne prend pas en compte la compétition entre
les individus pour la ressource. Plus leur nombre augmente, plus la ressource diminue et de ce
fait, on devrait avoir une diminution de la croissance. Nous sommes donc amenés à considérer
un modèle plus pertinent sur le long terme.
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Figure 3 – Modèle de croissance Malthusien selon le signe de r

B) Un second modèle : le modèle de Verhülst (1845) Déjà mieux !
Repartons de (1).
Cette fois-ci, prenons en compte des phénomènes de compétition pour la ressource :

— Le taux de natalité a est toujours supposé constant.
— Le taux de mortalité est supposé augmenter avec la taille de la population de manière

affine. b devient b(N) = b0 + b1N .
(1) se réécrit :

N ′(t) = aN(t)− (b0 + b1N(t))N(t)

soit
N ′(t) = (a− b0)N(t)

[
1− b1

a− b0
N(t)

]
Posons r := a− b0 et K =

a− b0
b1

. On a alors :

(3) N ′(t) = rN(t)

(
1− N(t)

K

)

Définition 3-1-3 : Le coefficient r = a− b0 s’appelle le taux intrinsèque de croissance de la
population. Il s’exprime en l’inverse d’une unité de temps : ut−1.

Remarques 3-1-4 :
— Ce taux est intrinsèque dans le sens où il correspond au taux de croissance de la

population en l’absence de compétition (cf modèle de Malthus).
— Le coefficient K s’interprète comme la capacité d’accueil du milieu (exprimée en nombre

d’individus). On peut le comprendre car

K =
r

b1
=

taux intrinsèque de croissance (en ut−1)
coefficient de mortalité (en ut−1 × effectif−1)
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Proposition 3-1-5 : La solution de

N ′(t) = rN(t)

(
1− N(t)

K

)
, t > 0

N(0) = N0

est :

(⋆) N(t) =
KN0

N0 + (K −N0)e−rt
, pour t ≥ 0

Remarques 3-1-6 :
— Il était encore possible de calculer une solution explicite. Ce sera très rarement le cas

pour des équations différentielles non linéaires, où d’autres méthodes prendront le relai :
leur étude qualitative.

— On a fait comme hypothèse que le nombre de naissances restait constant alors que
le nombre de morts suivait une évolution affine. Ceci n’est en rien restrictif. En effet,
si l’on avait également supposé le nombre de naissances avec une croissance affine :
a = a(N) = a0 + a1N , alors il est aisé de prouver que l’équation (1) se réécrit :

N ′(t) = (a0 − b0)N(t)

(
1 +

a1 − b1
a0 − b0

N(t)

)
et l’on est ramené au cas précédent !

Nous allons donner un bref aperçu des propriétés qualitatives d’équations différentielles
autonomes du type y′(t) = f(y(t)). En un sens, y′ ne dépend que de y. Nous écrirons y′ = f(y).
Le but est de connaître le comportement à long terme de ce type d’équations différentielle,
celui à court terme étant connu à l’aide du signe de la condition initiale.

Définition 3-1-7 : Une solution stationnaire du modèle générique N ′(t) = f(N(t)) est
une solution constante N∗ ne dépendant pas de t. Nous parlons aussi d’état stationnaire ou
d’équilibre.

Remarquons alors que si la condition initiale N0 est un équilibre, alors N(t) ≡ N0 est une
solution constante de l’équation différentielle. Comme la dérivée d’une fonction constante est
nulle, nous pouvons déterminer aisément les équilibres :

Proposition 3-1-8 : Une solution N⋆ est un équilibre si et seulement si f(N⋆) = 0.

Dans le cas du modèle de la proposition, dit logistique ou de Verhülst, les solutions stationnaires

sont clairement 0 et K : f(N) = 0 ⇐⇒ rN

(
1− N

K

)
= 0 ⇐⇒ N = 0 ou N = K.

Définition 3-1-9 : S’il existe un voisinage 1 V de N⋆ tel que pour tout N0 dans V ∩R+, la

solution de

{
N ′(t) = f(N(t)), t > 0

N(0) = N0

converge vers N⋆ quand t → +∞, l’état stationnaire

N⋆ est dit (localement) stable. Dans le cas contraire, N⋆ est dit instable.

Cette terminologie est justifiée par le fait que si N0 est une condition initiale "proche" d’un
équilibre stable N∗, alors alors la solution N(t) va se rapprocher de N∗ : lim

t→+∞
N(t) = N∗.

1. un voisinage V d’un réel a est un sous-ensemble de R qui contient un intervalle I contenant lui-même a :
ce qui équivaut à dire que ∃ϵ > 0, ]a− ϵ; a+ ϵ[⊂ V.
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Inversement, si N0 est une condition initiale "proche" d’un équilibre instable N∗, alors la
solution N(t) va s’éloigner de N∗.

Dans le cas présent, la stabilité des états 0 et K peut être étudiée directement en utilisant la
formule (⋆), mais de manière plus générique, en étudiant le signe de f :

Proposition 3-1-10 :
1. L’état stationnaire N∗ de N ′ = f(N) est stable si et seulement si f ′(N∗) < 0.
2. L’état stationnaire N∗ de N ′ = f(N) est instable si et seulement si f ′(N∗) > 0.

Dans le cas présent, f(N) = rN

(
1− N

K

)
, donc f ′(K) = −r < 0 et f ′(0) = r > 0.

On conclut ici à l’instabilité de 0 et à la stabilité de K. Donc quelle que soit la donnée initiale
N0, N(t) → K quand t → +∞.

Proposition 3-1-11 : L’ordonnée des points d’inflexion éventuels de N sont solutions de

l’équation (EI) :
df

dN
(N) = 0 (exercice).

Dans le cas présent : f(N) = rN

(
1− N

K

)
= rN − rN2

K
. D’où

df

dN
(N) = r − 2rN

K
.

On en déduit que
df

dN
(N) = 0 ⇐⇒ N =

K

2
.

En particulier, si l’on a N0 =
K

2
, la population augmente certes, mais la croissance de la

population diminue dès le départ.

Figure 4 – Modèle de croissance de Verhülst (logistique) avec K = 3, N0 = 1 et r > 0

Remarque 3-1-12 : le terme 1− N(t)

K
dans l’équation N ′(t) = rN(t)

(
1− N(t)

K

)
traduit

un frein à la croissance (lié à la capacité biotique K) inexistant dans le modèle Malthusien.
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C) Un troisième modèle : le modèle de Gompertz-Makeham (1825) L’équation de
base est toujours (1).
Au contraire du modèle de Verhülst, William Gompertz considère que la force de mortalité 2

évolue de manière exponentielle avec l’âge. Le terme de frein à l’expansion est ln

(
K

N(t)

)

(1) se réécrit : N ′(t) = rN(t) ln

(
K

N(t)

)
.

Remarque 3-1-13 : Là encore, on peut calculer une solution explicite de (1) en posant

u(t) = ln(N(t)). Mais alors u′(t) =
N ′(t)

N(t)
= r(lnK − u(t)) i.e u′(t) = −ru(t) + r lnK (EDO

linéaire d’ordre 1 à coefficients constants). On a immédiatement u(t) = Ce−rt + lnK, d’où

N(t) = KeCe−rt . Or N(0) = N0, donc C = ln

(
N0

K

)
.

On en déduit que pour tout t ≥ 0, N(t) = Ke
ln

(
N0

K

)
e−rt

.

Comme pour le modèle logistique, on peut calculer l’ordonnée des points d’inflexion éventuels

de N en résolvant l’équation
df

dN
(N) = 0, où f(N) = rN ln

(
K

N

)
= rN(lnK − lnN).

D’où
df

dN
(N) = r ln

(
K

N

)
− r. Ainsi,

df

dN
(N) = 0 ⇐⇒ ln

(
K

N

)
= 1 ⇐⇒ N =

K

e
.

Remarque 3-1-14 : Le modèle de Gompertz-Makeham est globalement équivalent au mo-
dèle logistique :

1. 0 et K sont les deux seuls états stationnaires.

2. 0 est instable et K est stable.

3. Par contre, l’ordonnée du point d’inflexion pour le modèle de Gompertz :
K

e
est inférieur

à celui du modèle logistique :
K

2
; la période où la croissance de la population augmente

est plus courte.

2. D’après Wikipedia : la force de mortalité désigne, en démographie, biologie et science actuarielle, la
fonction décrivant l’évolution du risque de décès par âge au sein d’une population. Formellement, elle est
définie comme la probabilité instantanée de décès par âge conditionnelle à la survie, ce qui la rend donc
équivalente au taux de défaillance en ingénierie de fiabilité et en analyse de survie. Elle sert de base de calcul à
de nombreux indicateurs synthétiques de mortalité issus des tables de mortalité, dont notamment l’espérance
de vie.
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Figure 5 – Modèle de croissance de Gompertz-Makeham avec K = 3, N0 = 1 et r > 0

Aussi, le choix de l’un ou l’autre des modèles dépend des conditions expérimentales. Ils sont
utilisés notamment pour modéliser la croissance d’une espèce bactérienne donnée, par exemple
E. Coli.

3.2 Vers un modèle de réflexion

Considérons une cuve pleine de 450 litres contenant initialement 30 kg de sel. On y fait couler
de l’eau contenant 1/9 kg de sel par litre, à raison de 9 L/min. Le mélange, maintenu homogène
par brassage, s’écoule à raison de 13,5 L/min. Quelle quantité de sel reste-t-il au bout d’une
heure ?

Figure 6 – Flux de matière dans une cuve

Appelons V (t) (resp. q(t)) le volume d’eau (resp. la quantité de sel) dans la cuve t minutes
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après l’instant initial.
Le volume de la cuve diminue de 4,5 L d’eau salée par minute, ainsi comme la cuve a un
volume initial de 450 L, V (t) = 450− 4, 5t.

Considérons deux instants infiniment proches t et t+∆t. Entre t et t+∆t :
1. La cuve reçoit une quantité de 9× 1/9×∆t = ∆t g de sel,
2. En supposant la concentration de sel qui s’échappe de la cuve, constante sur [t; t+∆t],

la cuve perd 13, 5× q(t)

V (t)
∆t g de sel.

Ainsi, ∆q(t) = q(t+∆t)− q(t) =

(
1− 13, 5q(t)

450− 4, 5t

)
∆t.

Divisant par ∆t que l’on fait tendre vers 0, il vient :

q′(t) = 1− 3q(t)

100− t

C’est une équation de la forme y′ = a(t)y + b dont la résolution n’est pas au programme de
Terminale. C’eût été le cas si le coefficient a(t) avait été constant. Mais pas de panique : la
méthode d’Euler 3 vient à la rescousse !

La fonction q est définie sur [0; 100] (la cuve est vide au bout de 100 min), mais comme nous
souhaitons calculer q(60), nous allons partager l’intervalle de temps I = [0; 60] en 1000 sous-

intervalles. Posons alors h =
60

1000
= 0, 06 (le pas de la méthode).

On définit la suite (qn)n≥0 par :

q0 = 30

qn+1 = qn + 0, 06

(
1− 3qn

100− 0, 06n

)
pour tout n ≥ 0

On trouve q60 ≈ 18, 7 g.

La valeur exacte est 18,72 g. Pas mal... Essayez avec un pas plus petit.

Pour résumer la méthode employée, en occultant le manque de rigueur de l’étape 2, nous
pouvons dire que :

Variation instantanée de la quantité = flux entrant - flux sortant

Aussi simple que soit cette équation, elle est d’une efficacité redoutable ! Nous avons ainsi la
généralisation suivante :

Considérons un réservoir qui contient initialement V0 litres d’une solution contenant a g d’une
certaine substance.
Une autre solution contenant cette fois b g de substance par litre est versée dans ce réservoir
avec un débit de e ℓ/s, tandis que le mélange homogénéisé à chaque instant, s’écoule du
réservoir avec un débit de f ℓ/s. Le problème est de calculer la quantité q(t) de sel présente
dans la cuve à chaque instant t.

3. La méthode d’Euler, abordée en première, consiste à subdiviser un segment I = [a; b] en n sous-intervalles.
On pose alors h = b−a

n
(pas de la méthode) et xn = a+ nh. Connaissant y(a) = α, y′(a) et la relation y′(t) =

f(t, y(t)), on définit le schéma numérique par récurrence par : y0 = α et (∀k ∈ J0;n−1K) yk+1 = yk+hf(xk, yk).
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Appelons V (t) (resp. q(t)) le volume d’eau (resp. la quantité de sel) dans la cuve t secondes
après l’instant initial.
Variation instantanée du volume : V ′(t) = e− f , ainsi : V (t) = V0 + (e− f)t.

La concentration c(t) de substance à tout instant t est égale à :
q(t)

V (t)
=

q(t)

V0 + (e− f)t
. Ainsi :

1. flux entrant de substance : be g/s

2. flux sortant de substance : f
q(t)

V0 + (e− f)t
.

On en déduit que :

Variation instantanée de la quantité de substance : q′(t) = be− f
q(t)

V0 + (e− f)t
,

équation différentielle du premier ordre qui se réécrit :

q′(t) + f
q(t)

V0 + (e− f)t
= be

Exemples résolus

1. Un réservoir cubique de 2 m de côté est rempli d’eau à hauteur de 90 cm. Il se vide par
l’intermédiaire d’un trou circulaire de 22 mm de diamètre situé sur sa partie inférieure.
La vitesse d’écoulement de l’eau est de 2, 5

√
h(t) cm/s où h(t) est la hauteur d’eau

restant dans le réservoir au bout de t secondes.
Combien de temps mettra-t-il à se vider ?

2. Un premier réservoir contient 0, 5m3 d’eau pure dans laquelle sont dissous 40 kg de sel.
De l’eau pure coule dans ce réservoir à raison de 3×10−4m3/s et le mélange, maintenu
uniforme par brassage, s’écoule en même quantité. Le liquide tombe dans un second
réservoir contenant initialement 0, 5m3 d’eau pure et s’écoule de ce dernier en même
quantité. Quelle quantité de sel contiendra ce second réservoir au bout d’une heure ?

Solutions

1. Appelons h(t) (resp. V (t)) la hauteur d’eau en cm (resp. le volume d’eau) dans le
réservoir après t secondes.
Appliquant le principe précédent, nous avons (pas de flux entrant) que :

V ′(t) = −2, 5π × 1, 12 ×
√

h(t) (en cm3/s)

Or V (t) = 2002h(t), d’où h(t) =
V (t)

2002
et donc :

V ′(t) = −0, 02375
√
V (t)

et comme
V ′
√
V

s’intègre en 2
√
V :

√
V (t) = −0, 0475t+ C

Or V0 = 3, 6× 106 cm3, d’où C ≈ 1897. Ainsi : V (t) = (1897− 0, 0475t)2.
Le réservoir est vide quand V (t) = 0 i.e si t = 75880s, soit environ 21h.
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2. Rappelons que le flux (ici en Kg de sel/s) est égal au débit d’eau (en m3/s) multiplié
par la concentration [c] de sel (en kg/m3 d’eau) : Flux = [c]×débit.

Commençons par remarquer que le volume des réservoirs 1 et 2 reste constant et égale
à 0, 5m3 à tout instant. Posons alors qi(t) (resp.ci(t)) la quantité de sel en kg (resp.
la concentration de sel en kg/m3) présente t secondes après l’instant initial dans le
réservoir i (i = 1, 2).

c1(t) =
q1(t)

V1(t)
=

q1(t)

0, 5
= 2q1(t) avec c1(0) = 80 kg/m3.

Flux de sel entrant dans le réservoir 1 : 0 kg/s.
Flux de sel sortant du réservoir 1 : 2q1(t)× 3.10−4 = 6.10−4q1(t) kg/s.
Donc q′1(t) = −6.10−4q1(t).
Ainsi, q1(t) = q1(0)e

−6.10−4t = 40e−6.10−4t.

Comme précédemment, c2(t) = 2q2(t), avec c2(0) = 0 kg/m3 (et donc q2(0) = 0).

Flux de sel entrant dans le réservoir 2 : 6.10−4q1(t) = 6.10−4 × 40e−6.10−4t kg/s.
Flux de sel sortant du réservoir 2 : 6.10−4q2(t) kg/s.
Donc q′2(t) = 6.10−4(40e−6.10−4t − q2(t)) (E).

Cette dernière équation est de la forme y′ = ay + b(t), avec a = −6.10−4 et b(t) =
−40aeat. Ses solutions sont les fonctions de la forme y(t) = Ceat+ fP (t), où fP est une
solution particulière.
En utilisant par exemple la méthode de variation de la constante, on trouve , puisque
q2(0) = 0 que q2(t) = −40ateat.
Au bout d’une heure, le second réservoir contiendra donc une masse m = 40×6.10−4×
3600× e−6.10−4×3600 ≈ 9, 96 kg de sel.
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4 Troisième exemple : le modèle SIR en épidémiologie

Le modèle SIR fait partie de ce qu’on appelle "les modèles à compartiments", qui partitionnent
une population donnée en plusieurs sous-ensembles.

4.1 Mise en place du problème

Considérons une population d’effectif constant N durant notre observation. Une pathologie
affecte des individus de cette population. On la partitionne alors en trois groupes disjoints :

1. Le groupe S des individus susceptibles d’être infectés (mais qui ne le sont pas),
2. Le groupe I des individus infectés.
3. Le groupe R des individus remis (guéris).
Nous travaillerons avec les proportions d’individus, si bien qu’à tout instant t :

S(t) + I(t) +R(t) = 1

donc :
dS(t)

dt
+

dI(t)

dt
+

dR(t)

dt
= 0

Le modèle SIR fait l’hypothèse qu’entre deux instants t et t+∆t infiniment proches :
1. Le nombre d’individus susceptibles diminue d’un facteur β proportionnel à ∆t et à la

proportion d’individus sains dans la population multipliée par le nombre d’individus
infectés.

2. Les individus infectés guérissent avec un taux de guérison γ > 0 proportionnel à ∆t
et à la proportion d’individus infectés dans la population et donc sont définitivement
remis.

Nous traduisons ceci par :


S(t+∆t)− S(t) = −βS(t)I(t)∆t

I(t+∆t)− I(t) = βS(t)I(t)∆t− γI(t)∆t

R(t+∆t)−R(t) = γI(t)∆t

Divisant par ∆t que l’on fait tendre vers 0, il vient (S) :


S′(t) = −βS(t)I(t) (1)

I ′(t) = βS(t)I(t)− γI(t) (2)

R′(t) = γI(t) (3)

Figure 7 – Modèle SIR
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Remarque 4-1-1 :

1. Ramenés au nombre d’individus, nous pouvons comprendre SI comme le nombre de
contacts possibles entre les susceptibles et les infectés et β comme un coefficient pro-
duit du nombre moyen de contacts entre susceptibles et infectés par la probabilité de
transmission de la maladie d’un individu infecté vers un individu sain.

2. γ peut s’interpréter comme l’inverse du temps de guérison d’un individu infecté.

4.2 Analyse qualitative du système d’EDOs obtenu

Le système d’EDO

(S) :


S′(t) = −βS(t)I(t) (1)

I ′(t) = βS(t)I(t)− γI(t) (2)

R′(t) = γI(t) (3)

n’a pas de solution explicite.

En revanche, du fait que β, γ > 0, S(t), I(t) ≥ 0, nous obtenons directement que :
S est décroissante et R est croissante.

Le cas de la fonction I est plus complexe et régit la dynamique de l’épidémie : nous pouvons

écrire que I ′(t) = γI(t)

(
β

γ
S(t)− 1

)
= γI(t)(R0S(t) − 1), où R0 =

β

γ
est par définition le

coefficient de reproduction.

Effectuons comme pour les EDO autonomes vues dans le second exemple une étude qualitative
pour décrire la courbe de I. Nous noterons S0 pour S(0).

Les équilibres du système sont les fonctions constantes S∗, I∗ et R∗ solutions de

(Seq) :


−βS∗I∗ = 0 (1)

γI∗(R0S
∗ − 1) = 0 (2)

γI∗ = 0 (3)

Nous en déduisons immédiatement que I∗ = 0 : la seule solution stationnaire pour I est la
fonction nulle.

1. Si R0S0 < 1, alors I ′(0) < 0. Donc (par continuité de I ′) I décroit au voisinage de 0.
Précisons : comme S est décroissante et R0 > 0, on a pour tout t ≥ 0 : R0S(t) ≤ R0S0

et donc I ′(t) ≤ γ(R0S0 − 1)I(t) ≤ 0, d’où I décroissante.
La fonction I est décroissante et minorée sur R+, donc admet une limite finie ℓI en
+∞. Par ce qui précède, ℓI = I∗ = 0. Nous en déduisons que I(t) tend vers 0 quand t
tend vers l’infini. L’épidémie va s’éteindre.

2. Si R0S0 > 1, alors I ′(0) > 0 et I va croitre au voisinage de 0. Or S décroit, donc d’après
le TVI, il existe un certain instant T > 0 pour lequel R0S(T ) = 1.
Mais alors I ′(T ) = 0 et I atteint un maximum Imax en t = T .
Pour t > T , I ′(t) = γ(R0S(t)− 1)I(t) ≤ 0 et I décroit.
L’épidémie a atteint son seuil critique à l’instant T et le nombre d’infectés va décroitre
vers I∗ = 0.

3. Si R0S0 = 1, alors I ′(t) = 0, donc I est constante. Nécessairement I ≡ I∗ = 0.
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5 Exercices et problèmes

5.1 Énoncés

Exercice 1 : loi de refroidissement de Newton.
Soit un corps porté à une température Tmax > T0, où T0 désigne la température du corps à
l’équilibre, considérée égale à celle de l’environnement.
La loi de refroidissement de Newton stipule que la variation instantanée de température du
corps est proportionnelle à la différence de température du corps et le milieu environnant.
Déterminer une équation différentielle vérifiée par T , où T (t) désigne la température du corps
à l’instant t exprimé en minutes.

Exercice 2 : transformation d’un sucre en dextrose.
Cent grammes de sucre de canne sont transformés en dextrose selon un taux proportionnel à
la quantité non transformée.
Déterminer une équation différentielle exprimant le taux instantané de transformation après t
minutes. On notera

Exercice 3 : un modèle d’accroissement de population.
La population d’une ville constituée à l’instant initial t = 0 de N0 individus s’accroit suivant
un taux proportionnel à celle-ci et à la différence entre N0 et celle-ci.
Déterminer une équation différentielle vérifiée par N , où N(t) désigne la population de la ville
à l’instant t exprimé en jours.

Exercice 4 : allez, ça coule de source ! Un réservoir de 100 litres est rempli d’eau, contenant
60 g de sel. De l’eau pure coule dans le réservoir à raison de 2 litres par minute, et la solution
uniformisée par brassage, s’écoule en quantité égale. Combien reste-t-il de sel dans le réservoir
au bout d’une heure ?

Exercice 5 : un peu de dissolution.
Une substance se dissout dans l’eau en quantités proportionnelles au produit a) de la quantité
non encore dissoute et b) de la différence entre la concentration d’une solution saturée et de
la concentration à l’instant considéré.
On sait que pour fabriquer 100 g de solution saturée, on doit dissoudre 50 g de substance.
Lorsque 30 g de la substance sont plongés dans 100 g d’eau, 10 g se dissolvent en 2 heures.

1. Déterminer une équation différentielle vérifiée par q, où q(t) la quantité en grammes de
substance transformée après t heures.

2. Combien de grammes de la substance seront dissous en 5 heures ?

Exercice 6 : une fuite.
Considérons un réservoir d’eau cylindrique de rayon 2,50 m et de hauteur 3,50 m. Un trou
circulaire de 5 cm de diamètre est situé sur sa partie inférieure. L’eau contenue dans le réservoir
s’écoule de ce trou à la vitesse v = 26

√
h cm/s, h désignant la hauteur d’eau restant dans le

réservoir.
Si le réservoir est plein, combien de temps mettra-t-il à se vider ?

Exercice 7 : un peu de physique.
Un parachutiste tombe à la vitesse de 55 m/s lorsque son parachute s’ouvre. La résistance de
l’air est Pv2/25, où P est le poids total de l’homme et du parachute.
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Quelle est l’expression de la vitesse en fonction du temps après l’ouverture du parachute ?
(rapppel : P = mg, où g ≈ 10)

Exercice 8 : de la physique.
Un circuit électrique comporte en série une résistance R, un condensateur de capacité C et un
générateur de f.e.m E.

1. Faire un schéma.

2. Rappeler l’équation différentielle reliant la charge q du condensateur aux autres va-
riables.

3. Déterminer q sachant que q = q0 quand t = 0.

Exercice 9 : retour aux maths.
Écrire les équations différentielles des familles de courbes définies par les conditions suivantes :

1. En chaque point (x, y), la pente de la tangente est égale au carré de l’abscisse du point.

2. La somme des coordonnées des points de rencontre de la tangente avec les deux axes
est constante et égale à 2.

3. Le segment joignant le point P (x, y) au point d’intersection de la normale en P et de
l’axe des abscisses a son milieu sur l’axe des ordonnées.

Problème : modélisation d’une épidémie de variole.
En 1760, Daniel Bernoulli présente à l’académie des sciences de Paris un mémoire intitulé
"Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de la
prévenir". Il y adopte les hypothèses simplificatrices qui suivent :

— indépendamment de son âge, un individu a une probabilité qδt d’être infecté par la
variole pendant la durée δt ;

— indépendamment de son âge, un individu infecté pour la première fois meurt avec une
probabilité p et survit avec une probabilité 1− p ;

— Lorsqu’un individu survit, après avoir été infecté par la variole, il est immunisé défini-
tivement.

Daniel Bernoulli estime que p = q =
1

8
.

Notations :
— On étudie l’évolution d’un groupe d’individus initialement constitué de P0 individus

nés la même année. On note t l’âge de ces individus, où t décrit R+.
— La mortalité naturelle à l’âge t (i.e de causes différentes de la variole), est notée m(t) :

dit autrement, la probabilité de mourir entre l’âge t et l’âge t+ δt est égale à m(t)δt.
— Le nombre d’individus encore en vie à l’âge t sans jamais avoir été infectés est noté

S(t).
— Le nombre d’individus encore en vie à l’âge t et immunisés est noté R(t).
— Le nombre total d’individus encore en vie à l’âge t est noté P (t) : P (t) = S(t) +R(t).

Ainsi, P (0) = P0.

On supposera les fonctions R et S dérivables sur R+, à dérivée continue (on dit de classe C1).

1. a) On note ∆S la variation de S(t) entre t et t+ δt.
Justifier heuristiquement que S est solution de l’équation différentielle (ES) : S′(t) =
−(m(t) + q)S(t).
b) De la même façon, justifier que R est solution de l’équation différentielle (ER) : R′(t) =
q(1− p)S(t)−m(t)R(t).
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2. On pose f =
S

P
que l’on suppose bien définie.

a) Justifier que f est solution de (Ef ) : f ′(t) = −qf(t) + pqf2(t)

b) En posant g =
1

f
, prouver que (∀t ≥ 0) f(t) =

1

p+ (1− p)eqt
.

c) Quelles hypothèses a-ton utilisé pour effectuer ces calculs ?

3. On suppose que l’application m est continue sur R+. Résoudre directement l’équation
(ES) puis l’équation (ER) et retrouver l’expression trouvée en 2)b). Que deviennent les
hypothèses de la question 2)c) ?

4. a) Daniel Bernoulli estime que le nombre de morts par la variole entre l’âge t et l’âge

t+ 1 est égal à
1

2
pq(S(t) + S(t+ 1)). Justifier cette formule.

b) On souhaite étudier l’effet d’une campagne de vaccination. Dans ce but, on note
P ∗(t) le nombre d’individus qui seraient encore vivants à l’instant t si l’on suppose
que les P0 individus initiaux sont vaccinés à la naissance et que le vaccin les immunise
totalement de la variole.
En utilisant un tableur, avec P0 = 10000, et pour n variant de 0 à 30, compléter les
colonnes donnant P (n), S(n), R(n), le nombre de morts par la variole pendant l’année
n et P ∗(n).

5. Daniel Bernoulli obtient que l’espérance de vie des P0 initiaux est de E = 26, 57 ans
sans vaccination et de E∗ = 29, 65 ans avec vaccination. Cependant, ce dernier calcul
ne tient pas compte du risque lié à l’inoculation du vaccin. Notons p′ la probabilité
de mourir lors de la vaccination (peu après la naissance). On considère que le vaccin
est efficace si l’espérance de vie du groupe initial est supérieure en cas de vaccination.
Déterminer la valeur maximale de p′.
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5.2 Solutions

Exercice 1 : T ′(t) = k(T (t) − T0) pour une certaine constante k > 0 dépendant du corps
considéré, avec T (0) = T0.

Exercice 2 : q′(t) = k(100− q(t)) pour une certaine constante k, avec q(0) = 0.

Exercice 3 : N ′(t) = kN(t)(N0−N(t)) pour une certaine constante k < 0, avec N(0) = N0.

Exercice 4 : Nous allons raisonner comme dans l’exemple sur la radioactivité.
Appelons q(t) la quantité de sel présente dans le réservoir après t minutes. La concentration

de sel présente à ce moment est alors c(t) =
q(t)

100
.

Pendant un instant infinitésimal δt, il s’écoule 2δt litres d’eau contenant 2δtc(t) =
q(t)

50
δt g de

sel, lesquels sont remplacés par 2δt litres d’eau pure.

Ainsi, q(t+ δt) = q(t)− q(t)

50
δt. D’où

q(t+ δt)− q(t)

δt
= −q(t)

50
.

Faisant tendre δt vers 0, on obtient que pour tout réel t ≥ 0, q′(t) =
q(t)

50
q(t).

On en déduit immédiatement, puisque q(0) = 60 que pour tout réel t ≥ 0, q(t) = 60e−t/50.
Il restera donc au bout d’une heure q(60) ≈ 18 g de sel.

Exercice 5 : D’après l’énoncé, la concentration d’une solution saturée est de 50/100 = 0, 5.
Appelons q(t) la quantité de substance dissoute après t heures. Ainsi, x(t) = 30 − q(t) est la
quantité de substance non dissoute après t heures.

1. Comme on plonge 30 g de substance dans 100 g d’eau, l’énoncé se traduit par l’équation

différentielle (E) : q′(t) = k(30− q(t))

(
50

100
− q(t)

100

)
, soit :

(E) : q′(t) = k(30− q(t))(0, 5− 0, 01q(t)) pour une certaine constante k.

2. Nous cherchons q(5) sachant que q(0) = 0 et q(2) = 10.
(E) équivaut à (E′) : x′(t) = −kx(t)(0, 5− 0, 01(30− x(t))), soit :
(E′) : x′(t) = −kx(t)(0, 2 + 0, 01x(t)). Un dernier effort . . .
(E′) : x′(t) = −0, 2kx(t)(1 + 0, 05x(t)) et on reconnait le modèle logistique. Avec

x(0) = 30, x(2) = 20, r = −0, 2k et K = − 1

0, 05
= −20.

Pour tout t ≥ 0, x(t) =
−600

30− 50e−0,2kt
.

x(2) = 20 donne 20 =
−600

30− 50e−0,4k
⇐⇒ 30− 50e−0,4k = −30 ⇐⇒ k = − ln(6/5)

0, 4
≈

−0, 456. Donc pour tout t ≥ 0, x(t) =
−600

30− 50e0,0912t
. On en déduit x(5) = 12, 27 g,

d’où q(5) = 30− 12, 27 = 17, 73 g.

Exercice 6 : Le volume du réservoir plein est V0 = π × 2, 52 × 3, 5 = 68, 72 m3, soit
V0 = 6, 872× 107 cm3.
La surface du trou de sortie est S = π×2, 52 = 19, 63 cm2. En 1 seconde, il s’écoule de ce trou
un volume de 19, 63 × 26 ×

√
h(t) cm3, soit 510, 38

√
h(t) cm3, où h(t) est la hauteur d’eau

restante dans la cuve, exprimée en cm.
Appelons V (t) la quantité d’eau en cm3 présente à l’instant t dans le réservoir. Pendant un
instant infinitésimal δt, il s’écoule 510, 38

√
h(t)δt cm3.
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D’autre part, V (t) = π × 2502 × h(t), d’où h(t) =
V (t)

π × 62500
.

V (t + δt) − V (t) = −1, 152
√

V (t)δt. Divisant par δt que l’on fait tendre vers 0, il vient :
(E) : V ′(t) = −1, 152

√
V (t).

(E) ⇐⇒ V ′(t)

2
√

V (t)
= −0, 576 ⇐⇒ d

dt

√
V (t) = −0, 576

⇐⇒ (∃C ∈ R), V (t) = (−0, 576t+ C)2.
Or V0 = 6, 872× 107, donc C = 8289, 7 et alors V (t) = (−0, 576t+8289, 7)2. Le réservoir sera
vide si −0, 576t+ 8289, 7 = 0 ⇐⇒ t = 14392s, soit au bout d’environ 4 heures.

Exercice 7 : On a : m
dv

dt
= mg − mgv2

25
i.e (E) :

dv

dt
= −gv2

25
+ g.

Soit (E) :
dv

dt
= g

(
25− v2

25

)
.

Ce n’est pas une équation linéaire du premier ordre à coefficients constants. Le programme de
terminale ne permet pas a priori de répondre à cette question.

En revanche, et comme vu à l’exercice 5, on peut penser à un changement de variable pour se

ramener à une EDO connue. Puisque (E) :
dv

dt
=

g

25
(5− v)(5 + v), u = 5− v ou u = 5 + v

semblent être naturels.
Posons u = 5 + v. On a

du

dt
=

dv

dt
. D’où

du

dt
=

g

25
u(10− u). Ainsi, comme g ≈ 10,

du

dt
= 4u(1− u

10
). On reconnait l’équation logistique avec r = 4 et K = 10.

La proposition 3-1-5, nous assure alors, puisque u(0) = 5+v(0) = 60, que pour tout réel t ≥ 0,

u(t) =
600

60− 50e−4t
=

60

6− 5e−4t
. Mais alors, v(t) = u(t)− 5 =

30 + 25e−4t

6− 5e−4t
.

Exercice 8 : un exercice électrique !

1. Laissé aux bons soins du lecteur.

2. i =
dq

dt
et U = Ri, donc U = R

dq

dt
. Enfin, U =

q

C
. On en déduit que R

dq

dt
=

q

C
i.e

(E) :
dq

dt
=

q

RC
.

3. Pour tout t ≥ 0 : q(t) = Aet/RC .
Or q(0) = q0 = A, d’où q(t) = q0e

t/RC .

Exercice 9 : on prend la tangente !

1. Au point de coordonnées (x, y), la pente de la tangente est égale à f ′(x) et par hypo-

thèse : f ′(x) = x2. Autrement dit, même si ce n’est pas demandé : f(x) =
x3

3
+ k.

2. En chaque point (x0, f(x0)) de Cf , l’équation réduite de la tangente s’écrit :
Tx0 : y = f ′(x0)(x− x0) + f(x0).
Tx0 coupe l’axe des ordonnées en Ax0(f(x0) − x0f

′(x0); 0) et l’axe des abscisses en

Bx0

(
x0 −

f(x0)

f ′(x0)
; 0

)
. D’après l’énoncé, on en déduit que :

f(x0)− x0f
′(x0)+ x0 −

f(x0)

f ′(x0)
= 2 ⇐⇒ f(x0)f

′(x0)− x0f
′(x0)

2 + x0f
′(x0)− f(x0)−

2f ′(x0) = 0, soit −x0f
′(x0)

2+ f ′(x0)(x0− 2+ f(x0))− f(x0) = 0. La variable x0 étant
muette, l’EDO peut s’écrire : −xy′2 + y′(x− 2 + y)− y = 0.
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3. Procédons par étapes :
Rappel : Soit un vecteur directeur v⃗(a; b) d’une droite D. Alors n⃗(−b; a) est un vecteur
normal à D.
Soit P (x0; y0) un point quelconque de la courbe représentative Cf d’une fonction déri-
vable f . Sa tangente TP en P est dirigée par v⃗(1; f ′(x0)). Un vecteur normal à TP est

n⃗(−f ′(x0); 1). TP a pour équation : y = y0 −
x− x0
f ′(x0)

et rencontre l’axe des abscisses en

I(x0 + y0f
′(x0); 0). Le milieu J de [PI] appartient à l’axe des ordonnées, ce qui signifie

que l’abscisse de J est nulle, soit : x0 +
1

2
y0f

′(x0) = 0. Les variables x0 et y0 étant
muettes et comme y0 = f(x0), l’EDO peut s’écrire : 2x+ yy′ = 0.
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6 Complément : l’équation de diffusion en 1D

Sans en avoir l’air, cette section s’adresse aux professeurs désireux de donner un sens aux
intégrales autre qu’une aire . . . Car elles sont bien plus que ça somme toute !

6.1 Mise en place de la forme conservative

Définition 1 : Soit x0 ∈ R. Le flux F en x0 (exprimé en nombres d’individus par unité de
temps) est le nombre de particules passant par x0 par unité de temps. On le note un peu
abusivement F (x0, t). Il est exprimé en nombre d’individus/s ou mol/s.

Définition 2 : Soit t0 ∈ R+. La densité u à t = t0 (exprimé en nombres d’individus par unité
de longueur) est le nombre de particules présentes à t0 par unité de longueur. On la note un
peu abusivement u(x, t0). Elle est exprimée en nombre d’individus/m ou mol/m.

Corollaire 1 : Ainsi, on peut dire que :
— La quantité de matière passée par le point d’abscisse x0 entre t1 et t2 est égale à∫ t2

t1

F (x0, t)dt

— La quantité de matière présente à l’instant t0 entre les points d’abscisses x1 et x2 est
égale à ∫ x2

x1

u(x, t0)dx

Corollaire 2 : La variation de la quantité de matière dans l’intervalle d’espace [x1;x2] entre
les instants t1 et t2 est égale à la différence entre le "flux de matière entrant" en x1 et le "flux
sortant" en x2 : ∫ t2

t1

{F (x1, t)− F (x2, t)}dt =
∫ x2

x1

{u(x, t2)− u(x, t1)}dx (1)

La différence de quantité de matière (entre t1 et t2) = ce qui est entré en x1 moins ce qui
est sorti en x2 pendant cet intervalle de temps.

L’équation précédente (1) peut se réécrire :

1

t2 − t1

∫ t2

t1

F (x1, t)− F (x2, t)

x1 − x2
dt =

1

x1 − x2

∫ x2

x1

u(x, t2)− u(x, t1)

t2 − t1
dx

Nous supposons les fonctions u et F suffisamment régulières. Faisant tendre t2 vers t1 et x2
vers x1, et en s’absolvant momentanément de la justification de l’interversion des limites et
intégrales, on obtient :

∂xF (x, t) = −∂tu(x, t) (∗)

soit
∂xF (x, t) + ∂tu(x, t) = 0 (2)

(*) vient de : lim
t2→t1

1

t2 − t1

∫ t2

t1

f = f(t1), de lim
x2→x1

F (x1, t)− F (x2, t)

x1 − x2
= ∂xF (x1, t) et de

lim
t2→t1

u(x, t2)− u(x, t1)

t2 − t1
= ∂tu(x, t1).
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6.2 Mise en place de la forme non conservative

Cas général :
Supposons que le flux F est lui-même fonction de la densité u : F (x, t) = f(u(x, t)). Alors
l’équation (2) se traduit par :

∂xf(u(x, t))∂xu(x, t) + ∂tu(x, t) = 0

En posant a(u) = f ′(u), on a alors :

∂tu(x, t) + a(u(x, t))∂xu(x, t) = 0

Remarque : a(u) a la dimension d’une vitesse ( en m/s ).
Justification heuristique : f est définie sur R+ (en mol/m) à valeurs dans R (en mol/s). Ainsi, la
dérivée a de f est définie sur R+ (en mol/m) à valeurs dans R (en mol.s−1/mol.m−1 = m.s−1).

Cas particuliers importants :

— Supposons que la matière transportée ait une vitesse v(x, t) : F (x, t) = u(x, t)v(x, t).
L’équation (2) se réécrit alors :

∂tu(x, t) + ∂x(u(x, t)v(x, t)) = 0 (3)

Cette équation est appelée équation d’advection (ou de convection).
— Dans une approche similaire, les variations de densité peuvent être causées par des gra-

dients dans le milieu concerné et les flux aux niveaux des frontières : −D(x, t)∂xu(x, t).
Le signe "moins" vient du fait que le coefficient D est toujours positif, et exprime que
le flux de matière va des endroits où elle est le plus concentrée vers les endroits où elle
est le moins concentrée. L’équation (2) se réécrit alors :

∂tu(x, t)− ∂x(D(x, t)∂xu(x, t)) = 0 (4)

Cette équation est appelée équation de diffusion.

Remarques : L’expression F (x, t) = −D(x, t)∂xu(x, t) peut être vue comme une conséquence
des lois de transfert de Fick : le flux F (x, t) est proportionnel au gradient de concentration
(variation spatiale instantanée de concentration) à travers un coefficient de diffusion D(x, t).
Comme ∂xu(x, t) a pour dimension mol.m−2, D(x, t) a pour dimension m2.s−1 (expansion
surfacique par unité de temps).

6.3 L’approche probabiliste

Le but de ce paragraphe est de modéliser l’équation de diffusion, incontournable en physique
(l’équation de la chaleur en est le modèle type) et en dynamique des populations. L’affichage
des résultats nécessite d’avoir installé numpy et scipy.
Commençons par le cas d’une particule se déplaçant sur un axe gradué au cours du temps
selon une règle qui sera définie plus tard. Sachant qu’à l’instant initial t0 = 0 la particule est
située à la position x0 = 0, quelle est la probabilité p(t, x) de la trouver à une position x ∈ R
à l’instant t > 0 ?
Si maintenant N particules sont initialement placées à la position x0 = 0, quelle sera la
distribution de ces particules, en fonction de x, au temps t ?
On suppose ici que la direction du mouvement actuel de chacune des N particules n’affecte
pas la direction du mouvement suivant.
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Question 1 : Cas homogène, sans biais directionnel (sans transport) :
On suppose qu’à chaque pas de temps dt, une particule se déplace d’un pas d’espace dx à
gauche avec la probabilité L, à droite avec la probabilité R ou reste sur place avec la probabilité
S := 1− L−R. On suppose L = R = 1/3. On pose N = 5000, dt = 0.01 et dx =

√
dt/L.

Écrire un script en Python qui modélise le déplacement de ces N particules sur l’intervalle
de temps [0 ; 10], et affiche sous la forme d’un graphique la courbe représentative de u(t, x),
densité de particules présentes à l’instant t, à la position x, pour t = 1, 5 et 10.

Question 2 : Cas homogène, avec biais directionnel (avec transport) :
Modifier le script précédent si R = 1/2, L = 1/3 et dx =

√
dt/(R+ L).

Remarque : On peut aussi considérer le cas hétérogène temps/espace.

Analyse du problème Nous allons boucler en temps. La notion de liste va jouer un rôle
capital. Nous créerons une liste initiale dénommée listex de toutes les abscisses possibles que
les particules peuvent atteindre entre 0 et T (une particule se déplace à droite, à gauche de
dx ou reste sur place) à chaque pas de temps dt. La liste dénommée listey, initialisée avec
5000 individus à l’instant initial à la position d’origine (centralisée ici, petit détail technique à
programmer) et 0 ailleurs, donnera le nombre de particules présentes à chaque pas de temps.
Si à une position donnée de listey, il y a des particules, on appliquera à chacune d’entre elles
un test de déplacement dans les trois positions précitées, ce qui modifiera au fur et à mesure
listey.

Programmation

Question 1 : Cas homogène, sans biais directionnel

from math import *
from random import *
import matplotlib.pyplot as plt

5 #initialisation
M,T,t = 1/3,10,0
dt = 0.01
N = int(T/dt)
dx = sqrt(dt/M)

10 listex = [-N*dx+i*dx for i in range(2*N+1)]
listey = [0 for i in range(2*N+1)]
for k in range(2*N+1) :

if k != N :
listey[k] = 0

15 else :
listey[k] = 5000

#Traitement des donnees
while t <= T :

20 for j in range(len(listey)) :
if listey[j] >0 :

for k in range(listey[j]) :
alea = random()
if alea <= 1/3 :

25 listey[j] -= 1
listey[j-1] += 1

elif alea <= 2/3 :
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listey[j] -= 1
listey[j+1] += 1

30 t=t+dt

#Sortie
plt.axis([-40,40,-2,90])
plt.grid(True)

35 plt.plot(listex,listey)
plt.show()

Question 2 : Cas homogène, avec biais directionnel
Il suffit de modifier les lignes 6 et 9 du script précédent par :

L,R,T,t = 1/3,1/2,10,0

dx = sqrt(dt/(L+R))

puis la ligne 27 par :

elif alea <= 5/6 : #5/6 = 1/3 + 1/2

On obtient alors le graphique suivant où le terme d’advection apparaît clairement : la courbe a
la même allure que celle obtenue précédemment, mais on a une nette translation vers la droite.
La probabilité de se déplacer vers la droite : 1/2 est en effet supérieure à celle de se déplacer
vers la gauche : 1/3.
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Remarque : Nous nous sommes intéressés à l’évolution de la quantité p(t, x) au cours du temps.
En se replaçant dans un espace continu, nous construisons une EDP décrivant l’évolution de la
densité de probabilité associée à la position d’un individu au cours du temps. En supposant les
N individus indépendants (hypothèse Markovienne), nous décrivons ainsi la redistribution
de ces N individus.
Remarquons qu’une fois le pas de temps dt choisi, nous avons choisi un pas d’espace dx
proportionnel à la racine carrée de dt. Pourquoi ce choix ? Une analyse théorique plus pous-
sée sera faite dans un prochain papier pour répondre entre autres à cette question. Le lien
expérimental-théorie sera ainsi parfaitement formulé, où chaque approche enrichit l’autre.
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