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Feuille d’exercices

Prof : Yannick Le Bastard Niveau : Term spé maths + Année : 2024-2025

Suites numériques 1

Rappels de cours : Limite d’une suite.
Dans tout ce qui suit, u ou (un) ou encore (un)n∈N désigne une suite à termes réels et ℓ
un réel.

Définitions :

1. On dit que (un) a pour limite +∞ (ou encore que un tend vers +∞) si pour tout
réel A > 0, il existe un entier naturel N tel que pour tout entier naturel n ≥ N ,
un > A.
Formellement : (∀A > 0)(∃N ∈ N)(∀n ∈ N), n ≥ N =⇒ un > A.

On écrit lim
n→+∞

un = +∞ .

2. On dit que (un) a pour limite −∞ (ou encore que un tend vers −∞) si pour tout
réel A > 0, il existe un entier naturel N tel que pour tout entier naturel n ≥ N ,
un < −A.
Formellement : (∀A > 0)(∃N ∈ N)(∀n ∈ N), n ≥ N =⇒ un < −A.

On écrit lim
n→+∞

un = −∞ .

3. On dit que (un) a pour limite ℓ (ou encore que un tend vers ℓ) si pour tout réel ϵ > 0,
il existe un entier naturel N tel que pour tout entier naturel n ≥ N , |un − ℓ| < ϵ.
Formellement : (∀ϵ > 0)(∃N ∈ N)(∀n ∈ N), n ≥ N =⇒ |un − ℓ| < ϵ.

On écrit lim
n→+∞

un = ℓ .

Remarque : |un − ℓ| < ϵ ⇐⇒ un ∈]ℓ− ϵ; ℓ+ ϵ[.

Remarque : nous pouvons remplacer des inégalités strictes par des inégalités larges dans
les définitions précédentes.

ATTENTION, Toutes les suites n’ont pas de limite. Par exemple les suites de terme
général un = (−1)n, vn = (−2)n, wn = sinn, tn = cosn.

Théorème-définition : Si une suite (un) possède une limite, alors celle-ci est unique.
On peut alors parler de LA limite de la suite (un). On dit que la suite (un) est conver-
gente si elle possède une limite finie. Sinon, on dit que (un) est divergente.
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Figure 1: limite infinie

Figure 2: limite finie
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■Exercice n◦1

1. En revenant à la définition de la limite, prouvez que :

• Si une suite admet une limite finie ℓ, alors celle-ci est unique.

• Si une suite admet une limite finie ℓ > 0, alors à partir d’un certain rang
tous les un sont strictement positifs.

• Toute suite convergente est bornée.

• lim
n→+∞

√
n = +∞.

• lim
n→+∞

1

n
= 0.

• lim
n→+∞

n2 − 2n = +∞.

• lim
n→+∞

3n2 + 2n

n2 + 1
= 3.

• (un) tend vers 0 si et seulement si (|un|) tend vers 0. Donnez un contre-
exemple si (un) tend vers ℓ ̸= 0.

• Si (un) est bornée et (vn) a pour limite 0, alors (unvn) tend vers 0.

2. Étudiez le sens de variation des suites définies pour tout n ∈ N par :

• un = 3n2 − n+ 1

• vn = 4n+ (−2)n

• wn = n3 + 9n+ 1

•

{
t0 = 1

(∀n ∈ N) tn+1 = tn − (n+ 1)2
.

Déterminez explicitement tn en fonction de n puis lim
n→+∞

tn.

■Exercice n◦2

Que peut-on dire de la suite (un)n≥0 définie par un =

{
n si n est pair

2n si n est impair
?

Et de la suite (vn)n≥0 définie par vn =

{
n si n est pair

−n si n est impair
?

■Exercice n◦3

1. Donnez un exemple de deux suites (un) et (vn) non bornées, dont le produit
(unvn) est borné.

2. Donnez un exemple d’une suite (θn) qui tend vers +∞ et telle que (sin(θn))
converge.
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■Exercice n◦4

VRAI ou FAUX ?

1. La somme de deux suites divergentes est divergente.

2. La somme d’une suite divergente et d’une suite convergente est divergente.

3. Une suite divergeant vers +∞ est croissante à partir d’un certain rang.

4. Une suite non majorée tend vers +∞.

5. Si pour tout n ∈ N, un > 0 et que (un) converge vers ℓ, alors ℓ > 0.

6. La suite (un)n≥0 définie par un =
√
n4 + 1− n2 est bornée.

7. Si unvn tend vers 0, alors (un) ou (vn) est bornée.

Rappels de cours : Théorèmes d’existence de limite.

1. Toute suite croissante (resp. décroissante) et majorée (resp. minorée) converge.

2. Théorème d’encadrement : on suppose qu’à partir d’un certain rang vn ≤ un ≤ wn

et que lim
n→+∞

vn = lim
n→+∞

wn = ℓ, alors lim
n→+∞

un = ℓ.

3. Toute suite croissante (resp. décroissante) et non majorée (resp. non minorée) tend
vers +∞ (resp. −∞).

Rappels de cours : Recherche de la valeur d’une limite éventuelle.
Soit (un) une suite définie par récurrence : u0 = a et pour tout n ∈ N, un+1 = f(un) où
f est une fonction continue. Si (un) converge, alors sa limite ℓ est l’une des solutions de
l’équation x = f(x).

■Exercice n◦5

On rappelle que si u est une fonction dérivable sur un intervalle I, alors f = eu est
dérivable sur I et pour tout réel x ∈ I, f ′(x) = u′(x)eu(x).

a) Étudiez les variations de la fonction f définie sur [0; +∞[ par f(x) = 2, 5 −
0, 9e−1,2x.

b) On définit la suite (un) par u0 = 0 et pour tout entier naturel n par un+1 =
f(un). Prouvez par récurrence que pour tout entier naturel n :

0 ≤ un ≤ un+1 ≤ 2, 5

c) En déduire que la suite (un) converge vers une valeur ℓ dont vous déterminerez
une valeur approchée à 0,01 près à l’aide de votre calculatrice.
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■Exercice n◦6

Considérons la suite u définie par u0 ∈ Df = [−3/2;+∞[ et pour tout entier
naturel n par un+1 =

√
2un + 3. On donne ci-dessous la courbe représentative de

f et la droite D d’équation y = x.

1. Résoudre sur Df l’équation f(x) = x. Quel est l’intérêt de ceci ?

2. Étudier graphiquement selon les différentes valeurs de u0 ∈ Df la limite
éventuelle de la suite u.

3. Méthode 1 :

(a) Étudier les variations de la fonction f .

(b) Justifier que les intervalles I1 = [−3/2; 3] et I2 =]3;+∞[ sont stables par
f . En déduire que la suite u est parfaitement définie et que si u0 ∈ I1
(resp. I2), alors pour tout entier naturel n : un ∈ I1 (resp. I2).

(c) Prouver que si u0 ∈ I1, alors pour tout entier naturel n : −3/2 ≤ un ≤
un+1 ≤ 3. En déduire que la suite u converge et préciser sa limite.

(d) Prouver que si u0 ∈ I2, alors pour tout entier naturel n : 3 ≤ un+1 ≤ un.
En déduire que la suite u converge et préciser sa limite.

4. Méthode 2 :

(a) Choisissons u0 > 3. Justifier que pour tout entier naturel n : un > 3.

(b) Prouver que pour tout entier naturel n : 0 ≤ un+1 − 3 ≤ 2un − 6√
2un + 3 + 3

.

En déduire que 0 ≤ un+1 − 3 ≤ 2

3
(un − 3)

(c) En déduire que pour tout entier naturel n : 0 ≤ un−3 ≤
(
2

3

)n

(u0−3).

Quelle est la limite de la suite u ?

(d) Adapter la preuve au cas où u0 ∈ [0; 3].
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■Exercice n◦7

1. Résoudre l’inéquation
√
1 + x ≥ 1 +

x

3
d’inconnue x ∈ [−1;+∞[.

2. En déduire que pour tout n ∈ N∗ :

√
1 +

1

n
≥ 1 +

1

3(n+ 1)
.

3. En déduire un réel λ > 0 pour lequel pour tout n ∈ N∗ :
1√
n
− 1√

n+ 1
≥ λ

(n+ 1)
√
n+ 1

.

4. En déduire que la suite

(
n∑

k=1

1

k
√
k

)
n≥1

converge. On ne demande pas la

valeur de sa limite.

Rappels de cours : Théorèmes de comparaison.

1. On suppose qu’à partir d’un certain rang un ≤ vn, que (un) converge vers ℓ et que
(vn) converge vers ℓ′. Alors ℓ ≤ ℓ′.

2. On suppose qu’à partir d’un certain rang un ≥ vn et que lim
n→+∞

vn = +∞, alors

lim
n→+∞

un = +∞.

3. On suppose qu’à partir d’un certain rang un ≤ vn et que lim
n→+∞

vn = −∞, alors

lim
n→+∞

un = −∞.

Application : après avoir prouvé que pour tout réel x ≥ 0 et tout entier naturel n que
(1 + x)n ≥ 1 + nx, en déduire que lim

n→+∞
qn = +∞ si q > 1.

■Exercice n◦8

On appelle suite de Sylvester la suite (sn) définie par s0 = 2 et pour tout entier
naturel n par sn+1 = 1 + s0 × s1 × · · · × sn.

a) Prouvez que ∀n ∈ N, sn+1 = s2n − sn + 1.

b) Prouvez que ∀n ∈ N, sn est un entier et sn ≥ n + 2. Quelle est la limite de
(sn) ?

c) Simplifiez la différence
1

sn − 1
− 1

sn+1 − 1

d) En déduire la limite de la suite (Sn) de terme général Sn =
n∑

k=0

1

sk
(pensez

aux simplifications télescopiques).
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Rappels de cours : Opérations algébriques sur les limites.
Dans tout ce qui suit, (un) et (vn) désignent des suites à termes réels, ℓ et ℓ′ sont deux
nombres réels.

Somme et limites

lim
n→+∞

un ℓ ℓ ou +∞ ℓ ou −∞ +∞
lim

n→+∞
vn ℓ′ +∞ −∞ −∞

lim
n→+∞

(un + vn) ℓ+ ℓ′ +∞ −∞ ??

Explicitons le cas de la forme indéterminée +∞−∞ :

• On peut obtenir n’importe quel réel ℓ en posant un = n+ℓ et vn = −n : lim
n→+∞

un =

+∞, lim
n→+∞

vn = −∞, mais lim
n→+∞

(un + vn) = ℓ.

• On peut obtenir ±∞ en posant un = 2n et vn = −n : lim
n→+∞

un = +∞, lim
n→+∞

vn =

−∞, mais lim
n→+∞

(un + vn) = +∞.

• On peut ne pas obtenir de limite en posant un = n+(−1)n et vn = −n : lim
n→+∞

un =

+∞, lim
n→+∞

vn = −∞, mais (un + vn) = ((−1)n) n’a pas de limite.

Produit et limites

lim
n→+∞

un ℓ ̸= 0 ℓ ̸= 0 ∞
lim

n→+∞
vn ℓ′ ∞ 0

lim
n→+∞

unvn ℓℓ′ ∞ ??

Explicitons le cas de la forme indéterminée ∞× 0 :

• On peut obtenir n’importe quel réel ℓ en posant un =
ℓ

n
et vn = n : lim

n→+∞
un = 0,

lim
n→+∞

vn = +∞, mais lim
n→+∞

unvn = ℓ.

• On peut obtenir ±∞ en posant un =
1

n
et vn = n2 : lim

n→+∞
un = 0, lim

n→+∞
vn = +∞,

mais lim
n→+∞

unvn = +∞.

• On peut ne pas obtenir de limite en posant un =
(−1)n

n
et vn = n : lim

n→+∞
un = 0,

lim
n→+∞

vn = +∞, mais (unvn) = ((−1)n) n’a pas de limite.

Remarquons que le produit d’une constante réelle k par le terme général un d’une suite
ne pose aucun problème : si lim

n→+∞
un = ℓ, alors lim

n→+∞
kun = kℓ.

Si k ̸= 0 et si la limite de u est infinie, il s’agit d’appliquer la règle des signes. Et si k = 0
??? Nous n’osons pas insulter l’intelligence du lecteur avec ce cas !
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Inverse et limites

un > 0 apcr un < 0 apcr sinon
lim

n→+∞
un ℓ ̸= 0 ±∞ 0 0 0

lim
n→+∞

1

un

1

ℓ
0 +∞ −∞ ??

Conjuguant les tableaux des produit et inverse, on obtient celui des quotients :

Quotient et limites

lim
n→+∞

un ℓ ℓ ̸= 0 ∞ ℓ ou ∞ 0 ∞
lim

n→+∞
vn ℓ′ ̸= 0 ∞ ℓ′ ̸= 0 0 avec vn de signe constant 0 ∞

lim
n→+∞

un

vn

ℓ

ℓ′
0 ∞ ∞ ?? ??

Retenons donc les quatre formes indéterminées au programme du secondaire :

+∞−∞ 0×∞ 0

0

∞
∞

Signalons enfin un résultat très utile de composition que nous utilisons fréquemment dans
le cadre des fonctions continues.

Théorème : Soit u une suite réelle à valeurs dans un intervalle I et soit f une fonction
définie sur I. Si lim

n→+∞
un = ℓ et si lim

x→ℓ
f(x) = L, alors lim

n→+∞
f(un) = L.

Point technique : Soit un =
P (n)

Q(n)
, où P et Q sont des polynômes de degrés respectifs

p et q : P (x) = apx
p+ ap−1x

p−1+ . . . a0 et Q(x) = bqx
q + bq−1x

q−1+ · · ·+ b0. Alors : (un)

et (vn) définie par vn =
ap
bq
np−q ont la même limite. On peut même préciser :

lim
n→+∞

un =


±∞ si p > q

0 si p < q
ap
bq

si p=q
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■Exercice n◦9

Déterminer les limites, si elles existent, des suites de terme général :

1. un =
−3n2 + 6n+ 1

10n+ 3

2. un =
8n2 + 1

n3 + 2n2 + 3

3. un =
−6n2 + 3n− 1

2n2 + 9n− 2

4. un =
5 cosn

n

5. un =
5n2 + 6 sinn

7n2 + 6n− 1

6. un =
4n+ (−1)n

5n+ 1

7. un = 1 + 1, 1 + 1, 12 + 1, 13 + · · ·+ 1, 1n

8. un = 1 + 0, 25 + 0, 252 + 0, 253 + · · ·+ 0, 25n

■Exercice n◦10

On admet les résultats de croissance comparée suivants :

lim
n→+∞

lnn

nk
= 0 (k ≥ 1) et lim

n→+∞

en

nk
= +∞ (k ≥ 0) .

Déterminez les limites, si elles existent, des suites de terme général :

1. a) un = 3n2 − 10n+ 1 b) un =
2n2 − 3n+ 5

n3 + 5n2 + 1
c) un =

3− lnn√
n

d) un = (−2)n e) un =
6n2 − 1

3n+ 2
f) un =

5 + 3 sinn

n
g) un =

(
2

3

)n

.

2. a) un = n10e−n b) un =
√
n+ 1−

√
n c) un =

n∑
k=1

k

n2
d) un =

en

n2

3. a) un =

{
0 si n est pair

0, 5n si n est impair
b) un =

{
n si n est pair

2n si n est impair

4. a) un =
−2

n3

n∑
k=1

k2 b) un =
1

n2
(1× 2 + 2× 3 + · · ·+ n× (n+ 1))
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■Exercice n◦11

On se propose de prouver que les suites de terme général un = sinn et vn = cosn
n’ont pas de limite. Par l’absurde, supposons que (un) converge vers un certain
réel ℓ.

1. Exprimer sin(n+1) en fonction de sinn et de cosn puis en déduire en faisant
tendre n vers +∞ que la suite de terme général vn converge vers une limite
que l’on précisera.

2. En utilisant la relation : ∀x ∈ R, cos2 x+ sin2 x = 1, justifier que ℓ ̸= 0.

3. Exprimer sin(2n) en fonction de sinn et de cosn, puis aboutir à une contra-
diction.

■Exercice n◦12

Soit a ∈ R et b ∈ R∗. On suppose que le trinôme X2−aX− b possède deux racines
réelles et distinctes r et r′. On note E l’ensemble des suites (un)n∈N pour lesquelles
pour tout n ∈ N : un+2 = aun+1 + bun.

1. Soit x ∈ R∗. A quelle condition nécessaire et suffisante la suite (xn)n∈N est-elle
élément de E

2. Trouver quatre réels r, r′, λ, λ′ pour lesquels pour tout n ∈ N :
Fn = λrn + λ′r′n.

3. En déduire lim
n→+∞

Fn.

■Exercice n◦13

On dit que deux suites (un)n∈N et (vn)n∈N sont adjacentes si l’une des suites est
croissante, l’autre décroissante et si lim

n→+∞
(un − vn) = 0.

On supposera ici que u est croissante et v décroissante.

1. Justifier que la suite u− v est croissante.

2. Prouver par l’absurde que pour tout entier naturel n : un ≤ vn.

3. Prouver que la suite u est majorée. En déduire qu’elle converge vers une
limite que l’on notera ℓu. Justifier de même que la suite v converge vers une
limite que l’on notera ℓv.

4. Prouver enfin que ℓu = ℓv.
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■Exercice n◦14

Soit u la suite définie par u0 = 0 et pour tout entier naturel n par un+1 = e−un .
On donne ci-dessous la courbe représentative de f et la droite D d’équation y = x.

1. Représenter les 5 premiers termes de la suite u sur l’axe des abscisses. Semble-
t-elle monotone (croissante ou décroissante) ?

2. Étudier les variations de la fonction f définie sur [0; +∞[ par f(x) = e−x.

3. Justifier brièvement que la suite u est bien définie et que tous ses termes un

appartiennent à [0; 1].

4. Prouver que l’équation f(x) = x a une unique solution α dans R+ et donner
un encadrement de α à 10−2 près. Quel sens peut-on donner à α ?

5. Prouver que les suites (u2n)n∈N et (u2n+1)n∈N sont respectivement croissante
et majorée par α puis décroissante et minorée par α. En déduire qu’elles sont
convergentes.

6. Il semble délicat de démontrer que lim
n→+∞

u2n+1 − u2n = 0, ce qui prouverait

que les suites (u2n)n∈N et (u2n+1)n∈N sont adjacentes et donc convergentes
de même limite. Ainsi, la suite u convergerait vers cette limite commune ℓ.
Pouvez-vous donner la valeur de ℓ ?

7. On note h = f ◦ f : R+ → [0; 1].

(a) Prouver que tout point fixe de f i.e toute valeur x0 ∈ Df telle que
f(x0) = x0, est aussi un point fixe de h.

(b) Justifier que l’équation h(x) = x a une unique solution β ∈ R+. Com-
parer β à α.

(c) En remarquant que u2n = h(u2n−2) et que u2n+1 = h(u2n−1), justifier
que la suite u converge vers α.
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■Exercice n◦15

D’après concours général 2021.
Dans tout cet exercice, on considère l’ensemble S des suites (un)n≥0 à valeurs réelles
et telles que

un+1 =
exp(un)

n+ 1

pour tout entier naturel n ≥ 0.
Pour tout nombre réel x, on note u(x) la suite appartenant à S et dont le premier
terme vaut x. On note également un(x) le terme d’indice n de cette suite. Ainsi,
u0(x) = x et u1(x) = exp(x).

Partie A

1. Démontrer que toute suite appartenant à S est strictement positive à partir
du rang 1.

2. Soit (un)n≥0 une suite appartenant à S. Démontrer que s’il existe un rang
N ≥ 2 pour lequel uN ≤ 1, alors la suite (un)n≥0 converge vers 0.

3. Soit (un)n≥0 une suite appartenant à S. Démontrer que si cette suite ne
converge pas vers 0, alors elle diverge vers +∞.

Partie B

Dans la suite, on note E0 l’ensemble des réels x pour lesquels la suite u(x) converge
vers 0, et E∞ l’ensemble des réels x pour lesquels u(x) diverge vers +∞

1. Démontrer que 0 ∈ E0.

2. a) Démontrer que pour tout entier naturel n, la fonction x 7→ un(x) est
strictement croissante sur R.

b) En déduire que si x ∈ E0, alors l’intervalle ]−∞;x] est inclus dans E0.

3. a) Démontrer que la fonction x 7→ ex − x(x + 1) est strictement positive
sur l’intervalle [2; +∞[.

b) Soit (un)n≥0 une suite appartenant à S. Démontrer que s’il existe un
rang N ≥ 1 tel que uN ≥ N + 1, alors (un)n≥0 diverge vers +∞.

c) Démontrer que 1 ∈ E∞.

4. Démontrer que si x ∈ E∞, alors l’intervalle [x; +∞[ est inclus dans E∞.

Partie C

Nous allons maintenant prouver qu’il existe un réel δ tel que l’intervalle ]−∞; δ[ est
inclus dans E0 et l’intervalle [δ; +∞[ est inclus dans E∞.

1. On définit deux suites (an)n≥0 et (bn)n≥0 de la façon suivante.
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On pose a0 = 1, b0 = 1 et pour tout entier naturel n, on pose :

an+1 =
an + bn

2
et bn+1 = bn si

an + bn
2

∈ E0 et

an+1 = an et bn+1 =
an + bn

2
sinon.

a) Démontrer que les suites (an)n≥0 et (bn)n≥0 sont convergentes et ont même
limite.

b) Appelons δ la limite commune aux suites (an)n≥0 et (bn)n≥0. Démontrer que
]−∞; δ[ est inclus dans E0 et l’intervalle ]δ; +∞[ est inclus dans E∞.

Il ne nous reste donc plus qu’à prouver que δ ∈ E∞.

2. On pose c2 = ln(ln(2)), c3 = ln(ln(2 ln(3))), et plus généralement, pour tout entier
ℓ ≥ 2 : cℓ = ln(ln(2 ln(3 ln(. . . ln((ℓ− 1) ln(ℓ)) . . . )))).
Démontrer que pour tout entier ℓ ≥ 2, cℓ ∈ E0.

3. Démontrer que la suite (cℓ)ℓ≥2 converge.

4. Démontrer enfin que δ ∈ E∞.

13


