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1 Le raisonnement par récurrence

Vous fréquentez l’ensemble des entiers naturels N depuis votre plus tendre enfance où vous
avez appris à compter sur vos doigts, puis appris vos tables d’addition et de multiplication.
Pour autant, sauriez-vous définir N ?
Sa construction n’est pas au programme du secondaire, mais certaines de ses propriétés si !
Nous résumons donc ci-dessous les axiomes qui sont à la base de sa définition et qui permettent
ensuite d’établir de nombreuses propriétés.

Axiomes de Peano : Il existe un ensemble N dont les éléments sont appelés les entiers na-
turels, un élément 0 ∈ N appelé zéro et une application s : N → N, dite application successeur,
vérifiant les propriétés suivantes :

1. 0 n’est le successeur d’aucun entier,

2. Deux nombres entiers qui ont le même successeur sont égaux,

3. Si A ⊂ N est tel que

{
0 ∈ A

s(A) ⊂ A
, alors A = N.

Le point 3 définit le principe de récurrence, d’une utilité capitale en analyse et que nous allons
reformuler de manière pragmatique et pratique sous la forme suivante :
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Principe de récurrence (récurrence simple) : Soit P(n) une propriété dépendant de
l’entier naturel n.
Initialisation : Si P(0) est vraie,
Hérédité : Si pour tout entier naturel n, le fait que P(n) soit vraie entraine que P(n+1) est
vraie,
Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

On peut se représenter le principe de récurrence comme celui qui nous permet de monter une
échelle infinie : le barreau du bas est numéroté 0, puis son successeur est numéroté 1, etc.
L’initialisation nous permet de mettre le pied sur le premier barreau 0 ; l’hérédité nous dit que
si l’on a le pied sur le barreau n, alors on peut grimper au barreau suivant n+1 et ceci quelle
que soit la valeur de n. Bref, avoir le droit de poser le pied sur le premier barreau et le droit
de passer d’un barreau à son successeur nous permet de grimper notre échelle infinie.
Remarquons enfin que l’on peut remplacer 0 par tout autre entier n0, auquel cas la conclusion
devient : P(n) est vraie pour tous les entiers naturels n supérieur ou égal à n0.

Exemple 1-1 : Prouvons que pour tout entier naturel n non nul :

1. 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

2. 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
Démonstration : voir aussi https://www.youtube.com/watch?v=a6AWclssIF4

1. Posons pour tout entier naturel n non nul : P(n) : 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Initialisation : 1 =
1 + 1

2
, donc P(1) est vraie.

Hérédité : Soit n un entier naturel non nul quelconque. Supposons que P(n) est vraie

et prouvons que P(n+ 1) est vraie : 1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
.

Par hypothèse de récurrence : 1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1).

Or
n(n+ 1)

2
+ (n + 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
. Ainsi, P(n + 1) est

vraie.
Conclusion : on a prouvé que P(1) est vraie, et que pour tout entier naturel n non nul,
P(n) vraie entraine P(n + 1) vraie, donc d’après le principe de récurrence, P(n) est
vraie pour tous les entiers naturels n non nuls i.e pour tout entier naturel n non nul :

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

2. Posons pour tout entier naturel n non nul : P(n) : 12+22+· · ·+n2 =
n(n+ 1)(2n+ 1)

6
.

Initialisation :
1(1 + 1)(2× 1 + 1)

6
= 1 = 12, donc P(1) est vraie.

Hérédité : Soit n un entier naturel non nul quelconque. Supposons que P(n) est vraie et

prouvons que P(n+1) est vraie : 12+22+· · ·+n2+(n+1)2 =
(n+ 1)(n+ 2)(2(n+ 1) + 1)

6

i.e 12 + 22 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.

Par hypothèse de récurrence, 12+22+ · · ·+n2+(n+1)2 =
n(n+ 1)(2n+ 1)

6
+(n+1)2.

Or
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

n(n+ 1)(2n+ 1) + 6(n+ 1)2

6
.
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Et
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6
=

(n+ 1)[n(2n+ 1) + 6(n+ 1)]

6
.

Enfin, comme n(2n+1)+ 6(n+1) = 2n2 +7n+6 = (n+2)(2n+3), on en déduit que
P(n+ 1) est vraie.
Conclusion : on a prouvé que P(1) est vraie, et que pour tout entier naturel n non nul,
P(n) vraie entraine P(n + 1) vraie, donc d’après le principe de récurrence, P(n) est
vraie pour tous les entiers naturels n non nuls i.e pour tout entier naturel n non nul :

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

† † † Il convient de rédiger parfaitement vos récurrences. Signalons quelques erreurs souvent
commises et qui n’en sont pas moins abominables ! Voici le top 3 :

— N°3 : Dans l’hérédité, on suppose que pour un certain n donné, la propriété
P(n) est vraie, qui peut se traduire par "il existe un entier naturel n" tel que P(n) est
vraie. Alors que l’hérédité repose sur le principe "Pour tout entier naturel n, P(n) vraie
entraine P(n+1) vraie". Vous apprendrez ceci dans le supérieur avec les quantificateurs
existentiels et universels.

— N°2 : Oublier l’initialisation ! Grandes ou petites valeurs, le problème reste le
même ; et puis pour reprendre l’heuristique de l’échelle, comment grimper le long de
l’échelle si vous n’avez pas le droit de poser le pied dessus ?

— N°1 : Et enfin la pire des erreurs qui consiste à prendre pour hypothèse de
récurrence : "Supposons que pour tout entier naturel n, P(n) est vraie". Autrement
dit, vous prenez pour hypothèse exactement ce que vous cherchez à prouver !

Exemple 1-2 Considérons la suite u définie sur N par u0 ∈ R+ et pour tout entier naturel
n par un+1 =

√
1 + un.

1. La première chose à vérifier est que la suite u est bien définie, c’est-à-dire que l’on
puisse calculer un pour n’importe quelle valeur de l’entier n.

(a) ´Etudier les variations de f : [−1;+∞[→ R, x 7→
√
1 + x et justifier que si x ∈ R+,

alors f(x) ∈ R+ (on dit que l’intervalle [0; +∞[ est stable par f).
(b) Prouver par récurrence que pour tout entier naturel n, un est bien défini et que

un ≥ 0.

2. On suppose ici que u0 = 0. Placer sur l’axe des abscisses les termes u0 à u3 à l’aide
du graphe de f et de la droite D d’équation y = x (la première bissectrice). Vers
quelle valeur ℓ semblent se rapprocher les termes un ? (on pourra résoudre l’équation
f(x) = x)

3. Démontrer que pour tout entier naturel n, 0 ≤ un ≤ un+1 ≤ ℓ. Que dire sur la
monotonie de u ? u est-elle minorée, majorée, bornée ?

4. Si l’on choisit u0 > ℓ, par exemple u0 = 2, 5, quel semble être le comportement de u ?
Justifier par récurrence sur n ∈ N que pour tout entier naturel n : ℓ ≤ un+1 ≤ un.

5. Conclure selon la valeur initiale de u0 ∈ [−1;+∞[ de la limite éventuelle de la suite u.

6. Qu’en est-il si un+1 = f(un), où f : [0; +∞[→ [0; +∞[, x 7→ x2 ? Vous préciserez selon la
valeur de u0 la convergence ou divergence éventuelle de u. En revanche, vous prouverez
de manière précise par récurrence la monotonie de u et son éventuel caractère minoré
ou majoré. Let’s play !

Solution : Nous verrons en exercice comment prolonger cet exercice et prouver de manière
effective les résultats subodorés.
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1. (a) u : [−1;+∞[→ R+, x 7→ x + 1 est strictement croissante et v : R+ → R+, x 7→
√
x

est strictement croissante, donc par composition f = v ◦u est strictement croissante
sur [−1;+∞[.

(b) Posons pour tout entier naturel n, P(n) : un est bien défini et un ≥ 0.
Initialisation : u0 = 0 donc P(0) est vraie !
Hérédité : Soit n ∈ N quelconque ; supposons que P(n) est vraie : un existe et
un ≥ 0. Comme f est définie sur R+ et que un+1 = f(un) , un+1 existe et par
croissance de f : un+1 = f(un) ≥ f(0) = 1 > 0. Donc P(n+ 1) est vraie.
Conclusion : Pour tout entier naturel n, un est bien défini et un ≥ 0.

2. Il semble que la suite u converge vers l’abscisse du point d’intersection de la courbe
représentative de f et de la première bissectrice, ce qui revient à déterminer la solution

sur R+ de
√
1 + x = x. Cette équation équivaut à :

{
1 + x = x2

x ≥ 0
i.e x =

1 +
√
5

2
.

Figure 1 – Avec u0 = 0

3. Posons pour tout entier naturel n, P(n) : 0 ≤ un ≤ un+1 ≤ ℓ.

Initialisation : u0 = 0, u1 = f(u0) = 1 et ℓ =
1 +

√
5

2
. On a bien 0 ≤ u0 ≤ u1 ≤ ℓ,

donc P(0) est vraie.
Hérédité : Soit n ∈ N quelconque. Supposons que P(n) est vraie : 0 ≤ un ≤ un+1 ≤ ℓ.
Prouvons que P(n+ 1) est vraie : 0 ≤ un+1 ≤ un+2 ≤ ℓ.
Par croissance de f sur R+, on a : f(0) ≤ f(un) ≤ f(un+1) ≤ f(ℓ) i.e 1 ≤ un+1 ≤
un+2 ≤ ℓ car f(ℓ) = ℓ. D’où 0 ≤ un+1 ≤ un+2 ≤ ℓ et P(n+ 1) est vraie.
Conclusion : Pour tout entier naturel n, 0 ≤ un ≤ un+1 ≤ ℓ.
On en déduit que la suite u est croissante et bornée (minorée par 0 et majorée par ℓ).

4. Traçons les premiers termes de u.
Là encore, ils semblent se rapprocher de ℓ.

Posons pour tout entier naturel n, P(n) : ℓ ≤ un+1 ≤ un.
Initialisation : Soit u0 > ℓ. u1 = f(u0) > f(ℓ) par stricte croissance de f . Comme

f(ℓ) = ℓ, on a u1 > ℓ. Enfin, u1 − u0 =
√
1 + u0 − u0 =

1 + u0 − u20√
1 + u0 + u0

. Mais le trinôme
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Figure 2 – Avec u0 = 2, 5

1 + x − x2 prend des valeurs strictement négatives quand x > ℓ, et comme u0 > ℓ,
1 + u0 − u20 < 0, donc u1 − u0 < 0. D’où ℓ < u1 < u0 et P(0) est vraie.
Hérédité : Paradoxalement, ce sera plus simple que l’initialisation ! Donnons-nous un
entier naturel n quelconque et supposons P(n) vraie :ℓ ≤ un+1 ≤ un. Par croissance de
f : ℓ = f(ℓ) ≤ f(un+1) = un+2 ≤ f(un) = un+1. Donc P(n+ 1) est vraie.
Conclusion : pour tout entier naturel n, ℓ ≤ un+1 ≤ un. On en déduit en particulier
que si u0 > ℓ, la suite u est décroissante et minorée par ℓ.
Il semble là encore que les termes un se rapprochent de ℓ.

5. — Pour tout réel u0 ≥ 0, il semble que u converge vers ℓ : en croissant si u0 ∈ [0; ℓ[, en
décroissant si u0 > ℓ, et en stagnant (suite constante) si u0 = ℓ (récurrence triviale).

— Si u0 ∈ [−1; 0[, alors u1 ∈ [0; 1[⊂ [0; ℓ[, et on est ramené au cas précédent.

6. Laissé à la sagacité du lecteur. Nous vous donnons le graphe utile à vos supputations.

Il est parfois nécessaire de modifier le principe énoncé précédemment afin de prouver qu’une
propriété P(n) est vraie pour tous les entiers naturels n (éventuellement apcr). C’est le cas
notamment lorsqu’une suite est définie par une récurrence d’ordre 2 : u0, u1 donnés et pour
tout entier naturel n : un+2 = f(n, un, un+1). Énonçons le . . .

Principe de récurrence (récurrence double) : Soit P(n) une propriété dépendant de
l’entier naturel n.
Initialisation : Si P(0) et P(1) sont vraies,
Hérédité : Si pour tout entier naturel n, le fait que P(n) et que P(n+1) soient vraies entraine
que P(n+ 2) est vraie,
Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

Exemple 1-3 : On note u la suite définie par u0 = 0, u1 = 1 et pour tout n ∈ N : un+2 =√
un + un+1 + 3. Prouver que la suite u est bien définie, croissante et majorée par 3.
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Figure 3 – Avec u0 ∈ R+ et un+1 = u2n

Solution : Pour tout entier naturel n, posons P(n) : un, et un+1 sont bien définis et 0 ≤
un ≤ un+1 ≤ 3.
Initialisation : u0 = 0 et u1 = 1 sont bien définis et 0 ≤ u0 ≤ u1 ≤ 3 donc P(0) est vraie.
u2 =

√
0 + 1 + 3 = 2 est bien défini et on a 0 ≤ u1 ≤ u2 ≤ 3, donc P(1) est vraie.

Hérédité : Soit n ∈ N. Supposons P(n) et P(n+ 1) vraies : un, un+1 et un+2 sont bien définis
et 0 ≤ un ≤ un+1 ≤ un+2 ≤ 3. Prouvons que P(n + 2) vraie : un+2 et un+3 sont bien définis
et 0 ≤ un+2 ≤ un+3 ≤ 3.
Par hypothèse, un+2 est bien défini et comme un+1 ≥ 0 et un+2 ≥ 0, un+3 =

√
un+1 + un+2 + 3

est bien défini. De plus, par hypothèse de récurrence : 0 ≤ un+un+1+3 ≤ un+1+un+2+3 ≤
3+3+3 = 9. Par croissance de la fonction racine carrée : 0 ≤ un+2 ≤ un+3 ≤ 3, donc P(n+2)
est vraie.
Conclusion : Pour tout n ∈ N, u est croissante et majorée par 3.

Voir aussi https://www.youtube.com/watch?v=G_KqFsucyBs

Dans certains cas, il est même nécessaire de considérer le cas de tous les P(k), 0 ≤ k ≤ n.

Principe de récurrence (récurrence forte) : Soit P(n) une propriété dépendant de l’en-
tier naturel n.
Initialisation : Si P(0) est vraie,
Hérédité : Si pour tout entier naturel n donné, le fait que tous les P(k) soient vraies (pour
k compris entre 0 et n) entraine que P(n+ 1) est vraie,
Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

Exemple 1-4 : Soit u la suite définie par u0 ≥ 0 et pour tout n ∈ N, un+1 ≤
n∑

k=0

uk.

Prouvons que pour tout entier naturel n : un ≤ 2nu0.

Solution : Pour tout entier naturel n, posons P(n) : un ≤ 2nu0.
Initialisation : u0 = 20u0 ≤ 20u0, donc P(0) est vraie.
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Hérédité : Soit n ∈ N. Supposons que P(0), P(1), . . .P(n) vraies et prouvons que P(n + 1)
vraie : un+1 ≤ 2n+1u0.

un+1 ≤
n∑

k=0

uk ≤
n∑

k=0

2ku0 = u0
2n+1 − 1

2− 1
≤ 2n+1u0. Donc P(n+ 1) est vraie.

Conclusion : Pour tout entier naturel n : un ≤ 2nu0.

Remarque 1-5 : il existe d’autres formes de récurrence : triple, descendante, limitée, etc.
Nous en verrons quelques unes en exercice, mais déjà, maitriser correctement celles qui sont
présentées ci-dessus est un bon début. Le raisonnement par récurrence est très courant en
mathématiques et s’applique à de nombreuses situations qui dépassent largement le thème de
cet article. Voir https://www.youtube.com/watch?v=muOBEu3NAu8

2 Suites récurrentes d’ordre 1 : méthodes d’approche élémen-
taires

Rappelons qu’une suite u est définie par récurrence (d’ordre 1) si les termes un sont définis
par la donnée du terme initial u0 et pour tout entier naturel n par une relation du type
un+1 = f(n, un) ou dans la plupart des cas par un+1 = f(un).
Nous parlons de récurrence d’ordre 1 car pour calculer le terme un, n ∈ N∗, il suffit de
connaître la valeur de son unique prédecesseur.
Autrement dit, nous calculons les termes de la suite u de proche en proche. Lorsque cela est
possible, on peut exprimer directement un en fonction de n, autrement dit définir la suite de
manière explicite. Deux exemples importants sont :

1. Les suites arithmétiques définies par :

u0 ∈ R et pour tout entier naturel n, un+1 = un + r

On prouve aisément par récurrence que pour tout entier naturel n, un = u0 + nr.

2. Les suites géométriques définies par :

u0 ∈ R et pour tout entier naturel n, un+1 = qun

On prouve aisément par récurrence que pour tout entier naturel n, un = u0 × qn.

Il n’est pas toujours évident, pour ne pas dire presque toujours impossible, d’obtenir une
expression explicite de un en fonction de n. Mais lorsque cela est possible, bingo !

Exemple 2-1 : Une suite homographique.

Soit u la suite définie par u0 = 1 et pour tout entier naturel n par un+1 =
2un + 3

un + 2
.

Étape 1 : Justifier que la suite u est bien définie.
Il suffit pour cela de prouver que pour tout entier naturel n, un ̸= −2. Or un+1 = f(un), où f

est définie sur R \ {−2} par f(x) =
2x+ 3

x+ 2
.

On prouve sans difficulté par une étude de fonction ou en remarquant que f(x) =
2(x+ 2)− 1

x+ 3
=

2− 1

x+ 3
que f est strictement croissante sur ]−∞;−2[ et sur ]− 2;+∞[.

Comme f(1) = 1, 75, ceci prouve que pour tout réel x ≥ 1, f(x) ≥ 1 : on dit que l’intervalle
[1; +∞[ est stable par f . Cette condition, retenez la bien, est suffisante pour assurer que tous
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les un sont bien définis et on a en plus que pour tout entier naturel n, un ≥ 1.
Posons pour tout entier naturel n, P(n) : un existe et un ≥ 1.
Initialisation : u0 = 1 ≥ 1 donc P(0) est vraie.
Hérédité : Soit n ∈ N quelconque. Supposons que P(n) est vraie et prouvons que P(n + 1)
est vraie : un+1 existe et un+1 ≥ 1. Par hypothèse, un existe et un ≥ 1. Comme f est définie
sur [1; +∞[, un+1 = f(un) existe et par croissance de f sur [1; +∞[, on a f(un) ≥ f(1) i.e
un+1 ≥ 1, 75 ≥ 1. Donc P(n+ 1) est vraie.
Conclusion : Pour tout entier naturel n : un existe et un ≥ 1.

Étape 2 : Déterminer les limites éventuelles de u.
On résout l’équation f(x) = x sur D = R \ {−2} et on garde la solution appartenant à
I = [1;+∞[.
En effet, f est continue sur I = [1;+∞[, et comme u est à valeurs dans I, si u converge vers
ℓ, alors en passant à la limite dans l’expression un+1 = f(un), on obtient : ℓ = f(ℓ) i.e ℓ est
un point fixe de f .
Or :

f(x) = x ⇐⇒ 2x+ 3

x+ 2
= x

⇐⇒ x ̸= −2 et x2 = 3

⇐⇒ x = −
√
3 ou x =

√
3

D’après l’étape 1, on sait que u est à valeurs strictement positives, donc la seule limite possible
est ℓ =

√
3.

Étape 3 : Justifier que u converge vers
√
3.

Commençons par une petite inspection graphique des premiers termes de la suite.

Figure 4 – u0 = 1 et un+1 =
2un + 3

un + 2

Très rapidement, il semble que la suite u soit croissante et majorée par
√
3. Prouvons-le

rigoureusement par récurrence !
Posons pour tout entier naturel n, P(n) : 1 ≤ un ≤ un+1 ≤

√
3.

Initialisation : u1 =
2× 1 + 3

1 + 2
=

5

3
≈ 1, 67 et

√
3 ≈ 1, 73. On a bien 1 ≤ u0 ≤ u1 ≤

√
3, donc

P(0) est vraie.
Hérédité : Soit n un entier naturel quelconque. Supposons P(n) : 1 ≤ un ≤ un+1 ≤

√
3 vraie.
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Par croissance de f sur [1; +∞[ : 1 ≤ f(1) ≤ f(un) ≤ f(un+1) ≤ f(
√
3) =

√
3, soit :

1 ≤ un+1 ≤ un+2 ≤
√
3, d’où P(n+ 1) est vraie.

Conclusion : pour tout entier naturel n, 1 ≤ un ≤ un+1 ≤
√
3.

Croissante et majorée, le théorème de la limite monotone nous assure que la suite u converge.
Et comme la seule limite possible est ℓ =

√
3, lim

n→+∞
un =

√
3.

Remarque 2-2 : L’étude de l’exemple précédent nous permet de délimiter quelques pistes
d’approche des suites récurrentes d’ordre 1 :

1. Une suite récurrente est parfaitement définie si son premier terme u0 appartient à
une partie D stable par la fonction f . En particulier, la récurrence de l’étape 1 est
inutilement lourde car dès que u0 appartient à D, u1 = f(u0) appartient aussi à D, et
comme un = f ◦ · · · ◦ f︸ ︷︷ ︸

n fois

(u0), tous les termes un appartiennent à D.

En particulier, si la partie D est minorée (resp. majorée, resp. bornée), on obtient
directement que la suite u est minorée (resp. majorée, resp. bornée). C’est le cas dans
notre exemple où [1;

√
3] est stable par f .

2. Pour étudier le sens de variation de u :
Option 1 : si la fonction f est croissante sur une partie stable D, alors pour n’importe
quel u0 ∈ D :
— Si u0 ≤ u1, alors u est croissante.
— Si u0 ≥ u1, alors u est décroissante.
Dit autrement, si f est croissante sur un intervalle stable D, alors la suite u est mono-
tone et son sens de variation dépend des positions respectives de u0 et de u1.
† † † Ceci ne s’applique pas au cas où f est décroissante ou si D n’est pas un intervalle
stable par f .
Option 2 : Si f(x) ≥ x pour tout x ∈ D, alors u est croissante, alors que si f(x) ≤ x
pour tout x ∈ D, u est décroissante.
C’est donc le signe de la fonction g : x 7→ f(x)− x qui nous renseigne sur la monotonie
de u (interprétez ceci graphiquement).

3. Enfin, les théorèmes de la limite monotones sont un puissant outil pour déterminer
l’existence d’une limite. Cette dernière est à rechercher parmi les points fixes de f .

L’exemple qui suit traite le cas où la fonction f est décroissante. Mais dans notre grande gé-
nérosité, nous vous donnons quelques outils (Hors programme) permettant d’aborder ce cas.

Considérons une suite u de terme général un. Si l’on observe uniquement les termes de u
d’indices pairs, on obtient une nouvelle suite que l’on note (u2n)n∈N. Par exemple si pour
tout entier naturel n, un = n2 : (0, 1, 4, 9, 16, 25, 36, 49, 64, . . . ), alors u2n = (2n)2 = 4n2 :
(0, 4, 16, 36, 64, . . . ). De même, on peut extraire de u les termes d’indices impairs qui forment
une nouvelle suite que l’on note (u2n+1)n∈N.
On dit que les suites (u2n)n∈N sont des suites extraites de (un)n∈N ou encore des sous-suites
de (un)n∈N. Nous verrons qu’elles jouent un rôle particulier dans le cas des suites définies par
récurrence où f : D → D (ainsi D est stable par f) est décroissante.

Résultat 1 : On dit que deux suites (un)n∈N et (vn)n∈N sont adjacentes si l’une des suites est
croissante, l’autre décroissante et si lim

n→+∞
(un − vn) = 0.

On prouve que deux suites adjacentes convergent vers la même limite ℓ (Exercice n°1).
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Résultat 2 : Si les sous-suites (u2n)n∈N et (u2n+1)n∈N convergent vers la même limite ℓ, alors
la suite (un)n∈N converge vers ℓ aussi.
C’est le cas notamment si les suites (u2n)n∈N et (u2n+1)n∈N sont adjacentes.

Nous voici à présent outillés pour aborder ce second exemple. Nous le traiterons de deux
façons : avec les outils standards du programme de Maths spécialité (mais il faudra un peu de
technique quand même !) et avec les outils présentés ci-avant.

Exemple 2-3 : Étudier la suite u définie par u0 = 0 et pour tout entier naturel n par
un+1 = 2−

√
1 + un.

Étape 1 : Justifier que la suite u est bien définie.
Il suffit pour cela de prouver que pour tout entier naturel n, un > −1. Étudions pour cela
la fonction f définie sur [−1;+∞[ par f(x) = 2 −

√
1 + x. On établit rapidement que f est

strictement décroissante sur D = [−1;+∞[. Regardons les premiers termes de notre suite :

Figure 5 – u0 = 0 et un+1 = 2−
√
un + 1

Il semble que tous les termes de la suite soient compris entre 0 et 1. Or f([0; 1]) = [2−
√
2; 1] ⊂

[0; 1] : l’intervalle I = [0; 1] est stable par f . Comme u0 = 0 ∈ I, tous les termes de la suite
sont bien définis et compris entre 0 et 1 !

Étape 2 : Déterminer les limites éventuelles de u.
On résout l’équation f(x) = x sur D = [−1;+∞[ et on garde la ou les solutions appartenant
à I = [0; 1]. Graphiquement, il n’y en a qu’une . . .
Or :

f(x) = x ⇐⇒ 2−
√
x+ 1 = x

⇐⇒ x ≥ −1 et 2− x ≥ 0 et (2− x)2 = 1 + x

⇐⇒ x ∈ [−1; 2] et x2 − 5x+ 3 = 0

⇐⇒ x =
5−

√
13

2
≈ 0, 697

D’après l’étape 1, on sait que u est à valeurs dans I = [0; 1], donc la seule limite possible est

ℓ =
5−

√
13

2
.
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Étape 3 : Prouver la convergence de u vers ℓ =
5−

√
13

2
. Nous remarquons graphiquement

que pour tout entier naturel n : u2n < ℓ < u2n+1.
Une approche naturelle est de tenter de prouver que (u2n − u2n+1) tend vers 0. En ayant
bien sûr montré auparavant que (u2n)n∈N et (u2n+1)n∈N sont monotones et de sens contraires.
Ainsi, (u2n)n∈N et (u2n+1)n∈N sont adjacentes et convergent donc vers la même limite. Comme

la seule limite possible est ℓ =
5−

√
13

2
, u convergera vers ℓ.

Mais nous pouvons raisonner plus directement en prouvant que |un − ℓ| tend vers 0.
Pour ceci, donnons-nous un entier naturel n ∈ N.

|un+1 − ℓ| = |f(un)− f(ℓ)| = |
√
1 + ℓ−

√
1 + un| =

|ℓ− un|√
1 + ℓ+

√
1 + un

Mais comme un > 0 et ℓ > 0, on a par croissance de la fonction racine carrée :
√
1 + ℓ +

√
1 + un ≥

√
1 +

√
1 = 2. D’où : |un+1 − ℓ| ≤ |un − ℓ|

2
.

Une récurrence immédiate prouve que pour tout entier naturel n : |un − ℓ| ≤ |u0 − ℓ|
2n

.

Or lim
n→+∞

|u0 − ℓ|
2n

= 0, donc lim
n→+∞

un = ℓ.

Vous pouvez faire ici les exercices 1 à 4. Ils sont tous guidés comme de coutume dans le
secondaire. Mais les décortiquer, retenir les méthodes mises en oeuvre est déjà un pas vers le
supérieur.

3 Suites arithmético-géométriques

Les probabilités sont un environnement très riche de réflexion dans lequel les suites ne manquent
pas d’apparaître naturellement. Nous nous bornerons ici à quelques situations classiques ou
plus exotiques, mais dans le respect des programmes du secondaire. L’approche fréquentiste
des probabilités sera également employée à travers le langage de programmation Python.

3.1 Suites arithmético-géométriques et probabilités

Exemple 3-1-1 : Xavier, plein de bonne volonté, décide de se remettre au sport tous les
jours dès le deux janvier 2024. La probabilité qu’il fasse une activité physique le 02/01/2024
est de 0,25. S’il fait du sport un jour donné, la probabilité qu’il en fasse le lendemain est de
0,7. S’il ne fait pas de sport un jour donné, la probabilité qu’il en fasse le lendemain est de 0,4.
On note An l’événement : "faire du sport n jours après le 02/01/2024" et on un la probabilité
qu’il fasse du sport le n−ème jour après le 02/01/2024".

1. Exprimer une relation de récurrence liant un+1 à un sous la forme : un+1 = aun + b.

2. Résoudre l’équation x = ax+ b. On note α son unique solution.

3. Soit v la suite définie pour tout entier naturel n par vn = un − α. Justifier que v est
une suite géométrique puis en déduire une expression de vn en fonction de n.

4. En déduire enfin une expression de un en fonction de n, puis lim
n→+∞

un.

Solution : Les arbres de probabilités sont un incontournable du secondaire et permettent
d’appréhender de manière naturelle les formules des probabilités totales et des probabilités
composées. Leur côté visuel est très parlant et leur utilisation aisée.
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Figure 6 – arbre de probabilités

1. La formule des probabilités totales nous dit, puisque {An, An} est un système complet
d’événements, que un+1 = P (An ∩An+1) +P (An ∩An+1), donc d’après la formule des
probabilités composées, un+1 = P (An)PAn(An+1) + P (An)PAn

(An+1).
On en déduit que un+1 = 0, 7un + 0, 4(1− un) i.e un+1 = 0, 3un + 0, 4.

2. On résout x = 0, 3x+ 0, 4, ce qui donne immédiatement x =
4

7
.

3. Soit n un entier naturel quelconque. vn+1 = un+1−
4

7
=

3

10
un+

4

10
− 4

7
=

3

10
un−

12

70
=

3

10
(un − 4

7
) = 0, 3vn. On en déduit que v est une suite géométrique de raison q = 0, 3.

Comme v0 = u0 −
4

7
=

1

4
− 4

7
=

−9

28
, on en déduit que pour tout entier naturel n,

vn =
−9

28
× 0, 3n.

4. Ainsi, pour tout entier naturel n, un =
4

7
+

9

28
× 0, 3n.

−1 < 0, 3 < 1, donc lim
n→+∞

0, 3n = 0 puis lim
n→+∞

un =
4

7

C’est également l’occasion de réunir probabilités et Python !
La seule approche pratique valable dans le secondaire étant l’approche fréquentiste, il convient
de modéliser parfaitement la situation. C’est en quelque sorte une relecture de l’arbre de pro-
babilités que nous avons tracé précédemment. Sans oublier la condition initiale.
Dans le script qui suit, la fonction expe(n) renvoie 1 si n jours après le 2 janvier 2024 Xavier
fait du sport et 0 sinon.
On calcule ensuite pour n donné, la fréquence (sur 100.000 tentatives) où Xavier fait du sport
n jours après le 2 janvier 2024.

def une_expe(n) :
from random import random
sport = 0
alea = random()

5 if alea <= 0.25 : #situation au 2 janvier 2024
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sport += 1
for i in range(1, n+1) : #evolution n jours plus tard

alea = random()
if sport == 0 :

10 if alea <= 0.4 :
sport = 1

else:
sport = 0

else :
15 if alea <= 0.7 :

sport = 1
else:

sport = 0
return sport

20
#Programme principal
N = 100000 #N le nombre d'experiences
S = 0
n = int(input("Nombre de jours apres le 2 janvier 2024 : "))

25 for i in range(N):
S += une_expe(n)

print("La probabilite de faire du sport le jour",n,"est de :", S/N)

On trouve pour valeur approchée de la probabilité de faire du sport le 10-ème jour après le 2
janvier 2024 : 0,5711
A faire : un tableau des fn pour n = 0 ... 10

La suite que nous avons rencontrée dans l’exercice précédent fait partie d’une famille de suites
récurrentes très connue :

3.2 Cas général

Définition 3-2-1 : On appelle suite arithmético-géométrique toute suite u définie par
la donnée de son premier terme u0 et d’une relation de récurrence de la forme :

un+1 = aun + b, (a, b) ∈ R2, n ∈ N

Remarque 3-2-2 : Soit u une suite arithmético-géométrique définie comme précédemment.

1. Si b = 0, alors pour tout entier naturel n, un+1 = aun et on reconnait une suite
géométrique de raison a.

2. Si a = 1, alors pour tout entier naturel n, un+1 = un + b et on reconnait une suite
arithmétique de raison b.

3. Si a = 0, alors pour tout entier naturel n, un+1 = b. Ainsi, u est constante (on dit aussi
stationnaire) à partir du rang 1.

Propriété 3-2-3 : Soit u une suite arithmético-géométrique :
u0 donné et un+1 = aun + b, pour tout entier naturel n ∈ N (∗). a /∈ {0; 1} et b ̸= 0.

1. Si u est convergente, de limite ℓ, alors ℓ =
b

1− a
.

2. Pour tout entier naturel n : un = ℓ+ (u0 − ℓ)an (que u converge ou non).

3. u converge si et seulement si |a| < 1.
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Démonstration :

1. Supposons que lim
n→+∞

un = ℓ. Alors lim
n→+∞

un+1 = ℓ. En passant à la limite dans (*) il

vient ℓ = aℓ+ b. Comme a ̸= 1, on a directement ℓ =
ℓ

b− a
.

2. Posons pour tout entier naturel n : Pn : un = ℓ+ (u0 − ℓ)an.
Initialisation : ℓ+ (u0 − ℓ)a0 = ℓ+ (u0 − ℓ) = u0, donc P0 est vraie.
Hérédité : Soit n ∈ N quelconque tel que Pn soit vraie : un = ℓ+ (u0 − ℓ)an.
un+1 = aun + b = a(ℓ + (u0 − ℓ)an) + b = (u0 − ℓ)an+1 + aℓ + b. Or ℓ = aℓ + b, donc
un+1 = ℓ+ (u0 − ℓ)an+1 : Pn+1 est vraie.
Conclusion : pour tout n ∈ N : un = ℓ+ (u0 − ℓ)an.

3. (⇐) Supposons que |a| < 1. Alors lim
n→+∞

an = 0 et donc lim
n→+∞

un = ℓ.

(⇒) Remarquons que si u0 = ℓ =
b

1− a
, alors pour tout n ∈ N, un = ℓ. Supposons

donc u0 ̸= ℓ et que (un) converge. Comme an =
un − ℓ

u0 − ℓ
, alors (an) converge. Ce qui est

le cas si |a| < 1 ou a = 1 (exclus par hypothèse).

Exemple 3-2-4 : Soient u et v les suites définies pour tout entier naturel n par :

1. u0 = −1 et un+1 = 4un − 3

2. v0 = 2 et vn+1 =
2

5
vn + 4

Déterminer les limites de un et vn quand n tend vers +∞.

Solution : On se base sur la propriété 3-2-3.

1. ℓ =
3

4
donc pour tout entier naturel n, un =

3

4
− 7

4
× 4n.

On a lim
n→+∞

4n = +∞, donc lim
n→+∞

un = −∞.

2. ℓ = −10 donc pour tout entier naturel n, vn = −10 + 12×
(
2

5

)n

.

On a lim
n→+∞

(
2

5

)n

= 0, donc lim
n→+∞

vn = −10.

Remarque 3-2-5 : Le résultat donnant la forme explicite d’une suite arithmético-géométrique
u n’est pas au programme de Maths spécialité, mais fait souvent l’objet d’exercices de bac ;
aussi la démarche employée rejoint notre premier exemple probabiliste :

— On résout l’équation x = ax+ b et on note ℓ sa solution.
— On pose vn = un − ℓ et on prouve que v est une suite géométrique de raison a.
— On en déduit vn puis un en fonction de n.

On peut aussi poser wn = a−nun, et prouver que wn+1 − wn = ba−n. On en déduit wn puis
un.

Exemple 3-2-6 : Une suite cachée !

Soit (un)n∈N la suite définie par u0 = 3 et pour tout entier naturel n : un+1 =

√
1 +

u2n
2

.
Déterminer un en fonction de n, puis calculer lim

n→+∞
un.
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Solution : Remarquons pour commencer que la suite u est parfaitement définie : pour tout
entier naturel n, un ≥ 0 (récurrence immédiate).
Ensuite, l’idée est d’élever au carré chacune des expressions (sous la condition a, b ≥ 0, on a

a = b ⇐⇒ a2 = b2), ce qui nous donne : u2n+1 = 1 +
u2n
2

. Nous ne sommes pas très loin de
l’expression d’une suite arithmético-géométrique. Il nous suffit maintenant de poser pour tout

entier naturel n : vn = u2n. Du coup, nous obtenons v0 = 9 et vn+1 =
1

2
vn + 1. Bingo !

On résout l’équation ℓ =
1

2
ℓ + 1, ce qui nous donne ℓ = 2, d’où pour tout entier naturel n :

vn = 2 + (9− 2)×
(
1

2

)n

i.e vn = 2 + 7×
(
1

2

)n

.

On en déduit finalement que pour tout entier naturel n : un =

√
2 + 7×

(
1

2

)n

.

Vous pouvez faire ici l’exercice 5.

4 Suites récurrentes linéaires d’ordre 2 (Maths expertes)

4.1 Thème d’étude : la suite de Fibonacci

Définition 4-1-1 : On appelle suite de Fibonacci la suite (Fn)n∈N définie par :
F0 = 0, F1 = 1 et pour tout n ∈ N : Fn+2 = Fn+1 + Fn.

Ainsi, les premiers termes de la suite de Fibonacci sont : 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Propriété 4-1-2 :

1. Pour tout entier naturel n ≥ 2, Fn ≥ 1.

2. La suite (Fn)n≥2 est strictement croissante.

Démonstration : Posons Pn : 1 ≤ Fn < Fn+1.
Initialisation : F2 = F0 + F1 = 1, F3 = F1 + F2 = 3, donc 1 ≤ F2 < F3. Ainsi, P2 est vraie.
Hérédité : Fixons un entier naturel n ≥ 2 quelconque et supposons Pn vraie.
Fn+2 = Fn+1 + Fn ≥

Pn

1 + Fn+1 > Fn+1 ≥
Pn

Fn ≥ 1. Ainsi, Pn+1 est vraie, ce qui achève la

récurrence.

Exercice fondamental 4-1-3 : Cet exercice sera revu dans la partie du site consacrée à
l’enseignement supérieur et approfondi selon un nouvel angle : celui de l’algèbre linéaire.

Soit a ∈ R et b ∈ R∗. On suppose que le trinôme X2 − aX − b possède deux racines réelles et
distinctes r et r′. On note E l’ensemble des suites (un)n∈N pour lesquelles pour tout n ∈ N :
un+2 = aun+1 + bun.

1. Soit x ∈ R∗. A quelle condition nécessaire et suffisante la suite (xn)n∈N est-elle élément
de E

2. Trouver quatre réels r, r′, λ, λ′ pour lesquels pour tout n ∈ N : Fn = λrn + λ′r′n.
En déduire lim

n→+∞
Fn.

Solution : Notons u = (xn)n∈N.
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1. Commençons par remarquer que 0 n’est pas racine de X2 − aX − b, sinon on aurait
b = 0, ce qui est exclus par hypothèse.

u ∈ E ⇐⇒ (∀n ∈ N) xn+2 = axn+1 + bxn

⇐⇒ x2 = ax+ b (car x ̸= 0)

⇐⇒ x racine de X2 − aX − b

⇐⇒ x = r ou x = r′ (par hypothèse)

2. Cette question demande plus d’attention. Commençons par quelques remarques :
— D’après la question 1, on sait que (rn)n∈N et (r′n)n∈N appartiennent à E. On prouve

facilement que toute combinaison linéaire de ces deux suites est aussi un élément
de E i.e pour tous réels λ et λ′, (λrn + λ′r′n)n∈N appartient à E.

— Une suite u appartenant à E est entièrement déterminée par la connaissance de ses
deux premiers termes u0 et u1.

Nous allons à présent raisonner par analyse-synthèse.

Analyse : Soit u = (un)n∈N une suite de E. Supposons qu’il existe des réels λ, λ′ tels que
pour tout entier naturel n, un = λrn+λ′r′n. Mais alors (en remplaçant n par 0 puis par

1), on obtient le système :

{
λ+ λ′ = u0

λr + λ′r′ = u1
qui a pour solution


λ =

r′u0 − u1
r′ − r

λ′ =
u1 − ru0
r′ − r

Donc si le couple (λ, λ′) existe, il est unique et donné par la formule précédente.

Synthèse : Soit (un)n∈N ∈ E et (vn)n∈N définie sur N par vn =
r′u0 − u1
r′ − r

rn+
u1 − ru0
r′ − r

r′n.

En vertu de notre remarque préliminaire, on sait que (vn)n∈N ∈ E et un calcul simple
nous apprend que v0 = u0 et v1 = u1. Toujours en vertu de notre remarque prélimi-
naire, on en déduit que pour tout entier naturel n, vn = un.

On applique le résultat précédent à u = F.
Pour tout entier naturel n, Fn+2 = Fn+1 + Fn ⇐⇒ Fn+2 − Fn+1 − Fn = 0.
Ce qui nous amène à étudier le polynôme X2−X − 1. Ce dernier possède deux racines

réelles distinctes : r =
1−

√
5

2
et r′ =

1 +
√
5

2
. Ainsi, par ce qui précède : pour tout

entier naturel n, Fn =
r′F0 − F1

r′ − r
rn +

F1 − rF0

r′ − r
r′n.

On trouve que
r′F0 − F1

r′ − r
= − 1√

5
et que

F1 − rF0

r′ − r
=

1√
5
, d’où :

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)

−1 <
1−

√
5

2
< 1, donc lim

n→+∞

(
1−

√
5

2

)n

= 0

et
1 +

√
5

2
> 1, donc lim

n→+∞

(
1 +

√
5

2

)n

= +∞.

On en déduit que :
lim

n→+∞
Fn = +∞

La suite de Fibonacci possède de nombreuses propriétés que nous étudierons plus tard. Ce
qu’il faut retenir pour le moment, c’est la forme de sa récurrence : αun+2 + βun+1 + γ = 0 ;
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on parle de récurrence linéaire d’ordre 2, et l’idée de lui associer un trinôme : αX2 + βX + γ
dont les racines vont nous permettre de trouver effectivement les suites vérifiant l’équation de
récurrence.

4.2 Cas général

Définition 4-2-1 :

1. On appelle suite récurrente linéaire d’ordre 2 toute suite récurrente de la forme
αun+2 + βun+1 + γ = 0, où α ̸= 0. On peut donc la réécrire sous la forme un+2 =
aun+1 + bun ou encore un+2 − aun+1 − bun = 0.

2. On appelle équation caractéristique de l’équation linéaire d’ordre 2 : un+2−aun+1−
bun = 0, l’équation du second degré X2 − aX − b = 0.

Théorème 4-2-2 : Soit (E) : un+2 + bun+1 + c = 0 une suite récurrente linéaire d’ordre 2
d’équation caractéristique (Ec) : x2 + ax+ b = 0.

1. Si (Ec) possède deux solutions réelles distinctes r et r′, alors les solutions de (E) sont
les suites réelles de terme général un = Arn +Br′n, (A,B) ∈ R2.

2. Si (Ec) possède une unique solution réelle r0, alors les solutions de (E) sont les suites
réelles de terme général un = (An+B)rn0 , (A,B) ∈ R2.

3. Si (Ec) possède deux solutions complexes conjuguées z1 = reiθ et z2 = re−iθ (avec
r > 0 et θ ∈ R), alors les solutions de (E) sont les suites réelles de terme général
un = (A cos(nθ) +B sin(nθ))rn.

Le 1. a été démontré. Le 2. et le 3. seront démontrés à l’exercice 7.
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5 Exercices

Exercice 1 : Considérons la suite u définie par u0 ∈ Df = [−3/2;+∞[ et pour tout entier
naturel n par un+1 =

√
2un + 3. On donne ci-dessous la courbe représentative de f et la droite

D d’équation y = x.

Figure 7 – u0 ≥ −3/2 et un+1 =
√
2un + 3

1. Résoudre sur Df l’équation f(x) = x. Quel est l’intérêt de ceci ?

2. Étudier graphiquement selon les différentes valeurs de u0 ∈ Df la limite éventuelle de
la suite u.

3. Méthode 1 :

(a) Étudier les variations de la fonction f .
(b) Justifier que les intervalles I1 = [−3/2; 3] et I2 =]3;+∞[ sont stables par f . En

déduire que la suite u est parfaitement définie et que si u0 ∈ I1 (resp. I2), alors
pour tout entier naturel n : un ∈ I1 (resp. I2).

(c) Prouver que si u0 ∈ I1, alors pour tout entier naturel n : −3/2 ≤ un ≤ un+1 ≤ 3.
En déduire que la suite u converge et préciser sa limite.

(d) Prouver que si u0 ∈ I2, alors pour tout entier naturel n : 3 ≤ un+1 ≤ un. En déduire
que la suite u converge et préciser sa limite.

4. Méthode 2 :

(a) Choisissons u0 > 3. Justifier que pour tout entier naturel n : un > 3.

(b) Prouver que pour tout entier naturel n : 0 ≤ un+1 − 3 ≤ 2un − 6√
2un + 3 + 3

. En déduire

que 0 ≤ un+1 − 3 ≤ 2

3
(un − 3)

(c) En déduire que pour tout entier naturel n : 0 ≤ un− 3 ≤
(
2

3

)n

(u0− 3). Quelle est

la limite de la suite u ?
(d) Adapter la preuve au cas où u0 ∈ [0; 3].
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Exercice 2 : On dit que deux suites (un)n∈N et (vn)n∈N sont adjacentes si l’une des suites
est croissante, l’autre décroissante et si lim

n→+∞
(un − vn) = 0.

1. Partie 1
On supposera ici que u est croissante et v décroissante.
(a) Justifier que la suite u− v est croissante.
(b) Prouver par l’absurde que pour tout entier naturel n : un ≤ vn.
(c) Prouver que la suite u est majorée. En déduire qu’elle converge vers une limite que

l’on notera ℓu. Justifier de même que la suite v converge vers une limite que l’on
notera ℓv.

(d) Prouver enfin que ℓu = ℓv.
2. Partie 2

Soit u la suite définie par u0 = 0 et pour tout entier naturel n par un+1 =
2

2un + 1
.

On donne ci-dessous la courbe représentative de f et la droite D d’équation y = x.

Figure 8 – u0 = 0 et un+1 =
2

2un + 1

(a) Représenter les 5 premiers termes de la suite u sur l’axe des abscisses. Semble-t-elle
monotone (croissante ou décroissante) ?

(b) Étudier les variations de la fonction f définie sur [0; +∞[ par f(x) =
2

2x+ 1
.

(c) Justifier brièvement que la suite u est bien définie.
(d) Prouver que l’équation f(x) = x a une unique solution α dans R+ et préciser la

valeur exacte de α.
(e) Prouver que les suites (u2n)n∈N et (u2n+1)n∈N sont respectivement croissante et

majorée par α puis décroissante et minorée par α. Que dire sur leur convergence ?

(f) Prouver que pour tout entier naturel n : u2n+1−u2n =
4(u2n−1 − u2n)

(2u2n + 1)(2u2n−1 + 1)
puis

que pour tout entier naturel n ≥ 1 : 0 ≤ u2n+1−u2n ≤ 40

9(
√
17 + 1)

(u2n−1−u2n−2).
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(g) On pose pour tout n ≥ 1 : vn = u2n+1 − u2n et k =
40

9(
√
17 + 1)

. Prouver que pour

tout entier naturel n non nul : 0 ≤ vn ≤ kn−1v1 et en déduire que lim
n→+∞

vn = 0.

(h) Conclure.

Exercice 3 : Soit u la suite définie par u0 = 0 et pour tout entier naturel n par un+1 = e−un .
On donne ci-dessous la courbe représentative de f et la droite D d’équation y = x.

Figure 9 – u0 = 0 et un+1 = e−un

1. Représenter les 5 premiers termes de la suite u sur l’axe des abscisses. Semble-t-elle
monotone (croissante ou décroissante) ?

2. Étudier les variations de la fonction f définie sur [0; +∞[ par f(x) = e−x.

3. Justifier brièvement que la suite u est bien définie et que tous ses termes un appar-
tiennent à [0; 1].

4. Prouver que l’équation f(x) = x a une unique solution α dans R+ et donner un enca-
drement de α à 10−2 près. Quel sens peut-on donner à α ?

5. Prouver que les suites (u2n)n∈N et (u2n+1)n∈N sont respectivement croissante et majorée
par α puis décroissante et minorée par α. En déduire qu’elles sont convergentes.

6. Il semble délicat de démontrer que lim
n→+∞

u2n+1−u2n = 0, ce qui prouverait que les suites

(u2n)n∈N et (u2n+1)n∈N sont adjacentes et donc convergentes de même limite. Ainsi, la
suite u convergerait vers cette limite commune ℓ. Pouvez-vous donner la valeur de ℓ ?

7. On note h = f ◦ f : R+ → [0; 1].

(a) Prouver que tout point fixe de f i.e toute valeur x0 ∈ Df telle que f(x0) = x0, est
aussi un point fixe de h.

(b) Justifier que l’équation h(x) = x a une unique solution β ∈ R+. Comparer β à α.
(c) En remarquant que u2n = h(u2n−2) et que u2n+1 = h(u2n−1), justifier que la suite

u converge vers α.
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Exercice 4 : Soit u la suite définie par u0 = 0 et pour tout entier naturel n par un+1 =
1

3
u2n − 2un + 3.

1. Étudier les variations de la fonction f définie sur R par f(x) =
1

3
x2−2x+3 et justifier

que la suite u est bien définie et que pour tout entier naturel n : 0 ≤ un ≤ 3.

2. Représenter les cinq premiers termes de u sur le graphique ci-dessous.

Figure 10 – u0 = 2 et un+1 =
1

3
u2n − 2un + 3

3. Déterminer par le calcul l’unique solution α de l’équation f(x) = x sur I = [0; 3]. Quel
sens peut-on donner à α ?

4. L’inspection graphique de la question 2 laisse penser que la suite u est divergente. Nous
allons pour cela prouver que les suites définies pour tout entier naturel n par vn = u2n
et wn = u2n+1 ont des limites distinctes.

(a) Prouver que pour tout entier naturel n : 2 ≤ vn ≤ vn+1 ≤ 3 et que 0 ≤ wn+1 ≤
wn ≤ 1

3
.

(b) Justifier que les suites v et w convergent. On notera ℓ et ℓ′ leurs limites respectives.
(c) Justifier que ℓ ̸= ℓ′ et conclure.

Exercice 5 : Déterminer la limite des suites définies par récurrence par :

1. un+1 = −0, 9un + 3

2. un+1 =
1

4
un − 2

3
3. un+1 = −0, 2un − 1

4. un+1 = 1, 5un − 4

5. un+1 = −2un + 5
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Exercice 6 : On définit la suite de Fibonacci (Fn) par


F0 = 0

F1 = 1

Fn+2 = Fn+1 + Fn (∀n ∈ N)
.

1. a) Calculer les six premiers termes de la suite (Fn).
b) Démontrer par récurrence que pour tout entier naturel k, le nombre F3k est pair et
les nombres F3k+1 et F3k+2 sont impairs.

2. Formulation de la suite (Fn).

a) On note (un) la suite définie pour tout entier naturel n par :


u0 = 0

u1 = a

un+2 = un+1 + un (∀n ∈ N)
.

b) Démontrer que la suite (un) est une suite géométrique et que a =
1 +

√
5

2
ou

a =
1−

√
5

2
.

Dans toute la suite de l’exercice, on note ϕ =
1 +

√
5

2
et ϕ′ =

1−
√
5

2
.

Prouver que ϕ + ϕ′ = 1, ϕ′ =
1

ϕ
et que lorsque a = ϕ ou a = ϕ′, la suite (un) est une

suite géométrique.
3. Dans l’espace vectoriel R2,

a) Démontrer que la famille {(ϕ, 1); (ϕ′, 1)} est une base de R2 i.e pour tout (a, b) ∈ R2,
il existe un unique couple de réels (λ, µ) tel que (a, b) = λ(ϕ, 1) + µ(ϕ′, 1).

b) Déterminer les coordonnées du vecteur (1,0) dans cette base.

c) Démontrer par récurrence que pour tout entier naturel n, Fn =
1√
5
(ϕn − ϕ′n).

d) Démontrer que pour tout entier naturel n, −1 <
ϕn

√
5
< 1. En déduire que que le

nombre Fn est à l’unité près, égal à
ϕn

√
5
.

4. Formulation matricielle de la suite (Fn).

Pour tout entier naturel n, on note Un =

(
Fn+1

Fn

)
.

a) Justifier que pour tout entier naturel n, Un+1 = AUn, où A désigne la matrice

A =

(
1 1
1 0

)
.

b) En déduire que pour tout entier naturel n, An = AnU0.

c) Démontrer que pour tout entier naturel n non nul, An =

(
Fn+1 Fn

Fn Fn−1

)
.

d) On pose B = A3 − Id. Vérifier que B =

(
2 2
2 0

)
, puis démontrer que la matrice B

est inversible et calculer B−1.
e) Pour tout entier naturel n non nul, on pose Sn =

∑n
k=1A

3k = A3 +A6 + · · ·+A3n.
Démontrer que Sn = (A3(n+1) −A3)B−1.

5. Le but de cette question est de fournir une preuve au projet n°2 d’Euler : En ne
considérant que les termes de la suite de Fibonacci dont la valeur est paire et ne dépasse
pas 4 millions, trouvez la somme de ces termes.
a) Déterminer le plus grand entier naturel n tel que Fn ≤ 4000000 (penser à utiliser

la question 2)d) ).
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b) Justifier que la somme des termes de la suite de Fibonacci dont la valeur est paire
et dont le rang est inférieur ou égal à 3n est un des coefficients de la matrice Sn.
Lequel est-ce ?

c) En déduire la réponse au problème 2 du projet d’Euler.

PROJECT EULER : https://projecteuler.net

Exercice 7 : Soit (un) une suite récurrente linéaire d’ordre 2 définie pour tout entier naturel
n : (E) : un+2 + aun+1 + bun = 0.
Son équation caractéristique est (Ec) : x2 + ax+ b = 0.

1. On suppose dans cette question que l’équation caractéristique (Ec) possède une unique
solution réelle r0.

a) Justifier que les suites de terme général un = rn0 et vn = nrn0 sont solutions de (E).
b) En déduire que les suites de terme général wn = Aun + Bvn, où (A,B) ∈ R2 sont

aussi solutions de (E).
c) Réciproquement, soit (wn) une suite solution de (E). Prouver qu’il existe un unique

couple (A,B) de réels tel que wn = Aun +Bvn et conclure.

2. On suppose dans cette question que l’équation caractéristique (Ec) possède deux solu-
tions complexes conjuguées z1 = reiθ et z2 = re−iθ.

a) Justifier que les suites de terme général un = cos(nθ)rn et vn = sin(nθ)rn sont
solutions de (E).

b) En déduire que les suites de terme général wn = Aun + Bvn, où (A,B) ∈ R2 sont
aussi solutions de (E).

c) Réciproquement, soit (wn) une suite solution de (E). Prouver qu’il existe un unique
couple (A,B) de réels tel que wn = Aun +Bvn et conclure.

Exercice 8 : D’après concours général 2021.
Dans tout cet exercice, on considère l’ensemble S des suites (un)n≥0 à valeurs réelles et telles
que

un+1 =
exp(un)

n+ 1

pour tout entier naturel n ≥ 0.
Pour tout nombre réel x, on note u(x) la suite appartenant à S et dont le premier terme vaut x.
On note également un(x) le terme d’indice n de cette suite. Ainsi, u0(x) = x et u1(x) = exp(x).

1. Démontrer que toute suite appartenant à S est strictement positive à partir du rang 1.

2. Soit (un)n≥0 une suite appartenant à S. Démontrer que s’il existe un rang N ≥ 2 pour
lequel uN ≤ 1, alors la suite (un)n≥0 converge vers 0.

3. Soit (un)n≥0 une suite appartenant à S. Démontrer que si cette suite ne converge pas
vers 0, alors elle diverge vers +∞.

Dans la suite, on note E0 l’ensemble des réels x pour lesquels la suite u(x) converge vers 0, et
E∞ l’ensemble des réels x pour lesquels u(x) diverge vers +∞

4 Démontrer que 0 ∈ E0.

5 a) Démontrer que pour tout entier naturel n, la fonction x 7→ un(x) est strictement
croissante sur R.

b) En déduire que si x ∈ E0, alors l’intervalle ]−∞;x] est inclus dans E0.
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6 a) Démontrer que la fonction x 7→ ex−x(x+1) est strictement positive sur l’intervalle
[2; +∞[.

b) Soit (un)n≥0 une suite appartenant à S. Démontrer que s’il existe un rang N ≥ 1
tel que uN ≥ N + 1, alors (un)n≥0 diverge vers +∞.

c) Démontrer que 1 ∈ E∞.

7 Démontrer que si x ∈ E∞, alors l’intervalle [x; +∞[ est inclus dans E∞.

Nous allons maintenant prouver qu’il existe un réel δ tel que l’intervalle ] − ∞; δ[ est inclus
dans E0 et l’intervalle [δ; +∞[ est inclus dans E∞.

8 On définit deux suites (an)n≥0 et (bn)n≥0 de la façon suivante. On pose a0 = 1, b0 = 1
et pour tout entier naturel n, on pose :

an+1 =
an + bn

2
et bn+1 = bn si

an + bn
2

∈ E0 et

an+1 = an et bn+1 =
an + bn

2
sinon.

a) Démontrer que les suites (an)n≥0 et (bn)n≥0 sont convergentes et ont même limite.
b) Appelons δ la limite commune aux suites (an)n≥0 et (bn)n≥0. Démontrer que ]−∞; δ[

est inclus dans E0 et l’intervalle ]δ; +∞[ est inclus dans E∞.

Il ne nous reste donc plus qu’à prouver que δ ∈ E∞.

9 On pose c2 = ln(ln(2)), c3 = ln(ln(2 ln(3))), et plus généralement, pour tout entier
ℓ ≥ 2 : cℓ = ln(ln(2 ln(3 ln(. . . ln((ℓ− 1) ln(ℓ)) . . . )))).
Démontrer que pour tout entier ℓ ≥ 2, cℓ ∈ E0.

10 Démontrer que la suite (cℓ)ℓ≥2 converge.

11 Démontrer enfin que δ ∈ E∞.
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