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1 Le raisonnement par récurrence

Vous fréquentez ’ensemble des entiers naturels N depuis votre plus tendre enfance ot vous
avez appris & compter sur vos doigts, puis appris vos tables d’addition et de multiplication.
Pour autant, sauriez-vous définir N ?

Sa construction n’est pas au programme du secondaire, mais certaines de ses propriétés si!
Nous résumons donc ci-dessous les axiomes qui sont & la base de sa définition et qui permettent
ensuite d’établir de nombreuses propriétés.

Axiomes de Peano : Il existe un ensemble N dont les éléments sont appelés les entiers na-
turels, un élément 0 € N appelé zéro et une application s: N — N, dite application successeur,
vérifiant les propriétés suivantes :

1. 0 n’est le successeur d’aucun entier,
2. Deux nombres entiers qui ont le méme successeur sont égaux,
0ecA
3. Si A C N est tel que , alors A =N.
s(A) Cc A
Le point 3 définit le principe de récurrence, d’'une utilité capitale en analyse et que nous allons
reformuler de maniére pragmatique et pratique sous la forme suivante :



Principe de récurrence (récurrence simple) : Soit P(n) une propriété dépendant de
I’entier naturel n.

Initialisation : Si P(0) est vraie,

Hérédité : Si pour tout entier naturel n, le fait que P(n) soit vraie entraine que P(n + 1) est
vraie,

Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

On peut se représenter le principe de récurrence comme celui qui nous permet de monter une
échelle infinie : le barreau du bas est numéroté 0, puis son successeur est numéroté 1, etc.
L’initialisation nous permet de mettre le pied sur le premier barreau 0 ; I’hérédité nous dit que
si I'on a le pied sur le barreau n, alors on peut grimper au barreau suivant n + 1 et ceci quelle
que soit la valeur de n. Bref, avoir le droit de poser le pied sur le premier barreau et le droit
de passer d’un barreau & son successeur nous permet de grimper notre échelle infinie.
Remarquons enfin que I'on peut remplacer 0 par tout autre entier ng, auquel cas la conclusion
devient : P(n) est vraie pour tous les entiers naturels n supérieur ou égal a ng.

Exemple 1-1 : Prouvons que pour tout entier naturel 7 non nul :

1
1. 1+2+3+--'+n:%
1)(2 1
2 12492 . 2= "0 )6< ntl
Démonstration : voir aussi https://www.youtube.com/watch?v=a6AWclssIF4
1
1. Posons pour tout entier naturel n non nul : P(n) : 1+2+---4+n= n(n2+)

141
Initialisation : 1 = — donc P(1) est vraie.

Hérédité : Soit n un entier naturel non nul quelconque. Supposons que P(n) est vraie

1 2
et prouvons que P(n + 1) estvraie:1+2+-~+n+(n+1):(TLHQ(TH_).

1
Par hypothése de récurrence : 1 +2+---+n+(n+1) = n{n+1)

+(n+1).

Or

vraie.

Conclusion : on a prouvé que P(1) est vraie, et que pour tout entier naturel n non nul,
P(n) vraie entraine P(n + 1) vraie, donc d’aprés le principe de récurrence, P(n) est
vraie pour tous les entiers naturels n non nuls 7.e pour tout entier naturel » non nul :

1

1)(2n+1
2. Posons pour tout entier naturel n non nul : P(n) : 12422+ .. 4n2 = n(n+1)@2n+ )

11+ 1)(@2x1+1) 6

=1=12% donc P(1) est vraie.

6
Hérédité : Soit n un entier naturel non nul quelconque. Supposons que P(n) est vraie et

Initialisation :

)
1 2)(2 1 1
prouvons que P(n+1) est vraie : 12422+ . 4n2+(n+1)? = (n+ 1+ )6 (ntD+1)

1 2)(2
i.e 12+22+"'+n2+(n+1)2:(n+ )(n 4+ 2)( n+3).

6
1)(2 1
Par hypothése de récurrence, 12 +22 4. - 4n? 4 (n+1)% = n(n+1)@n+1)

n(n+1)(2n+1) n(n+1)(2n + 1) + 6(n + 1)?
6 6 '

+(n+1)>2

Or +(n+1)2=



https://www.youtube.com/watch?v=a6AWclssIF4

it n(n+1)(2n+1) + 6(n + 1)? _ (n+1)n@2n+1)+6(n+1)]
6 6 '

Enfin, comme n(2n+ 1) +6(n+ 1) = 2n2 + Tn+6 = (n +2)(2n + 3), on en déduit que
P(n + 1) est vraie.

Conclusion : on a prouvé que P(1) est vraie, et que pour tout entier naturel n non nul,
P(n) vraie entraine P(n + 1) vraie, donc d’aprés le principe de récurrence, P(n) est

vraie pour tous les entiers naturels n non nuls 7.e pour tout entier naturel n non nul :
nn+1)(2n+1

1171 Il convient de rédiger parfaitement vos récurrences. Signalons quelques erreurs souvent
commises et qui n’en sont pas moins abominables! Voici le top 3 :

— N3 : Dans I’hérédité, on suppose que POUR UN CERTAIN 7 donné, la propriété
P(n) est vraie, qui peut se traduire par "il existe un entier naturel n" tel que P(n) est
vraie. Alors que I’hérédité repose sur le principe " Pour tout entier naturel n, P(n) vraie
entraine P(n+1) vraie". Vous apprendrez ceci dans le supérieur avec les quantificateurs
existentiels et universels.

— N°2 : OUBLIER L’INITIALISATION! Grandes ou petites valeurs, le probléme reste le
méme ; et puis pour reprendre I'heuristique de 1’échelle, comment grimper le long de
I’échelle si vous n’avez pas le droit de poser le pied dessus?

— N°1 : Et enfin LA PIRE DES ERREURS qui consiste a prendre pour hypothése de
récurrence : "Supposons que POUR TOUT entier naturel n, P(n) est vraie". Autrement
dit, vous prenez pour hypothése exactement ce que vous cherchez a prouver !

Exemple 1-2  Considérons la suite u définie sur N par ug € R™ et pour tout entier naturel
n par Up4+1 = V1 + up.

1. La premiére chose & vérifier est que la suite u est bien définie, c’est-a-dire que 1'on
puisse calculer u,, pour n’importe quelle valeur de ’entier n.
(a) “Etudier les variations de f: [~1;4+o0o[— R,z + /1 + x et justifier que si z € R,
alors f(z) € RT (on dit que l'intervalle [0; +oo[ est stable par f).
(b) Prouver par récurrence que pour tout entier naturel n, u, est bien défini et que
un > 0.

2. On suppose ici que ug = 0. Placer sur 'axe des abscisses les termes ug a ug a laide
du graphe de f et de la droite D d’équation y = x (la premiére bissectrice). Vers
quelle valeur ¢ semblent se rapprocher les termes w, ? (on pourra résoudre 1'équation
f(z) =)

3. Démontrer que pour tout entier naturel n, 0 < wu, < upy; < £. Que dire sur la
monotonie de u? u est-elle minorée, majorée, bornée ?

4. Sil'on choisit ug > ¢, par exemple ug = 2,5, quel semble étre le comportement de u?
Justifier par récurrence sur n € N que pour tout entier naturel n : ¢ < up1 < up.

5. Conclure selon la valeur initiale de ug € [—1; 4+o00[ de la limite éventuelle de la suite u.

6. Quen est-il si up1 = f(uy), ot f: [0; +0oo[— [0; +0o[, x — 22 ? Vous préciserez selon la
valeur de ug la convergence ou divergence éventuelle de u. En revanche, vous prouverez
de maniére précise par récurrence la monotonie de u et son éventuel caractére minoré
ou majoré. Let’s play!

Solution : Nous verrons en exercice comment prolonger cet exercice et prouver de maniére
effective les résultats subodorés.



1. (a) u: [~1;4+00[— RT,z +— z + 1 est strictement croissante et v: Rt — R* x — /z
est strictement croissante, donc par composition f = vow est strictement croissante
sur [—1; +o0l.

(b) Posons pour tout entier naturel n, P(n) : u, est bien défini et u, > 0.
Initialisation : up = 0 donc P(0) est vraie!
Hérédité : Soit n € N quelconque; supposons que P(n) est vraie : wu, existe et
up > 0. Comme f est définie sur RT et que upi1 = f(un) , unt1 existe et par
croissance de f : upy1 = f(upn) > f(0) =1 > 0. Donc P(n + 1) est vraie.
Conclusion : Pour tout entier naturel n, u,, est bien défini et u,, > 0.

2. 1l semble que la suite u converge vers ’abscisse du point d’intersection de la courbe

représentative de f et de la premiére bissectrice, ce qui revient & déterminer la solution
142 = 2? 1++5

sur RT de v/1 + z = z. Cette équation équivaut a : { -0 l.exr = 5
T =z

FIGURE 1 — Avec ug =0

3. Posons pour tout entier naturel n, P(n) : 0 < up < upyy < L.

1+5
2

Initialisation : ug = 0, u; = f(ug) =1l et £ = .On a bien 0 < ug < uy </,
donc P(0) est vraie.

Hérédité : Soit n € N quelconque. Supposons que P(n) est vraie : 0 < uy, < uptq < L.
Prouvons que P(n + 1) est vraie : 0 < upy1 < Uppo < L.

Par croissance de f sur RT, on a : f(0) < f(un) < fupt1) < f(0) ie 1 < upqy <
Upto < Lcar f(£) =L. Dot 0 < uptq < upto < Let P(n+ 1) est vraie.

Conclusion : Pour tout entier naturel n, 0 < u, < 41 < L.

On en déduit que la suite u est croissante et bornée (minorée par 0 et majorée par £).

4. Tracons les premiers termes de u.
La encore, ils semblent se rapprocher de /.
Posons pour tout entier naturel n, P(n) : £ < upi1 < up.
Initialisation : Soit ug > L. uy = f(ug) > f(¢) par stricte croissance de f. Comme

1+u07u3
l)=4{,onawu; >¢ Enfin,u; —up =+1+uy—ug = ——
f) n 1 nfin, ug 0 uQ 0 N

. Mais le trindme



FIGURE 2 — Avec ug = 2,5

1 + 2 — 22 prend des valeurs strictement négatives quand z > £, et comme ug > ¢,
14+ ug— u% < 0, donc u; —ug < 0. Dot £ < uy < up et P(0) est vraie.

Heérédité . Paradoxalement, ce sera plus simple que l'initialisation! Donnons-nous un
entier naturel n quelconque et supposons P(n) vraie ¥ < up+1 < uy. Par croissance de
f:l=f0) < flupt1) = tnt2 < f(upn) = upt+1. Donc P(n + 1) est vraie.

Conclusion : pour tout entier naturel n, £ < upy1 < uy. On en déduit en particulier
que si ug > £, la suite u est décroissante et minorée par /.

Il semble 14 encore que les termes u,, se rapprochent de £.

5. — Pour tout réel uy > 0, il semble que u converge vers £ : en croissant si ug € [0; 4], en
décroissant si ug > ¢, et en stagnant (suite constante) si ug = ¢ (récurrence triviale).
— Siug € [—1;0], alors u; € [0;1[C [0;¢], et on est ramené au cas précédent.

6. Laissé a la sagacité du lecteur. Nous vous donnons le graphe utile & vos supputations.

Il est parfois nécessaire de modifier le principe énoncé précédemment afin de prouver qu’une
propriété P(n) est vraie pour tous les entiers naturels n (éventuellement apcr). C'est le cas
notamment lorsqu’une suite est définie par une récurrence d’ordre 2 : ug, uq donnés et pour
tout entier naturel n : u,i2 = f(n, Un, Uny1). Enoncons le ...

Principe de récurrence (récurrence double) : Soit P(n) une propriété dépendant de
I'entier naturel n.

Initialisation : Si P(0) et P(1) sont vraies,

Hérédité : Si pour tout entier naturel n, le fait que P(n) et que P(n+1) soient vraies entraine
que P(n + 2) est vraie,

Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

Exemple 1-3 : On note u la suite définie par ug =0, u; =1 et pour tout n € N : wuyi0 =
VUn + Upt1 + 3. Prouver que la suite u est bien définie, croissante et majorée par 3.
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FIGURE 3 — Avec ug € Rt et w1 = u2

Solution : Pour tout entier naturel n, posons P(n) : up, et uy4+1 sont bien définis et 0 <
Up < Upt1 < 3.

Initialisation : ug = 0 et u; = 1 sont bien définis et 0 < up < u; < 3 donc P(0) est vraie.
uz =0+ 1+ 3 =2 est bien défini et on a 0 < uy < uy < 3, donc P(1) est vraie.

Hérédité : Soit n € N. Supposons P(n) et P(n + 1) vraies : up, Up4+1 €t up4o2 sont bien définis
et 0 < up < upt1 < upto < 3. Prouvons que P(n + 2) vraie : up42 et uyy3 sont bien définis
et 0 < upyo < upys < 3.

Par hypotheése, w12 est bien défini et comme up,+1 > 0 et upto > 0, Upt3 = VUp+1 + Unt2 + 3
est bien défini. De plus, par hypothése de récurrence : 0 < uy + Up+1 +3 < Upg1 + Unt2 +3 <
3+3+43 = 9. Par croissance de la fonction racine carrée : 0 < upy9 < tp43 < 3, donc P(n+2)
est vraie.

Conclusion : Pour tout n € N, u est croissante et majorée par 3.

Voir aussi https://www.youtube.com/watch?v=G_KgFsucyBs

Dans certains cas, il est méme nécessaire de considérer le cas de tous les P(k), 0 < k < n.

Principe de récurrence (récurrence forte) : Soit P(n) une propriété dépendant de ’en-
tier naturel n.

Initialisation : Si P(0) est vraie,

Hérédité : Si pour tout entier naturel n donné, le fait que tous les P (k) soient vraies (pour
k compris entre 0 et n) entraine que P(n + 1) est vraie,

Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

n
Exemple 1-4 : Soit u la suite définie par ug > 0 et pour tout n € N, u,11 < Zuk

k=0
Prouvons que pour tout entier naturel n : u, < 2"ug.

Solution : Pour tout entier naturel n, posons P(n) : wu, < 2"ug.
Initialisation : ug = 2%uy < 2%, donc P(0) est vraie.


https://www.youtube.com/watch?v=G_KqFsucyBs

Hérédité : Soit n € N. Supposons que P(0), P(1),...P(n) vraies et prouvons que P(n + 1)
vraie : uppq < 27 .

2n+1 -1

n n
Upy1 < kZOUk < kZOQkuo =g < 2"1yg. Donc P(n 4+ 1) est vraie.

Conclusion : Pour tout entier naturel n : u, < 2™uy.

Remarque 1-5 : il existe d’autres formes de récurrence : triple, descendante, limitée, etc.
Nous en verrons quelques unes en exercice, mais déja, maitriser correctement celles qui sont
présentées ci-dessus est un bon début. Le raisonnement par récurrence est trés courant en
mathématiques et s’applique & de nombreuses situations qui dépassent largement le théme de
cet article. Voir https://www.youtube.com/watch?v=muOBEu3NAuS8

2 Suites récurrentes d’ordre 1 : méthodes d’approche élémen-
taires

Rappelons qu’une suite u est définie par récurrence (d’ordre 1) si les termes u, sont définis
par la donnée du terme initial ug et pour tout entier naturel n par une relation du type
Un+1 = f(n,uy,) ou dans la plupart des cas par up+1 = f(uy).

Nous parlons de récurrence d’ordre 1 car pour calculer le terme u,, n € N* il suffit de
connaitre la valeur de son unique prédecesseur.

Autrement dit, nous calculons les termes de la suite u de proche en proche. Lorsque cela est
possible, on peut exprimer directement u, en fonction de n, autrement dit définir la suite de
maniére explicite. Deux exemples importants sont :

1. Les suites arithmétiques définies par :

ug € R et pour tout entier naturel n, u,41 = u, +17

On prouve aisément par récurrence que pour tout entier naturel n, u, = ug + nr.

2. Les suites géométriques définies par :

ug € R et pour tout entier naturel n, u,+1 = quy
On prouve aisément par récurrence que pour tout entier naturel n, u,, = ug X ¢".

Il n’est pas toujours évident, pour ne pas dire presque toujours impossible, d’obtenir une
expression explicite de u, en fonction de n. Mais lorsque cela est possible, bingo!

Exemple 2-1 : Une suite homographique.
2u, + 3

Soit u la suite définie par ug = 1 et pour tout entier naturel n par up1 = P
Unp,

Etape 1 : Justifier que la suite u est bien définie.
11 suffit pour cela de prouver que pour tout entier naturel n, u, # —2. Or up4+1 = f(uy), ou f

22 4 3

t défini R\ {-2 = .

est définie sur R\ {—2} par f(x) o
. ) . . 2z +2) -1
On prouve sans difficulté par une étude de fonction ou en remarquant que f(z) = 213 =
x
2 — o3 due f est strictement croissante sur | — oco; —2[ et sur | — 2; +00[.
x

Comme f(1) = 1,75, ceci prouve que pour tout réel x > 1, f(z) > 1 : on dit que l'intervalle
[1; +00[ est stable par f. Cette condition, retenez la bien, est suffisante pour assurer que tous


https://www.youtube.com/watch?v=muOBEu3NAu8

les u,, sont bien définis et on a en plus que pour tout entier naturel n, u, > 1.

Posons pour tout entier naturel n, P(n) : wu, existe et u, > 1.

Initialisation : ug =1 > 1 donc P(0) est vraie.

Hérédité : Soit n € N quelconque. Supposons que P(n) est vraie et prouvons que P(n + 1)
est vraie : upy1 existe et upy1 > 1. Par hypothése, u, existe et u, > 1. Comme f est définie
sur [1;+00[, unt+1 = f(uy) existe et par croissance de f sur [1;+oo[, on a f(u,) > f(1) i.e
Un+1 > 1,75 > 1. Donc P(n + 1) est vraie.

Conclusion : Pour tout entier naturel n : u,, existe et u, > 1.

Etape 2 : Déterminer les limites éventuelles de u.

On résout l'équation f(x) = x sur D = R\ {—2} et on garde la solution appartenant a
I =[1;4+00].

En effet, f est continue sur I = [1;+o0[, et comme u est & valeurs dans I, si u converge vers
¢, alors en passant a la limite dans l'expression u,+1 = f(uy,), on obtient : £ = f(¢) i.e £ est
un point fixe de f.

Or :

2x +3
flz) =2 = 232 - °

— z#2etz?=3

<= r=— 3ou$:\/§

D’apreés I’étape 1, on sait que u est a valeurs strictement positives, donc la seule limite possible

est £ = /3.

Etape 3 : Justifier que u converge vers v/3.
Commencgons par une petite inspection graphique des premiers termes de la suite.

2ttt 5 [
" . -
uy iy .
2un, + 3
FIGURE 4 —ug =1 et up11 = ——
Up + 2

Trés rapidement, il semble que la suite u soit croissante et majorée par /3. Prouvons-le
rigoureusement par récurrence !

Posons pour tout entier naturel n, P(n) : 1 < wup < upipq < V3.
2x1+4+3 5
Initialisation : uy = ﬁ = 3 ~ 1,67 et V3~ 1,73. On a bien 1 < ug < uy < \/3, donc

P(0) est vraie.
Heérédité : Soit n un entier naturel quelconque. Supposons P(n) : 1 < u, < upy1 < V/3 vraie.



Par croissance de f sur [1;+o00[ : 1 < f(1) < f(un) < f(uns1) < f(V3) = /3, soit
1 < tpp1 < Unypa < V3, doit P(n + 1) est vraie.
Conclusion : pour tout entier naturel n, 1 < uy < upy1 < V3.

Croissante et majorée, le théoréme de la limite monotone nous assure que la suite u converge.
Et comme la seule limite possible est £ = /3, lim wu, = V3.

n—-+00

Remarque 2-2 : L’étude de I'exemple précédent nous permet de délimiter quelques pistes
d’approche des suites récurrentes d’ordre 1 :

1. Une suite récurrente est parfaitement définie si son premier terme wug appartient a
une partie D stable par la fonction f. En particulier, la récurrence de 1’étape 1 est
inutilement lourde car dés que ug appartient & D, u; = f(ug) appartient aussi & D, et
comme u, = fo---o f(up), tous les termes u,, appartiennent a D.

——
n fois
En particulier, si la partie D est minorée (resp. majorée, resp. bornée), on obtient
directement que la suite u est minorée (resp. majorée, resp. bornée). C’est le cas dans
notre exemple ot [1;/3] est stable par f.

2. Pour étudier le sens de variation de u :
Option 1 : si la fonction f est croissante sur une partie stable D, alors pour n’importe
quel ug € D :
— Si ug < uq, alors u est croissante.
— Si ug > uq, alors u est décroissante.
Dit autrement, si f est croissante sur un intervalle stable D, alors la suite u est mono-
tone et son sens de variation dépend des positions respectives de ug et de uq.
111 Ceci ne s’applique pas au cas ol f est décroissante ou si D n’est pas un intervalle
stable par f.
Option 2 : Si f(x) > x pour tout = € D, alors u est croissante, alors que si f(z) <z
pour tout z € D, u est décroissante.
C’est donc le signe de la fonction g: = +— f(x) — z qui nous renseigne sur la monotonie
de u (interprétez ceci graphiquement).

3. Enfin, les théorémes de la limite monotones sont un puissant outil pour déterminer
I’existence d’une limite. Cette derniére est a rechercher parmi les points fixes de f.

L’exemple qui suit traite le cas ou la fonction f est décroissante. Mais dans notre grande gé-
nérosité, nous vous donnons quelques outils (Hors programme) permettant d’aborder ce cas.

Considérons une suite u de terme général u,. Si 'on observe uniquement les termes de u
d’indices pairs, on obtient une nouvelle suite que l'on note (ugp)nen. Par exemple si pour
tout entier naturel n, u, = n?> : (0,1,4,9,16,25,36,49,64,...), alors ug, = (2n)? = 4n? :
(0,4,16,36,64,...). De méme, on peut extraire de u les termes d’indices impairs qui forment
une nouvelle suite que 1'on note (u25,41)nen-

On dit que les suites (ugp)nen sont des suites extraites de (uy)nen ou encore des sous-suites
de (up)nen. Nous verrons qu’elles jouent un role particulier dans le cas des suites définies par
récurrence ot f: D — D (ainsi D est stable par f) est décroissante.

Résultat 1 : On dit que deux suites (uy)nen et (Un)nen sont adjacentes si I'une des suites est

croissante, 'autre décroissante et si lim (u, —v,) = 0.
n——+00

On prouve que deux suites adjacentes convergent vers la méme limite ¢ (Exercice n°1).



Résultat 2 : Si les sous-suites (u2p, )nen €t (U2n+1)nen convergent vers la méme limite ¢, alors
la suite (uy)nen converge vers ¢ aussi.
C’est le cas notamment si les suites (ugp)nen €t (u2n+1)nen sont adjacentes.

Nous voici & présent outillés pour aborder ce second exemple. Nous le traiterons de deux
fagons : avec les outils standards du programme de Maths spécialité (mais il faudra un peu de
technique quand méme!) et avec les outils présentés ci-avant.

Exemple 2-3 : Etudier la suite u définie par ug = 0 et pour tout entier naturel n par

Upt1 =2 — 1+ up.

Etape 1 : Justifier que la suite u est bien définie.

Il suffit pour cela de prouver que pour tout entier naturel n, u, > —1. Etudions pour cela
la fonction f définie sur [—1;+oo[ par f(z) = 2 — /1 + 2. On établit rapidement que f est
strictement décroissante sur D = [—1; +o00[. Regardons les premiers termes de notre suite :

Pl : G i s y=e

FIGURE b —ug=0¢et upy1 =2 — Vu, +1

Il semble que tous les termes de la suite soient compris entre 0 et 1. Or £([0;1]) = [2—v/2;1] C
[0;1] : Dintervalle I = [0;1] est stable par f. Comme uy = 0 € I, tous les termes de la suite
sont bien définis et compris entre 0 et 1!

Etape 2 : Déterminer les limites éventuelles de u.

On résout 'équation f(z) = z sur D = [—1; +o0o[ et on garde la ou les solutions appartenant
a I = [0;1]. Graphiquement, il n’y en a qu’une ...
Or :

flz)=2 <= 2—-Vzr+1l==x
= zx>-let2—2>0et 2—2)? =142
— ze[-1;2leta®—5x+3=0

-V
— $:E);/§%0,697

D’aprés I'étape 1, on sait que u est a valeurs dans I = [0; 1], donc la seule limite possible est

#5—\/@
=

10



5—+/13

Etape 3 : Prouver la convergence de u vers £ = 5

. Nous remarquons graphiquement

que pour tout entier naturel n : uoy < € < ugpy1-

Une approche naturelle est de tenter de prouver que (ug, — ugn+1) tend vers 0. En ayant
bien stir montré auparavant que (u2,)nen €t (U2n+1)nen Sont monotones et de sens contraires.
Ainsi, (ugn)nen €t (uan+1)nen sont adjacentes et convergent donc vers la méme limite. Comme

5—+13

la seule limite possible est £ = — u convergera vers /.

Mais nous pouvons raisonner plus directement en prouvant que |u, — ¢| tend vers 0.
Pour ceci, donnons-nous un entier naturel n € N.

|0 — up|
VI+ 04T+ un,

s — £ = |f (un) = F(O)] = W1+ L= VI +un| =

Mais comme u, > 0 et £ > 0, on a par croissance de la fonction racine carrée : v/1+ /¢ +

-/
VIt u, >V1+vV1=2 Dou: |jup1 — | < |“”2’
) o . , ug — /|
Une récurrence immédiate prouve que pour tout entier naturel n : |u, — ¢| < “on
-/
Or lim M =0, donc lim wu, =/.
n—-+o00 2n n—-+oo

Vous pouvez faire ici les exercices 1 a 4. Ils sont tous guidés comme de coutume dans le
secondaire. Mais les décortiquer, retenir les méthodes mises en oeuvre est déja un pas vers le
supérieur.

3 Suites arithmético-géométriques

Les probabilités sont un environnement trés riche de réflexion dans lequel les suites ne manquent
pas d’apparaitre naturellement. Nous nous bornerons ici & quelques situations classiques ou
plus exotiques, mais dans le respect des programmes du secondaire. L’approche fréquentiste
des probabilités sera également employée a travers le langage de programmation Python.

3.1 Suites arithmético-géométriques et probabilités

Exemple 3-1-1 : Xavier, plein de bonne volonté, décide de se remettre au sport tous les
jours dés le deux janvier 2024. La probabilité qu'il fasse une activité physique le 02/01/2024
est de 0,25. S’il fait du sport un jour donné, la probabilité qu’il en fasse le lendemain est de
0,7. S’il ne fait pas de sport un jour donné, la probabilité qu’il en fasse le lendemain est de 0,4.
On note A, 'événement : "faire du sport n jours apreés le 02/01/2024" et on u,, la probabilité
qu’il fasse du sport le n—éme jour apreés le 02/01/2024".

1. Exprimer une relation de récurrence liant w1 & u, sous la forme : u,+1 = au, + b.
2. Résoudre I’équation z = ax + b. On note « son unique solution.

3. Soit v la suite définie pour tout entier naturel n par v, = u, — «. Justifier que v est
une suite géométrique puis en déduire une expression de v, en fonction de n.

4. En déduire enfin une expression de u,, en fonction de n, puis lim wu,,.
n—-+oo

Solution : Les arbres de probabilités sont un incontournable du secondaire et permettent
d’appréhender de maniére naturelle les formules des probabilités totales et des probabilités
composées. Leur coté visuel est trés parlant et leur utilisation aisée.
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Jour n Jour n+1
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0,3
w :
An+1
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V4 A
2 /
A,
06
An+1

FIGURE 6 — arbre de probabilités

. La formule des probabilités totales nous dit, puisque {A,, A,} est un systéme complet
d’événements, que u,+1 = P(Ap, N Aps1) + P(A, N Apt1), done d’aprés la formule des

probabilités composées, unt1 = P(An)Pa, (An+1) + P(An) Pr(Ant1).
On en déduit que up41 = 0, Tuy, + 0,4(1 — uy) i€ up+1 = 0,3u, + 0,4.

. On résout x = 0,3x + 0, 4, ce qui donne immédiatement x = =

Soit . turel quel 4 3 n 4 4 3 12
. Soit n un entier naturel quelconque. V11 = Up11— = = —Up+——= = —Up— — =
\ ) AUETCORARE Tt =1 =2 = 10" T 0" 7~ 10" 70
To(un — ?) = 0, 3v,. On en déduit que v est une suite géométrique de raison g = 0, 3.
4 1 4 -9 L. .
Comme vg = ug — = = — — = = —, on en déduit que pour tout entier naturel n,
7 4 7 28
=" x0,3".
Un 28 ,
.y . 4 9
. Ainsi, pour tout entier naturel n, u, = Z + 28 x 0,3".
-1<0,3<1,donc lim 0,3" =0 puis lim wu, = =
n—-+oo n——+oo 7

C’est également 1'occasion de réunir probabilités et Python!

La seule approche pratique valable dans le secondaire étant I’approche fréquentiste, il convient
de modéliser parfaitement la situation. C’est en quelque sorte une relecture de ’arbre de pro-
babilités que nous avons tracé précédemment. Sans oublier la condition initiale.

Dans le script qui suit, la fonction expe(n) renvoie 1 si n jours apres le 2 janvier 2024 Xavier
fait du sport et 0 sinon.

On calcule ensuite pour n donné, la fréquence (sur 100.000 tentatives) ou Xavier fait du sport

n jours aprés le 2 janvier 2024.

def une_expe (n)

from random import random

sport = 0
alea = random ()
if alea <= 0.25 : #situation au 2 janvier 2024

12



10

15

20

25

sport += 1

for i in range(l, n+l) : #evolution n jours plus tard
alea = random()
if sport ==
if alea <= 0.4
sport =1
else:
sport = 0
else
if alea <= 0.7
sport =1
else:
sport = 0

return sport

#Programme principal

N = 100000 #N le nombre d'experiences
S =0
n = int (input ("Nombre de jours apres le 2 janvier 2024 : "))

for i in range(N):
S += une_expe (n)
print ("La probabilite de faire du sport le Jjour",n,"est de :", S/N)

On trouve pour valeur approchée de la probabilité de faire du sport le 10-éme jour aprés le 2
janvier 2024 : 0,5711
A faire : un tableau des f, pour n =0 ... 10

La suite que nous avons rencontrée dans I'exercice précédent fait partie d’une famille de suites
récurrentes tres connue :

3.2 Cas général

Définition 3-2-1 : On appelle suite arithmético-géométrique toute suite u définie par
la donnée de son premier terme ug et d’une relation de récurrence de la forme :

Upy1 = ati, + b, (a,b) €R?* neN

Remarque 3-2-2 : Soit u une suite arithmético-géométrique définie comme précédemment.

1. Si b = 0, alors pour tout entier naturel n, un,+1 = au, et on reconnait une suite
géométrique de raison a.

2. Si a = 1, alors pour tout entier naturel n, u,+1 = u, + b et on reconnait une suite
arithmétique de raison b.

3. Sia =0, alors pour tout entier naturel n, u,4+1 = b. Ainsi, u est constante (on dit aussi
stationnaire) a partir du rang 1.

Propriété 3-2-3 : Soit u une suite arithmético-géométrique :
ug donné et w41 = au, + b, pour tout entier naturel n € N (x). a ¢ {0;1} et b # 0.
b

_a.

1. Si u est convergente, de limite ¢, alors £ =

2. Pour tout entier naturel n : u,, = ¢+ (ug — £)a™ (que u converge ou non).

3. u converge si et seulement si |a| < 1.

13



Démonstration :

1. Supposons que lim wu, = ¥¢. Alors
n—-+00 n

14

_al.

vient £ = af + b. Comme a # 1, on a directement £ = 2

2. Posons pour tout entier naturel n : P, : up, =€+ (ug — £)a™.
Initialisation : ¢ + (ug — £)a® = £ + (ug — £) = ug, donc Py est vraie.
Héreédité : Soit n € N quelconque tel que Py, soit vraie : u, = £+ (ug — £)a™.

lim wpy1 = ¢. En passant a la limite dans (*) il
—+00

Upi1 = Aty +b = a(l + (ug — £)a"™) +b = (ug — £)a™' +al +b. Or £ = al + b, donc

Uni1 =+ (ug — £)a™ ! : Py est vraie.
Conclusion : pour tout n € N : wu, = ¢+ (ug — £)a™.

3. (<) Supposons que |a| < 1. Alors lim a" =0 et donc lim w, =¢.
n——+o0o n—+00

(=) Remarquons que si ug = £ = -
—a

Uy —
donc ug # £ et que (u,) converge. Comme a" = —

ug —
le cas si |a] < 1 oua =1 (exclus par hypothése).

Exemple 3-2-4 : Soient u et v les suites définies pour tout entier naturel n par :

1. ug=—1et up+1 =4u, — 3
2
2. vg=2¢et vn+1:gvn+4

Déterminer les limites de u,, et v, quand n tend vers +oo.

Solution : On se base sur la propriété 3-2-3.

>~ w

3
1. /= 1 donc pour tout entier naturel n, u,, =

Ona lim 4" = +oco, donc lim wu, = —oo.
n—-+0o0o n—-+o0o

2 n
2. £ = —10 donc pour tout entier naturel n, v,, = —10 + 12 X (5) .

On a lim (2> =0, donc lim v, = —10.
5 n—-+oo

n—-+o0o

alors pour tout n € N, wu, = £. Supposons

, alors (a™) converge. Ce qui est

Remarque 3-2-5: Le résultat donnant la forme explicite d’une suite arithmético-géométrique
u n’est pas au programme de Maths spécialité, mais fait souvent 'objet d’exercices de bac;

aussi la démarche employée rejoint notre premier exemple probabiliste :
— On résout 'équation = = ax + b et on note ¢ sa solution.
— On pose v, = u, — £ et on prouve que v est une suite géométrique de raison a.
— On en déduit v, puis u, en fonction de n.

On peut aussi poser wy, = a~ "uy, et prouver que wy+1 — w, = ba~"™. On en déduit w, puis

Up,.

Exemple 3-2-6 : Une suite cachée!
Soit (up)nen la suite définie par ug = 3 et pour tout entier naturel n : u,+1 =

Déterminer u,, en fonction de n, puis calculer lim w,.
n—-+o0o

14
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Solution : Remarquons pour commencer que la suite u est parfaitement définie : pour tout

entier naturel n, u, > 0 (récurrence immédiate).

Ensuite, I'idée est d’élever au carré chacune des expressions (sous la condition a,b > 0, on a
. U R .

a=0b < a®=b?), ce qui nous donne : U721+1 =1+ —2. Nous ne sommes pas trés loin de

I’expression d’une suite arithmético-géométrique. Il nous suffit maintenant de poser pour tout

1
entier naturel n : v, = ufl Du coup, nous obtenons vy =9 et v, = 5% + 1. Bingo!

1
On résout I'équation £ = §€ + 1, ce qui nous donne ¢ = 2, d’oi pour tout entier naturel n :

1\" \"
Un=2+(9—2)><<2) i.evn:2+7x(2>.

1 n
On en déduit finalement que pour tout entier naturel n : u, = /2 + 7 X <2) .

Vous pouvez faire ici I'exercice 5.

4 Suites récurrentes linéaires d’ordre 2 (Maths expertes)

4.1 Théme d’étude : la suite de Fibonacci
Définition 4-1-1 :  On appelle suite de Fibonacci la suite (F),)n,en définie par :
Fy=0, Fi=1letpourtout ne N: F,1o=F,11 + F,.

Ainsi, les premiers termes de la suite de Fibonacci sont : 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Propriété 4-1-2 :
1. Pour tout entier naturel n > 2, F,, > 1.

2. La suite (Fy,)n>2 est strictement croissante.

Démonstration : Posons P, : 1< F, < Fu41.

Initialisation : Fy = Fy+ F1 =1, F3 = Fy + F5 = 3, donc 1 < Fy < F3. Ainsi, P est vraie.
Hérédité : Fixons un entier naturel n > 2 quelconque et supposons P,, vraie.
Foio=Fo1+F, > 1+ Fuq1 > Fpy1 > F, > 1. Ainsi, P41 est vraie, ce qui achéve la

Pn Pn

récurrence.

Exercice fondamental 4-1-3 : Cet exercice sera revu dans la partie du site consacrée a
I’enseignement supérieur et approfondi selon un nouvel angle : celui de I'algébre linéaire.

Soit @ € R et b € R*. On suppose que le trindme X2 — aX — b posséde deux racines réelles et
distinctes r et 7. On note E l'ensemble des suites (uy,)nen pour lesquelles pour tout n € N :
Upt2 = QUpy1 + buy.

1. Soit z € R*. A quelle condition nécessaire et suffisante la suite (2"),ecn est-elle élément

de F

2. Trouver quatre réels r, 7', A\, X pour lesquels pour tout n € N : F,, = \r™ + \r/™.
En déduire lim F;,.

n—-+oo

Solution : Notons u = (2")pen.
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1. Commencons par remarquer que 0 n’est pas racine de X2 — aX — b, sinon on aurait
b =0, ce qui est exclus par hypothése.

ucE <+ (YneN)z""™?=azr"" 4 ba"
< z*=ax+b (car z #0)
<~ gz racine de X2 —aX —b
<= x=roux=r"(par hypothése)

2. Cette question demande plus d’attention. Commengons par quelques remarques :
— D’apres la question 1, on sait que (7")pen et (r)nen appartiennent a E. On prouve
facilement que toute combinaison linéaire de ces deux suites est aussi un élément
de E i.e pour tous réels A et X', (A\r™ + Nr'™),en appartient & F.
— Une suite u appartenant & E est entiérement déterminée par la connaissance de ses
deux premiers termes ug et ug.
Nous allons & présent raisonner par analyse-synthése.

Analyse : Soit u = (uy,)nen une suite de E. Supposons qu’il existe des réels A, X tels que
pour tout entier naturel n, u,, = A\r™+ Xr™. Mais alors (en remplagant n par 0 puis par

r’uo — U1
. \ A+ N =ug . A=

1), on obtient le systéme : qui a pour solution r-r
)\r—{—)\’r’:ul )\,:Ul—TUO

r—r

Donc si le couple (A, ') existe, il est unique et donné par la formule précédente.
/
Tug — UL, Ul — TU,()T,n

Synthése : Soit (un)nen € E et (vn)nen définie sur N par v, = —, -
- rl—r rl—r

En vertu de notre remarque préliminaire, on sait que (v, )neny € F et un calcul simple
nous apprend que vg = ug et v1 = u;. Toujours en vertu de notre remarque prélimi-

naire, on en déduit que pour tout entier naturel n, v, = u,.

On applique le résultat précédent & u = F.
Pour tout entier naturel n, Fy40 = Frp1 + F, <= Fpio— Fpy1 — F, =0.
Ce qui nous améne & étudier le polynome X2 — X — 1. Ce dernier posséde deux racines

1-v5 , 1++5
et r

, 2 2

T Fg _FIT‘n + F1 —’I“Form‘
r—r r—r

’I“,FO — F1 1 F1 — T‘Fo 1

On trouve que ——— = ——= et que ——— = —, d'ou:

r—r V5 - V5

F, - ;5( (1 +2\/5>”_ (1_2\/5>n>

—5 (1—¢5
2

réelles distinctes : r =

. Ainsi, par ce qui précéde : pour tout

entier naturel n, F,, =

1
-1<

< 1, donc lim
n——+o00

et

> 1, donc lim 5

n—-+o00

1+2\/5 <1+\/5> e

On en déduit que :

lim F, =+o0

n——4o00

La suite de Fibonacci posséde de nombreuses propriétés que nous étudierons plus tard. Ce
qu’il faut retenir pour le moment, c’est la forme de sa récurrence : aupyo + Bupy1 + v = 0;
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on parle de récurrence linéaire d’ordre 2, et I'idée de lui associer un trinome : aX? + 8X + v
dont les racines vont nous permettre de trouver effectivement les suites vérifiant I’équation de
récurrence.

4.2 Cas général

Définition 4-2-1 :
1. On appelle suite récurrente linéaire d’ordre 2 toute suite récurrente de la forme
QUpto + Bupntr1 +v = 0, ot @ # 0. On peut donc la réécrire sous la forme u,1o =
aUn+1 + buy, ou encore upt2 — aUp41 — buy, = 0.

2. On appelle équation caractéristique de I’équation linéaire d’ordre 2 : ty,49 — atUp41 —
bu, = 0, I'équation du second degré X2 —aX — b= 0.

Théoréme 4-2-2 : Soit (E) : upt2 + bupt1 + ¢ = 0 une suite récurrente linéaire d’ordre 2
d’équation caractéristique (Ec) : 2% +ax + b= 0.
1. Si (Ec) posséde deux solutions réelles distinctes r et r/, alors les solutions de (E) sont
les suites réelles de terme général u,, = Ar™ + Br™, (A, B) € R

2. Si (Ec) posséde une unique solution réelle rg, alors les solutions de (E) sont les suites
réelles de terme général u, = (An + B)ry, (A, B) € R2.

3. Si (Ec) posséde deux solutions complexes conjuguées z; = rel? et zp = re™ (avec

r > 0 et § € R), alors les solutions de (E) sont les suites réelles de terme général

un, = (Acos(nb) + Bsin(nd))r™.

Le 1. a été démontré. Le 2. et le 3. seront démontrés a 1’exercice 7.
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5 Exercices

Exercice 1 :

Considérons la suite u définie par ug € Dy = [—3/2;400[ et pour tout entier

naturel n par up+1 = v/2u, + 3. On donne ci-dessous la courbe représentative de f et la droite

D d’équation y = z.

4y

[N

la suite u.

3. Méthode 1 :

FIGURE 7 —ug > —3/2 et upy1 = 2u, + 3

. Résoudre sur Dy I'équation f(x) = x. Quel est I'intérét de ceci?

. Etudier graphiquement selon les différentes valeurs de ug € D ¢ la limite éventuelle de

(a) Etudier les variations de la fonction f.

(b) Justifier que les intervalles I} = [—3/2;3] et Iy =|3;400[ sont stables par f. En
déduire que la suite u est parfaitement définie et que si ug € I (resp. Is), alors
pour tout entier naturel n : u, € I; (resp. I2).

(¢) Prouver que si ug € I, alors pour tout entier naturel n :

—3/2 < up < upy1 < 3.

En déduire que la suite u converge et préciser sa limite.

(d) Prouver que si uy € I, alors pour tout entier naturel n : 3 < up4+1 < uy,. En déduire
que la suite u converge et préciser sa limite.

4. Méthode 2 :

(

a)
(b) Prouver que pour tout entier naturel n : 0 < up41 —3 <

Choisissons ug > 3. Justifier que pour tout entier naturel n : u, > 3.

2y —

—————— En déduire

2

que 0 < upyp —3< g(un—B)

2 n
(c¢) En déduire que pour tout entier naturel n : 0 < u, —3 < <3> (up — 3). Quelle est

la limite de la suite u?

(d) Adapter la preuve au cas ou ug € [0;3].

18



Exercice 2 : On dit que deux suites (un)nen €t (vn)nen sont adjacentes si 'une des suites

est croissante, l'autre décroissante et si lim (u, —v,) = 0.
n—+00

1. Partie 1
On supposera ici que u est croissante et v décroissante.
(a) Justifier que la suite u — v est croissante.
(b) Prouver par I’absurde que pour tout entier naturel n : u, < v,.
(c) Prouver que la suite u est majorée. En déduire qu’elle converge vers une limite que
I’on notera £,. Justifier de méme que la suite v converge vers une limite que 'on
notera £,.

(d) Prouver enfin que ¢, = /.

2. Partie 2
Soit u la suite définie par ug = 0 et pour tout entier naturel n par u,y; =

2

2u, +1°
On donne ci-dessous la courbe représentative de f et la droite D d’équation y = .

2
FIGURE 8 — =0et = —
U0 = B e it = T

(a) Représenter les 5 premiers termes de la suite u sur 'axe des abscisses. Semble-t-elle

monotone (croissante ou décroissante) ?
2

20 +1°

(b) Etudier les variations de la fonction f définie sur [0; +-oc[ par f(x) =

(c) Justifier briévement que la suite u est bien définie.

(d) Prouver que l’équation f(x) = z a une unique solution o dans RT et préciser la
valeur exacte de a.

(e) Prouver que les suites (u2n)nen €t (U2n+1)nen sont respectivement croissante et
majorée par « puis décroissante et minorée par «. Que dire sur leur convergence 7
4(ugn—1 — uap)

(uan, : 1) (2uzp—1 + 1)

m (U2n—1 - U2n—2)-

(f) Prouver que pour tout entier naturel n : ug,+1 —uo, = puis

que pour tout entier naturel n > 1: 0 < ugp11 —ugp <
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Exercice 3 : Soit u la suite définie par ug = 0 et pour tout entier naturel n par u,4+1 = e~

40
I(WVIT+1)

tout entier naturel n non nul : 0 < v, < k" vy et en déduire que lim v, = 0.

n—+0o00
(h) Conclure.

(g) On pose pour tout n > 1 : v, = Uopy1 — Uoy €t k = Prouver que pour

Un

On donne ci-dessous la courbe représentative de f et la droite D d’équation y = x.

2. Etudier les variations de la fonction f définie sur [0; +oo[ par f(z) = e

FIGURE 9 —up =0 et upqg = e 2

. Représenter les 5 premiers termes de la suite u sur I'axe des abscisses. Semble-t-elle

monotone (croissante ou décroissante) ?

—X
Justifier briévement que la suite u est bien définie et que tous ses termes u,, appar-
tiennent a [0;1].

Prouver que 1’équation f(z) = x a une unique solution a dans R et donner un enca-
drement de o & 1072 prés. Quel sens peut-on donner a o ?

. Prouver que les suites (u2p )nen et (u2n+1)nen sont respectivement croissante et majorée

par « puis décroissante et minorée par . En déduire qu’elles sont convergentes.

Il semble délicat de démontrer que lir_ir_l Uon11—U2n, = 0, ce qui prouverait que les suites
n—-—+0oo

(u2n )nen et (uon+1)nen sont adjacentes et donc convergentes de méme limite. Ainsi, la
suite u convergerait vers cette limite commune ¢. Pouvez-vous donner la valeur de £7

On note h = fo f: RT — [0;1].

(a) Prouver que tout point fixe de f i.e toute valeur zg € Dy telle que f(xg) = xo, est
aussi un point fixe de h.

(b) Justifier que I’équation h(x) = x a une unique solution 3 € R*. Comparer 8 a a.

(¢) En remarquant que wug, = h(ugn—2) et que ugnt1 = h(ugn—1), justifier que la suite
u converge vers .
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Exercice 4 : Soit u la suite définie par ug = 0 et pour tout entier naturel n par u,4+1 =

1
gui — 2uy, + 3.

i 1
1. Etudier les variations de la fonction f définie sur R par f(x) = §x2 — 2z + 3 et justifier
que la suite u est bien définie et que pour tout entier naturel n : 0 < u, < 3.

2. Représenter les cinq premiers termes de u sur le graphique ci-dessous.

+y

Ce D:y=x

1
FIGURE 10 — ug = 2 et uy41 = gu% —2u, +3

3. Déterminer par le calcul 'unique solution « de I'équation f(x) = x sur I = [0;3]. Quel
sens peut-on donner a o7

4. L’inspection graphique de la question 2 laisse penser que la suite u est divergente. Nous
allons pour cela prouver que les suites définies pour tout entier naturel n par v, = uap,
et wy, = uopy1 ont des limites distinctes.

(a) Prouver que pour tout entier naturel n : 2 < v, < v,41 < 3 et que 0 < wp4q <
(b) Justifier que les suites v et w convergent. On notera ¢ et ¢’ leurs limites respectives.

(c) Justifier que £ # ¢ et conclure.

Exercice 5 : Déterminer la limite des suites définies par récurrence par :

1. Upst = —0,9u, + 3
1 2

2. Up+1 = Zun — g

3. Upg1 = —0,2u, —1
4. Upy1 = 1,5u, — 4
9. Upy1 = —2Up + 5
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Fy=0
Exercice 6 : On définit la suite de Fibonacci (F,,) par ¢ [} =1
Fn+2 = Fn+1 + F, (Vn S N)

1. a) Calculer les six premiers termes de la suite (F},).
b) Démontrer par récurrence que pour tout entier naturel k, le nombre F3j est pair et
les nombres F3x41 et Fiiyo sont impairs.

2. Formulation de la suite (F},).
ug = 0
a) On note (uy,) la suite définie pour tout entier naturel n par: < u; = a

Unt2 = Upt1 + uy (Vn € N)

1+5

b) Démontrer que la suite (u,) est une suite géométrique et que a = 5 ou
1-V5
a=—
. . + 5 1—-+/5
Dans toute la suite de ’exercice, on note ¢ = 2\[ et ¢ = 2\[

1
Prouver que ¢ + ¢ =1, ¢/ = p et que lorsque a = ¢ ou a = ¢’, la suite (u,) est une
suite géométrique.
3. Dans l'espace vectoriel R?,

a) Démontrer que la famille {(¢,1); (¢', 1)} est une base de R? i.e pour tout (a,b) € R?,
il existe un unique couple de réels (A, u) tel que (a,b) = \(@, 1) + u(¢', 1).
b) Déterminer les coordonnées du vecteur (1,0) dans cette base.

1
¢) Démontrer par récurrence que pour tout entier naturel n, F, = ﬁ(qbn — ™).
n
d) Démontrer que pour tout entier naturel n, —1 < —= < 1. En déduire que que le

V5

n
nombre F, est & l'unité pres, égal & —.

V5

4. Formulation matricielle de la suite (F},).

Fn
a) Justifier que pour tout entier naturel n, U,41 = AU,, ou A désigne la matrice

(1))

b) En déduire que pour tout entier naturel n, A™ = A"Uj.

. F,
Pour tout entier naturel n, on note U,, = < ”+1).

¢) Démontrer que pour tout entier naturel n non nul, A" = (

Fn+1 Fn)
Fn anl '

d) On pose B = A% — Id. Vérifier que B = (; (2)>, puis démontrer que la matrice B

est inversible et calculer B~1.
e) Pour tout entier naturel n non nul, on pose S, = > p_; A3 = A3+ A% ... 4 43",
Démontrer que S, = (A3("+D) — A3)B~1,

5. Le but de cette question est de fournir une preuve au projet n°2 d’Euler : En ne
considérant que les termes de la suite de Fibonacci dont la valeur est paire et ne dépasse
pas 4 millions, trouvez la somme de ces termes.

a) Déterminer le plus grand entier naturel n tel que F;,, < 4000000 (penser & utiliser
la question 2)d) ).
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b) Justifier que la somme des termes de la suite de Fibonacci dont la valeur est paire
et dont le rang est inférieur ou égal a 3n est un des coefficients de la matrice S,.
Lequel est-ce?

¢) En déduire la réponse au probléme 2 du projet d’Euler.

PROJECT EULER : https://projecteuler.net

Exercice 7 : Soit (uy) une suite récurrente linéaire d’ordre 2 définie pour tout entier naturel
n:(E) : upto + atpyr + bu, = 0.
Son équation caractéristique est (E.) : 2%+ ax +b = 0.
1. On suppose dans cette question que I’équation caractéristique (E.) posséde une unique
solution réelle rg.
a) Justifier que les suites de terme général u,, = r{j et v, = nr{ sont solutions de (E).
b) En déduire que les suites de terme général w,, = Au, + Bv,, ot (4, B) € R? sont
aussi solutions de (F).
c¢) Réciproquement, soit (w;,) une suite solution de (£). Prouver qu’il existe un unique
couple (A, B) de réels tel que w, = Au, + Bv, et conclure.
2. On suppose dans cette question que I’équation caractéristique (E,.) posséde deux solu-
tions complexes conjuguées z; = re'¥ et zp = re 1.
a) Justifier que les suites de terme général u, = cos(nf)r™ et v, = sin(nf)r"™ sont
solutions de (E).
b) En déduire que les suites de terme général w,, = Au, + Bv,, ot (4, B) € R? sont
aussi solutions de (F).

c¢) Réciproquement, soit (w;,) une suite solution de (E). Prouver qu’il existe un unique
couple (A, B) de réels tel que w, = Au,, + Bv, et conclure.

Exercice 8 : D’aprés concours général 2021.
Dans tout cet exercice, on considére 'ensemble S des suites (uy,)n,>0 & valeurs réelles et telles
que
oy ()
n+1
pour tout entier naturel n > 0.
Pour tout nombre réel z, on note u(x) la suite appartenant a S et dont le premier terme vaut .

On note également u, () le terme d’indice n de cette suite. Ainsi, ug(z) = = et u;(x) = exp(z).
1. Démontrer que toute suite appartenant & S est strictement positive a partir du rang 1.

2. Soit (up)n>0 une suite appartenant a S. Démontrer que sl existe un rang N > 2 pour
lequel uy < 1, alors la suite (uy,)n>0 converge vers 0.

3. Soit (upn)n>0 une suite appartenant & S. Démontrer que si cette suite ne converge pas
vers 0, alors elle diverge vers +oc.

Dans la suite, on note Ey I’ensemble des réels x pour lesquels la suite u(z) converge vers 0, et
E l'ensemble des réels x pour lesquels u(z) diverge vers 400

4 Démontrer que 0 € Ey.

5 a) Démontrer que pour tout entier naturel n, la fonction x +— u,(z) est strictement
croissante sur R.

b) En déduire que si z € Ep, alors l'intervalle | — oo; z] est inclus dans Ey.
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6 a) Démontrer que la fonction x — e® —x(z +1) est strictement positive sur l'intervalle
[2; +00].
b) Soit (un)n>0 une suite appartenant a S. Démontrer que s’il existe un rang N > 1
tel que uny > N + 1, alors (uy)n>0 diverge vers +oo.
c) Démontrer que 1 € En.

7 Démontrer que si x € E, alors l'intervalle [x; 400[ est inclus dans E.

Nous allons maintenant prouver qu’il existe un réel § tel que I'intervalle | — 0o; [ est inclus
dans Ej et Uintervalle [0; +00] est inclus dans E.

8 On définit deux suites (an)n>0 €t (by)n>0 de la fagon suivante. On pose ag =1, by =1

et pour tout entier naturel n, on pose :

b b
an;_ netbn+1:bnSi @n =+ On

Ant1 = Ap €t by =

Qn41 =

an + by .
sinon.

a) Démontrer que les suites (an)n>0 et (by)n>0 sont convergentes et ont méme limite.
b) Appelons § la limite commune aux suites (an)n>0 €t (bn)n>0. Démontrer que | —oo; d|
est inclus dans Ej et 'intervalle |§; +o00[ est inclus dans E.

Il ne nous reste donc plus qu’a prouver que 6 € E,.

9 On pose c2 = In(In(2)), c3 = In(In(21n(3))), et plus généralement, pour tout entier
0>2:c¢,=In(In(2In(3In(...In((¢ — 1) In(¢))...)))).
Démontrer que pour tout entier £ > 2, ¢y € Ejy.

10 Démontrer que la suite (¢)g>2 converge.

11 Démontrer enfin que 0 € F.
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