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Le présent document est entièrement dédié à la notion de dimension d’un espace vecto-
riel. Il ne se base sur aucun programme scolaire en particulier, mais à de rares exceptions
près, l’essentiel du propos est de niveau L1. Il ne s’agit donc en aucun cas d’un cours.
Après de brefs rappels sur la définition d’un espace vectoriel, ses sous-structures et ses mor-
phismes, mais avec une vision élargie, nous entrons dans le vif du sujet. Nous ne nous conten-
terons pas de la dimension finie, même si cette dernière sera largement mise en avant. Nous
proposons également des applications en algèbre et en analyse qui peuvent intéresser les can-
didat(e)s aux agrégations de mathématiques. Un prochain papier sera intégralement consacré
à ces applications.
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1 Notion de K-espace vectoriel et morphismes associés

1.1 K-espace vectoriel, sous-espaces vectoriels et applications linéaires

Soit (K, +,×) un corps commutatif et E un ensemble non vide muni d’une loi interne + et
une loi externe . : K× E → E, (λ, x) 7→ λ.x

Nous noterons λµ plutôt que λ× µ la multiplication de deux éléments de K.

Définition 1-1-1 : On dit que E est un K-espace vectoriel si pour tout (x, y) ∈ E2 et
pour tout (λ, µ) ∈ K2 :

1. (E, +) est un groupe commutatif.
2. (a) λ.(x+y) = λ.x + λ.y

(b) (λ + µ).x = λ.x + µ.x
(c) (λµ).x = λ.(µ.x)
(d) 1K.x = x

Définition 1-1-2 : Soit E un K-espace vectoriel. Ses éléments sont appelés vecteurs et les
éléments de K sont appelés scalaires.

Exemples :
1. K est un K-espace vectoriel.
2. Soient E un K-espace vectoriel et I un ensemble quelconque. Alors l’ensemble EI des

familles (xi)i∈I indexées par I est un K-espace vectoriel pour les lois :
— (xi)i∈I + (yi)i∈I = (xi + yi)i∈I

— λ.(xi)i∈I = (λxi)i∈I

3. En particulier, pour tout n ∈ N∗, Kn est un K-espace vectoriel.
4. L’ensemble KN des suites de scalaires est un K-espace vectoriel.
5. L’ensemble K(N) des suites de scalaires nulles à partir d’un certain rang est un K-espace

vectoriel.
6. Pour tout n ∈ N∗, Cn est un C-espace vectoriel, mais aussi un R-espace vectoriel et un

Q-espace vectoriel.
7. K[X] est un K-espace vectoriel pour les lois évidentes.
8. F([0; 1],R) est un R-espace vectoriel.

Propriété 1-1-3 (règles de calcul) : Soit E un K-espace vectoriel, x, y ∈ E et λ, µ ∈ K.
1. (a) 0K.x = 0E et (b) λ.0E = 0E

2. (−1K).x = −x

3. (λ− µ).x = λ.x− µ.x

4. λ.x = 0E ⇐⇒ (λ = 0K) ∨ (x = 0E)
5. (λ.x = λ.y) ∧ (λ ̸= 0) =⇒ x = y

6. (λ.x = µ.x) ∧ (x ̸= 0E) =⇒ λ = µ
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Démonstration : nous nous contenterons de démontrer les points 1 à 4, mais de deux
manières différentes.

1. (a) Méthode 1 : Soit x ∈ E. 0K.x = (0K + 0K).x = 0K.x + 0K.x en vertu de l’axiome
2)(b). Après simplification dans le groupe E : 0K.x = 0E

Méthode 2 : Fixons x dans E. En vertu de l’axiome 2)(b), ϕx :
{
K→ E

x 7→ λ.x
est un

morphisme de groupes de (K, +) dans (E, +), donc ϕx(0K) = 0E i.e 0K.x = 0E

(b) Méthode 1 : Soit λ ∈ K. λ.0E = λ.(0E + 0E) = λ.0E + λ.0E en vertu de l’axiome
2)(a). Après simplification dans le groupe E : λ.0E = 0E

Méthode 2 : Fixons λ dans K. En vertu de l’axiome 2)(a), ϕλ :
{

E → E

x 7→ λ.x
est un

morphisme de groupes de (E, +) dans (E, +). Donc ϕλ(0E) = 0E i.e λ.0E = 0E

2. Soit x ∈ E. ϕx étant un morphisme de groupes additifs, on a ϕx(−1K) = −ϕx(1K), soit
(−1K).x = −x

3. (λ− µ).x = λ.x + (−µ).x = λ.x + ((−1K)(µ)).x = λ.x + (−1K).(µ.x) = λ.x− µ.x

4. Supposons λ.x = 0E . Si λ ̸= 0K, alors λ−1.(λ.x) = (λ−1λ).x = 1K.x = x Or par 1)
λ−1.0E = 0E , d’où x = 0E

Remarque : L’axiome (E, +) groupe commutatif est inutile en caractéristique ̸= 2. Le
fait que le groupe (E, +) soit commutatif peut se déduire directement des axiomes 2 :
En effet, soit (x, y) ∈ E2. Alors :

— D’une part, (1K + 1K).(x + y) = 1K.(x + y) + 1K.(x + y) = x + y + x + y
— D’autre part, (1K + 1K).(x + y) = (1K + 1K).x + (1K + 1K).y = x + x + y + y

D’où en simplifiant par x à gauche et par y à droite : y + x = x + y. Donc (E, +) commutatif.

Définition 1-1-4 : Une partie F de E est un sous-espace vectoriel de E si F est stable
pour les deux lois interne et externe, et est un espace vectoriel pour les lois induites. En
abrégé, on écrira sev.

Propriété 1-1-5 (caractérisation d’un sev) : Une partie F de E est un sous-espace
vectoriel de E si :

1. 0E ∈ F

2. ∀(x, y) ∈ F 2, ∀λ ∈ K, λ.x + y ∈ F

Nous prouvons très souvent qu’un ensemble F est un espace vectoriel en justifiant que c’est
un sous-espace vectoriel d’un espace vectoriel bien connu.

Définition 1-1-6 (morphismes d’ev) : Soient E et F deux K-espaces vectoriels. Une
application u : E → F est dite linéaire si :

1. ∀(x, y) ∈ E2 u(x + y) = u(x) + u(y)
2. ∀(λ, x) ∈ K× E u(λ.x) = λ.u(x)

On note L(E, F ) ou L(E, F ) l’ensemble des applications linéaires de E dans F ; si E = F , on
parle d’endomorphisme. Si u est bijective, d’isomorphisme et d’automorphisme pour
un endomorphisme bijectif.

On note L(E) ou L(E) l’ensemble des endomorphismes d’un espace vectoriel E et GL(E) ou
GL(E) celui de ses automorphismes.
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Définition et propriété 1-1-7 (image et noyau) : Soient E et F deux K-espaces vec-
toriels et u ∈ L(E, F ).

1. im(u) = u(E) est un sous-espace vectoriel de F , appelé image de E par u.
2. Ker(u) = u−1(0F ) est un sous-espace vectoriel de E, appelé noyau de u.

Propriété 1-1-8 : Soient E et F deux K-espaces vectoriels et u ∈ L(E, F ).
1. u est surjectif si et seulement si im(u) = F

2. u est injectif si et seulement si Ker(u) = {0E}

Démonstration :
1. u est surjectif si et seulement si u(E) = F si et seulement si im(u) = F

2. Supposons u injectif. On a bien évidemment {0E} ⊂ Ker(u).. Soit x ∈ Ker(u). Alors
u(x) = 0E = u(0E), donc par injectivité de u, x = 0E et le résultat annoncé.
Réciproquement, supposons que Ker(u) = {0E}. Soient x, y ∈ E tels que u(x) = u(y).
Par linéarité de u : u(x− y) = 0F , donc x− y ∈ Ker(u), d’où x = y. Donc u injective.

1.2 Une autre définition de la notion d’espace vectoriel

Nous allons réécrire la loi externe dans la définition d’un espace vectoriel par analogie avec
la notion de groupes opérant sur un ensemble (cf annexe). Nous noterons EE l’ensemble des
applications de E dans E et 1 pour 1K.

Soit (E, +, .) un K-espace vectoriel.

Définissons ϕ :
{
K→ EE

λ 7→ ϕλ

où ϕλ :
{

E → E

x 7→ λ.x

1. L’axiome 2)(d) nous dit que ϕ1 = idE i.e ϕ(1) = idE .
2. L’axiome 2)(a) nous dit que pour tout λ ∈ K, ϕλ est un endomorphisme du groupe

additif (E, +)
3. L’axiome 2)(b) nous dit que pour tous λ, µ ∈ K : ϕλ+µ = ϕλ + ϕµ

4. L’axiome 2)(c) nous dit que pour tous λ, µ ∈ K : ϕλµ = ϕλ ◦ ϕµ

Notons End(E) l’ensemble des endomorphismes du groupe (E, +). Alors (End(E), +, ◦) est
un anneau pour les lois évidentes :{

(f + g)(x) = f(x) + g(x)
(f ◦ g)(x) = f(g(x))

Comme usuellement, tous les anneaux sont supposés unitaires et ici l’unité de End(E) est
idE .

Les remarques précédentes nous assurent que ϕ :
{

(K, +,×)→ (End(E), +, ◦)
λ 7→ ϕλ

est un mor-

phisme d’anneaux.

Et la réciproque est VRAIE :

Donnons-nous un corps commutatif (K, +,×), un groupe commutatif (E, +) et un morphisme
d’anneaux (unitaires) ϕ du corps (K, +,×) dans l’anneau (End(E), +, ◦).
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Posons pour tout (λ, x) ∈ K× E λ.x = ϕ(λ)(x) ∈ E.

1. Fixons λ ∈ K. Alors ϕ(λ) ∈ End(E). D’où pour tout (x, y) ∈ E2 : ϕ(λ)(x + y) =
ϕ(λ)(x) + ϕ(λ)(y) i.e λ.(x + y) = λ.x + λ.y D’où 2) (a)

2. Fixons λ, µ ∈ K. Comme ϕ est un morphisme d’anneaux du corps (K, +,×) dans
l’anneau (End(E), +, ◦), ∀x ∈ E, ϕ(λ + µ)(x) = ϕ(λ)(x) + ϕ(µ)(x) i.e (λ + µ).x =
λ.x + µ.x D’où 2) (b)

3. Fixons λ, µ ∈ K. Comme ϕ est un morphisme d’anneaux du corps (K, +,×) dans
l’anneau (End(E), +, ◦), ∀x ∈ E, ϕ(λµ)(x) = (ϕ(λ) ◦ ϕ(µ))(x) i.e (λµ).x = λ.(µ.x)
D’où 2) (c)

4. Comme ϕ est un morphisme d’anneaux du corps (K, +,×) dans l’anneau (End(E), +, ◦),
∀x ∈ E, ϕ(1K)(x) = idE(x) i.e 1K.x = x D’où 2) (d)

D’où la :

Propriété 1-2-1 : Définir un K-espace vectoriel E, c’est aussi se donner :
— un corps commutatif (K, +,×) ;
— un groupe commutatif (E, +) ;
— un morphisme d’anneaux du corps (K, +,×) dans l’anneau (End(E), +, ◦).

Comme (K, +,×) est un corps, nous savons que (K∗,×) est un groupe.
Les axiomes 2) (c) et 2) (d) peuvent se réinterpréter en terme d’actions de groupes : la
restriction ϕ̃ de ϕ à K∗ définit une action du groupe (K∗,×) sur l’ensemble E.

ϕ̃ est donc à valeurs dans le groupe symétrique (S(E), ◦) mais aussi dans End(E) comme vu
auparavant ; bref (∀λ ∈ K∗) ϕ̃(λ) ∈ (Aut(E), ◦).
Donc ϕ̃ induit une action de (K∗,×) sur E par automorphismes de groupes i.e une action de
(K∗,×) sur (Aut(E), ◦).

Nous noterons désormais λx à la place de λ.x, ce qui n’amène aucune confusion.

Exemple 1-2-2 : R n’est pas un sev de C. Plus généralement, si K ⊂ L sont deux corps
commutatifs, alors L est un K-ev, mais l’inverse est impossible.

Démonstration : Clairement C est un R-ev. La réciproque est fausse. Supposons en effet
par l’absurde qu’il existe un morphisme d’anneaux ϕ de (C, +,×) dans (End(R), +, ◦).
Or (exercice) End(R) = {fa : R→ R, x 7→ ax, a ∈ R}.
Mais alors, comme ϕ(1) = idR, on a : ϕ(−1) = ϕ(i2) = ϕ(i) ◦ ϕ(i) d’une part et ϕ(−1) =
−ϕ(1) = −idR d’autre part.
Si l’on note a l’unique réel tel que ϕ(i) = aidR, on a : a2idR = −idR, d’où a2 = −1. Absurde !

Applications :
1. Soit E un R-ev de dimension n ≥ 1. On note K(E) = {f : E → E constantes}. Alors

on peut munir K(E) d’une structure de R-ev. En donner la dimension.
2. Soit (G, +) un groupe abélien.

(a) G peut être muni au plus d’une structure de Q-ev.
(b) G peut être muni d’une structure de Q-ev ssi (i) G est sans torsion : (∀n ∈ N∗)(∀x ∈

G \ {0}) nx ̸= 0 et (ii) G est divisible : (∀n ∈ N∗)(∀x ∈ G)(∃y ∈ G) x = ny.
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1.3 Parties/Familles génératrices, Parties/familles libres, Bases

A. Parties/Familles génératrices

Propriété - Définition 1-3-1 (Combinaison linéaire - sev engendré) : Soit I un
ensemble quelconque.

1. Soit une famille (xi)i∈I ∈ EI . On appelle combinaison linéaire des vecteurs (xi)i∈I

tout vecteur x =
∑
i∈J

λixi, où J est une partie finie de I.

Ainsi, toute combinaison linéaire de vecteurs de E sera toujours une somme finie de vecteurs.
Nous pouvons écrire x =

∑
i∈I

λixi, où (λi)i∈I est une famille presque nulle d’éléments

de K i.e tous les λi sont nuls sauf un nombre fini d’entre eux.
2. L’intersection d’un nombre quelconque de sev de E est un sev de E.

En particulier
⋂

A⊂F | F sev de E

F est un sev de E. C’est le plus petit sev de E contenant

la partie A. On le note Vect(A) ou < A >.
3. Vect(A) est l’ensemble des combinaisons linéaires d’éléments de A. On l’appelle espace

vectoriel engendré par la partie A.
En particulier, si A = {xi | i ∈ I}, Vect(xi)i∈I est aussi l’ensemble des combinai-
sons linéaires des vecteurs xi quand i parcourt I.

Définition 1-3-2 : On dit que la partie X est génératrice de E ou engendre E si tout
élément de E est combinaison linéaire de vecteurs de X i.e Vect(X) = E.
Si X = {xi ; i ∈ I}, on dit aussi que la famille (xi)i∈I est génératrice de E.

Remarque : Dans le cas où I = J1; nK, (x1, . . . , xn) est une famille génératrice de E si pour

tout vecteur x ∈ E, il existe (λ1, . . . , λn) ∈ Kn tel que x =
n∑

i=1
λixi.

Autrement dit, l’application (linéaire)
{
Kn → E

(λ1, . . . , λn) 7→
∑n

i=1 λixi

est surjective.

Propriété 1-3-3 (propriété des Vect) : Soient E un K-espace vectoriel, X, Y deux
parties de E et x, a, b ∈ E.

1. inclusion : Si X ⊂ Y , alors Vect(X) ⊂ Vect(Y )
2. ôter un vecteur : Si x ∈ X est combinaison linéaire d’éléments de X \ {x}, alors

Vect(X) = Vect(X \ {x})
3. remplacer un vecteur (lemme d’échange) : Si b est combinaison linéaire d’élé-

ments de X∪{a} avec un coefficient non nul sur a, alors Vect(X∪{a}) = Vect(X∪{b})

Démonstration :
1. X ⊂ Y ⊂ Vect(Y ). Comme Vect(X) est le plus petit sev de E contenant X et que le

sev Vect(Y ) contient X, on a par minimalité Vect(X) ⊂ Vect(Y ).
2. X \{x} ⊂ X, donc par ce qui précède Vect(X \{x}) ⊂ Vect(X). Par hypothèse, x ∈ X

est combinaison linéaire d’éléments de X \ {x}, donc X ⊂ Vect(X \ {x}).
Toujours par 1. Vect(X) ⊂ Vect(X \ {x}). D’où l’égalité annoncée.
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3. Posons B = (xi)i∈I . On a Vect(X ∪ {b}) ⊂ Vect(X ∪ {a}). Par hypothèse b = µ.a +∑
i∈J

λixi, où J ⊂ I est finie et µ ̸= 0. D’où a = −1
µ

(
−b +

∑
i∈J

λixi

)
∈ Vect(X ∪ {b}).

Ainsi Vect(X ∪ {a}) ⊂ Vect(X ∪ {b}) et l’égalité annoncée.

B. Parties/Familles libres

Définition 1-3-4 : Soit I un ensemble quelconque.
1. Une famille (xi)i∈I ∈ EI est dite libre si pour toute sous-famille finie (xi)i∈J (J finie) :∑

i∈J

λixi = 0E =⇒ (∀i ∈ J) λi = 0.

2. La famille (xi)i∈I est dite liée si elle n’est pas libre i.e s’il existe (au moins) un vecteur
xi0 ∈ E qui s’écrive comme combinaison linéaire des autres xi.

Remarque : Dans le cas où I = J1; nK, une famille (x1, . . . , xn) de E est libre si pour tout

(λ1, . . . , λn) ∈ Kn tel que
n∑

i=1
λixi = 0E , on a λ1 = · · · = λn = 0.

Autrement dit, l’application (linéaire)
{
Kn → E

(λ1, . . . , λn) 7→
∑n

i=1 λixi

est injective.

Propriété 1-3-5 (propriété des parties libres / liées) : Soient E un K-espace vectoriel,
X, Y deux parties de E et y ∈ E.

1. inclusion : Si Y est libre et X ⊂ Y , alors X est libre. (par contraposée, si X est liée
et X ⊂ Y , alors Y est liée).

2. ajouter un vecteur : Si X est libre et y /∈ Vect(X), alors X ∪ {y} est libre.

Démonstration :
1. Trivial !
2. Sans perte de généralité, on peut supposer X de cardinal fini (relire la définition de

famille libre). Posons X = {x1, . . . , xn}.

Soit (λ1, . . . , λn, µ) ∈ Kn+1 tel que
n∑

i=1
λixi + µy = 0E .

Si µ ̸= 0, alors y = − 1
µ

n∑
i=1

λixi ∈ Vect(X). Contradiction ! Donc µ = 0, et partant,
n∑

i=1
λixi = 0E . Or X est une famille libre, donc λ1 = · · · = λn = 0. Donc X ∪ {y} est

libre.

C. Bases

Définition 1-3-6 : Soit E un K-espace vectoriel. Une famille B = (xi)i∈I est une base de
E si B est une famille libre et génératrice.

Remarque : Une base B est donc une famille qui permet d’écrire n’importe quel vecteur de
E de manière unique, comme combinaison linéaire de vecteurs de B.

7



Propriété 1-3-7 : Soit E un K-espace vectoriel et B = (xi)i∈I ∈ EI . Alors :
B = (xi)i∈I est une base de E ssi (∀x ∈ E) (∃!(λi)i∈I presque nulle) tel que x =

∑
i∈I

λixi.

Les scalaires (λi)i∈I s’appellent les coordonnées du vecteur x dans la base B.

Remarque : Dans le cas où I = J1; nK, une famille (x1, . . . , xn) de E est une base de E si

pour tout vecteur x ∈ E, il existe un unique n-uplet (λ1, . . . , λn) ∈ Kn tel que x =
n∑

i=1
λixi.

Autrement dit, l’application (linéaire)
{
Kn → E

(λ1, . . . , λn) 7→
∑n

i=1 λixi

est bijective.

1.4 Première caractérisation d’une base

Propriété 1-4-1 : Soit B une partie non vide du K-espace vectoriel E. Les propositions
suivantes sont équivalentes :

1. B est une base de E,
2. B est une partie génératrice de E minimale pour l’inclusion,
3. B est une partie libre maximale de E pour l’inclusion.

Démonstration : Procédons en prouvant que (1) ⇐⇒ (2) et que (1) ⇐⇒ (3).

(1) =⇒ (2) : Soit B une base de E. Alors B est une partie génératrice de E. Prouvons qu’elle
est minimale au sens de l’inclusion. Supposons par l’absurde qu’il existe B′ ⊊ B tel que B′

soit encore une partie génératrice de E. Soit alors x ∈ B \ B′ : x est combinaison linéaire
d’éléments de B′. Mais alors B′ ∪ {x} est liée, donc B ⊋ B′ ∪ {x} aussi. Contradiction.

(2) =⇒ (1) : Soit B une partie génératrice de E minimale au sens de l’inclusion. Prouvons
que B est une partie libre. Supposons par l’absurde que ce ne soit pas le cas. Il existe alors
une combinaison linéaire non triviale d’éléments de B telle que

∑
b∈B

λbb = 0E .

Soit b0 ∈ B tel que λb0 ̸= 0 : b0 = − 1
λb0

∑
b∈B\{b0}

λbb ∈< B \ {b0} >. D’après la propriété 1-3-3,

B \ {b0} engendre E, ce qui contredit la minimalité de B comme partie génératrice de E.

(1) =⇒ (3) : Soit B une base de E. Alors B est une partie libre de E. Prouvons qu’elle est
maximale au sens de l’inclusion. Supposons par l’absurde qu’il existe B′ ⊋ B tel que B′ soit
encore une partie libre de E. Soit alors x ∈ B′ \B : B∪{x} ⊂ B′ est encore une partie libre de
E. Or B, en tant que base est aussi génératrice de E. Donc il existe une combinaison linéaire
d’éléments de B telle que x =

∑
b∈B

λbb. D’où B ∪ {x} est liée et donc par la propriété 1-3-5, B′

est liée. Contradiction.

(3) =⇒ (1) : Soit B une partie libre maximale de E. Supposons par l’absurde que B ne soit
pas génératrice. Il existe alors x ∈ E \ B tel que x ne soit pas combinaison linéaire d’éléments
de B. Par la propriété 1-3-5, B ∪ {x} est libre. Contredit B partie libre maximale de E.
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1.5 Applications linéaires et bases

Théorème 1-5-1 (Construction d’applications linéaires à l’aide de bases) : Soit
(ei)i∈I une base de E. Pour toute famille (bi)i∈I de vecteurs de F , il existe une unique appli-
cation linéaire u : E → F telle que : (∀i ∈ I) u(ei) = bi.

Démonstration :
— Existence : on pose pour toute sous-famille finie de scalaires (λi)i∈J où J ⊂ I :

u

(∑
i∈J

λiei

)
=
∑
i∈J

λibi.

— Unicité : S’il existe deux applications linéaires u et v telles que pour tout i ∈ I u(ei) =
v(ei) = bi, alors par linéarité de u et v et du fait que (ei)i∈I est une base de E :
(∀x ∈ E) u(x) = v(x).

Théorème 1-5-2 (Critère d’isomorphisme) : Soit E un espace vectoriel muni d’une
base et u : E → F une application linéaire. Les propositions suivantes sont équivalentes :

1. u est un isomorphisme de E sur F .
2. L’image par u de toute base de E est une base de F .
3. L’image par u d’UNE base de E est une base de F .

Démonstration : en exercice.

1.6 De l’influence du corps K

Nous ne nous étendrons pas sur le sujet dans ce document, mais rappelons simplement que
la notion de K-ev est une structure rigide, dédiée au calcul pour traduire des situations
géométriques. Seulement, si R en tant que corps de base semble naturel, il n’est pas le seul !
Ainsi il y a aussi les corps finis tels les Z/pZ (p premier).

Anticipons un peu sur la suite : considérons par exemple K = C. Alors :
1. C est un C-ev de dimension 1 ; (1) en est une base.
2. C est un R-ev de dimension 2 ; (1, i) en est une base.
3. C est un Q-ev de dimension infinie.

Plus généralement, soient K ⊂ L deux corps commutatifs (on dit que L est une extension de
K). Si dimK(L) est finie, on pose [L : K] = dimK(L) et l’entier [L : K] s’appelle le degré de L
sur K.
Si K est un corps fini, on a : |L| = |K|n, avec n = [L : K].

Théorème 1-6-1 (de la base télescopique) : Soient K ⊂ L ⊂M des corps commutatifs,
(ei)i∈I une base de L sur K et (fj)j∈J une base de M sur L. Alors (eifj)(i,j)∈I×J est une base
de M sur K.

Démonstration : Nous allons procéder en 2 étapes :
1. (eifj)(i,j)∈I×J est libre sur K : soit (λij)(i,j)∈I×J ∈ KI×J tel que

∑
(i,j)∈I×J

λijeifj = 0.

On a donc
∑
j∈J

(∑
i∈I

λijei

)
fj = 0. Comme (fj)j∈J une base de M sur L, on a pour tout
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j ∈ J :
∑
i∈I

λijei = 0.

Comme (ei)i∈I une base de L sur K, alors pour tout i ∈ I : λij = 0. Bref, pour tout
(i, j) ∈ I × J , λij = 0.

2. (eifj)(i,j)∈I×J engendre M : soit x ∈M. Comme (fj)j∈J une base de M sur L, il existe
(µj)j∈J ∈ L|J | tel que y =

∑
j∈J

µjfj .

Comme (ei)i∈I une base de L sur K, alors pour tout j ∈ J , il existe λij ∈ K|I| tel que
µj =

∑
i∈I

λijei. D’où x =
∑

(i,j)∈I×J

λi,jeifj .

Corollaire 1-6-2 (multiplicativité du degré) : En reprenant les hypothèses du théorème
précédent, si les degrés sont finis, alors : [M : K] = [M : L][L : K].

Nous ne nous aventurerons pas plus loin dans la théorie des corps, mais invitons le lecteur
intéressé à approfondir ses connaissances à travers des ouvrages classiques ou des ressources
disponibles sur le Web.

Un dernier mot quand même pour le cas des corps finis.

Exercice : Soit E un Z/pZ-ev de dimension n.
1. Combien existe-t-il de bases dans E ?
2. Combien existe-t-il d’automorphismes de E ?
3. Combien existe-t-il de sev de dimension k dans E ?
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2 Dimension d’un K-espace vectoriel
Définition 2-0 : On dit qu’un K-espace vectoriel E est de dimension finie s’il admet une
famille génératrice finie. Sinon il est dit de dimension infinie.

Remarque : il peut sembler étrange de parler de dimension finie alors même que nous n’avons
pas encore défini la notion de dimension d’un espace vectoriel ! Certains auteurs préfèrent
d’ailleurs parler d’espaces vectoriels de type fini, par analogie avec les modules de type fini.
Nous n’adopterons pas ce vocable pour rester en cohérence avec les programmes de bac +1.
Nous verrons plus loin que cette définition a un bien un sens.

2.1 Le cas de la dimension finie

Dans toute cette section, nous considérerons que l’espace vectoriel E est de dimension finie i.e
engendré par un nombre fini de vecteurs de E. Le résultat qui suit est à la base de la théorie
des espaces vectoriels de dimension finie. Sa démonstration, très jolie, est très instructive et
à retenir.

Lemme fondamental 2-1-1 : Si un K-espace vectoriel E admet une famille génératrice
de n vecteurs, alors toute famille de n + 1 vecteurs est liée.

Démonstration : Remarquons alors que d’après la propriété 1-3-5, si m > n, toute sur-
famille de m vecteurs sera liée.
Pour ne pas se trainer le cas où n = 0, on supposera E ̸= {0E} et donc n ≥ 1.
Notons X = (x1, . . . , xn) une famille génératrice de E. Supposons par l’absurde qu’il existe
une famille libre Y = (y1, . . . , yn+1) de n + 1 vecteurs de E.

Posons pour tout k ∈ J0; nK, P(k) : "E est engendré par une famille de n vecteurs dont les
n− k premiers appartiennent à X et les k suivants à Y ".

Initialisation : E est engendré par les n vecteurs de X, donc P(0) est vraie.

Hérédité : Soit k ∈ J0; n−1K. Supposons P(k) vraie : "E est engendré par (x1, . . . , xn−k, y1, . . . , yk)
pour certains x1, . . . , xn−k vecteurs de X et y1, . . . , yk de Y " - aucun vecteur de Y par conven-
tion si k = 0.
Comme Y a n + 1 éléments, on peut trouver un vecteur yk+1 ∈ Y distinct de y1, . . . , yk.

yk+1 =
n−k∑
i=1

λixi +
k∑

j=1
µjyj pour certains λ1, . . . , λn−k et µ1, . . . , µk ∈ K.

Si tous les λi sont nuls, alors yk+1 ∈< {y1, . . . , yk} >, donc (y1, . . . , yk+1) ⊂ Y liée. Contra-
diction. Donc il existe i ∈ J1; n− kK tel que λi ̸= 0. Quitte à modifier l’ordre des xi, on peut
supposer λn−k ̸= 0. Mais alors xn−k ∈< {x1, . . . , xn−k−1, y1, . . . , yk+1} >, ce qui achève la
récurrence.

Avec k = n, on en déduit que E est engendré par n vecteurs de Y . Soit y le n + 1-ème vecteur
de Y autre que ces n vecteurs. Alors y est combinaison linéaire de ces n vecteurs et donc Y
est liée. Absurde ! D’où le résultat annoncé.
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Théorème 2-1-2 (existence de bases) : Soit G une famille génératrice finie de E et L
une famille libre de E incluse dans G. Alors il existe une base B de E telle que L ⊂ B ⊂ G.
Remarquons qu’il existe toujours une famille libre L ⊂ G : L = ∅. Donc l’énoncé précédent a
bien un sens.

Démonstration : Nous proposons deux démonstrations. La première, théorique, est tout
à fait valable, mais n’a pas le côté algorithmique de la seconde qui est plus utile en pratique.

Méthode 1 (théorique) : Soit L = {L′ ; L ⊂ L′ ⊂ G et L′ libre}. L ̸= ∅ car L ∈ L.
Considérons le sous-ensemble de N : N = {Card(L′) ; L′ ∈ L}.
N ̸= ∅ car Card(L) ∈ N .
N est majorée par n = Card(G) d’après le lemme fondamental. Donc N a un élément maxi-
mum p. Soit B ∈ L de cardinal p. Alors B est une base de E. En effet :
B est libre car B ∈ L, et B est génératrice. Sinon il existerait a ∈ G \B tel que a /∈ Vect(B).
Mais alors B ∪ {a} serait libre et Card(B ∪ {a}) > Card(B), ce qui contredit la maximalité
de Card(B).
Remarquons que nous avons construit ici une famille libre maximale.

Méthode 2 (algorithme de la base incomplète) : on peut supposer L = (x1, . . . , xp) et
G = (x1, . . . , xn) avec p ≤ n.
Si L engendre E, on pose B = L (L base car libre et génératrice).
Sinon :

B ←− L (on initialise B par L)
Pour i variant de p + 1 à n faire :

Si xi /∈ Vect(L) faire :
Rajouter xi à B (on ne fait rien si xi ∈ Vect(L)).

Fin Si
Fin Pour

Fin Si

La famille B obtenue à la fin de l’algorithme est nécessairement libre (on a conservé la liberté
à chaque étape) et elle est aussi génératrice. Par construction, elle est génératrice minimale :
on a enlevé à G tous les xi "en trop". C’est donc une base de E.

Corollaire 2-1-3 (théorème de la base incomplète / extraite) : Soit E ̸= {0E} un
K-ev de dimension finie.

1. Théorème de la base incomplète : Toute famille libre de E peut être complétée en
une base finie de E.

2. Théorème de la base extraite : De toute famille génératrice de E, on peut extraire
une base finie de E.

En particulier, E possède une base finie.

Démonstration : Nous allons nous appuyer sur le théorème précédent.
1. Soit G une famille finie engendrant E et L une famille libre de E (donc finie par

le lemme fondamental). Alors G′ = L ∪ G (dans le sens on concatène L et G) est
une famille génératrice de E. Ainsi, L ⊂ G′ et en utilisant l’algorithme de la base
incomplète, il existe une base B de E telle que L ⊂ B ⊂ G′.
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2. Soit G′ une famille génératrice de E. Comme E est engendrée par une famille finie
G, tout élément de G est combinaison linéaire (donc finie) de vecteurs de G′. Nous
pouvons donc nous ramener au cas où G′ est finie :
En effet, posons G = (x1, . . . , xN ) et G′ = (ej)j∈J . Pour tout i ∈ J1; NK, il existe Ji ⊂ J

finie et (λi,j)j∈Ji ∈ KJi telle que xi =
∑
j∈Ji

λi,jej .

Posons alors J̃ =
N⋃

i=1
Ji : J̃ est finie et par construction (très bon exercice) : Vect(G′) =

Vect(xj)j∈J̃ = E. Posons G′′ = (xj)j∈J̃ . On a G′′ ⊂ G′ en termes de parties.
Par convention, L = ∅ ⊂ G′′ est libre, donc d’après l’algorithme de la base incomplète,
il existe une base B de E telle que L ⊂ B ⊂ G′′ ⊂ G′.

Théorème-définition 2-1-4 : Soit E ̸= {0E} un K-ev de dimension finie. Toutes les bases
de E ont le même cardinal qu’on appelle la dimension de E. On la note dim(E).
Si E = {0E}, on décide par convention que dim(E) = 0.

Démonstration : Supposons E ̸= {0E}. Comme E est engendré par un nombre fini n de
vecteurs, nous savons d’après le lemme fondamental que toute partie libre de E est de cardinal
au plus n. En particulier les bases de E.
Soient B et B′ deux bases de E. Comme B′ est libre et B génératrice, alors Card(B′)≤
Card(B). En échangeant les rôles de B et de B′ : Card(B)≤ Card(B′).
Donc Card(B) = Card(B′) et toutes les bases de E ont le même cardinal.
Ce cardinal commun s’appelle la dimension de E.

Remarques :
1. Ainsi, un espace vectoriel E de dimension finie (= engendré par un nombre fini de

vecteurs par définition) a une dimension (cardinal commun de toutes ses bases) qui est
finie ! Ce qui justifie a posteriori cette définition.

2. Si E ̸= {0E}, alors il existe un unique n ∈ N∗ tel que E soit isomorphe à Kn.
Autrement dit, la dimension caractérise entièrement un K-ev engendré par un nombre
fini de vecteurs 1.

Corollaire 2-1-5 : Soit E un K-ev de dimension n et ν = (ν1, . . . , νm) une famille finie de
cardinal m.

1. Si ν est libre, alors m ≤ n,
2. Si ν est génératrice, alors m ≥ n,
3. Si m > n, alors ν est liée.

Corollaire 2-1-6 (seconde caractérisation d’une base en dimension finie) : Soit
E un K-ev de dimension n et ν = (ν1, . . . , νn) une famille de n vecteurs. Il y a équivalence
entre :

1. ν est une base,
2. ν est libre,
3. ν est génératrice.

1. Ce n’est pas le cas des groupes. Par exemple G = Z/4Z et G = Z/2Z × Z/2Z ne sont pas isomorphes
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Remarque : Dans la pratique, on construira une famille libre de n vecteurs de
E. Encore faut-il connaître déjà la dimension de E !

Applications :
1. Soient u = (1, 1) et v = (−2, 1). Prouver que B = (u, v) est une base de R2 et

déterminer les composantes d’un vecteur X = (x, y) dans cette base.
2. Soient u = (1, 1, 2), v = (−2, 1, 0) et w = (3, 0, 0). Prouver que B = (u, v, w) est une

base de R3 et déterminer les composantes d’un vecteur X = (x, y, z) dans cette base.
3. Prouver que dans E = Kn, si les ak ne sont pas tous nuls, alors :

H =
{

X = (x1, . . . , xn) ∈ Kn |
n∑

k=1
akxk = 0

}
est un sev de E de dimension n− 1.

4. Soit E = Kn[X] le K-ev des polynômes à coefficients dans K de degré inférieur ou
égal à n. Alors toute famille de n vecteurs de Kn[X] de degrés (resp. de valuations)
échelonné(e)s est une base de E.

5. Soit A ∈Mn(K). Les propositions suivantes sont équivalentes :
(a) A est inversible,
(b) A est inversible à droite : ∃B ∈Mn(K) | AB = In,
(c) A est inversible à gauche : ∃B ∈Mn(K) | BA = In

(d) (∀Y ∈ Kn) l’équation (E) : Y = AX possède au moins une solution X ∈ Kn.
(e) L’équation (E0) : AX = 0 admet 0 pour unique solution.

6. Soient (an) et (bn) deux suites d’éléments de K. Les suites (un) vérifiant :
(∀n ∈ N) un+2 = anun+1 + bnun forment un sev de l’espace E = KN des suites, de
dimension 2.

7. Soit E un K-ev de dimension n.
(a) Prouver que L(E) est de dimension n2.
(b) Soit u ∈ L(E). Prouver qu’il existe un polynôme P ∈ K[X] tel que P (u) = 0L(E).

Lemme 2-1-7 :
1. Soit (e1, . . . , en) une famille libre de E et u ∈ L(E, F ). Supposons u injective. Alors

(u(e1), . . . , u(en)) est libre dans F .
2. Soit (e1, . . . , en) une famille génératrice de E et u ∈ L(E, F ). Supposons u surjective.

Alors (u(e1), . . . , u(en)) est génératrice de F .

Démonstration :

1. Soit (λ1, . . . , λn) ∈ Kn tel que
n∑

i=1
λiu(ei) = 0F .

Par linéarité de u :
n∑

i=1
λiu(ei) = u

(
n∑

i=1
λiei

)
, d’où : u

(
n∑

i=1
λiei

)
= 0F .

Par injectivité de u :
n∑

i=1
λiei = 0E . Comme (e1, . . . , en) est une famille libre de E,

λ1 = · · · = λn = 0. Donc (u(e1), . . . , u(en)) est libre dans F .
2. Soit y ∈ F . Par surjectivité de u, il existe x ∈ E tel que y = u(x).

Comme (e1, . . . , en) est génératrice de E, il existe (λ1, . . . , λn) ∈ Kn tel que x =
n∑

i=1
λiei.

Donc par linéarité de u, y =
n∑

i=1
λiu(ei). D’où (u(e1), . . . , u(en)) génératrice de F .
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Remarque : Soient E et F deux K-ev de dimensions respectives n et p et u ∈ L(E, F ).
1. Si u injective, alors : n ≤ p (E est le "plus petit" en dimension)
2. Si u surjective, alors : n ≥ p (E est le "plus grand" en dimension)

Théorème 2-1-8 : Soient E et F deux K-ev de même dimension finie, et u ∈ L(E, F ).
Alors : (a) u est injective ssi (b) u est surjective ssi (c) u est bijective.

Démonstration :
1. Il est clair que (c) =⇒ (a) et (c) =⇒ (b).
2. Supposons (a) vraie et soit BE = (e1, . . . , en) une base de E. Comme u est injective,

on a par le lemme 2-1-7 : (u(e1), . . . , u(en)) libre dans F . Ainsi, (u(e1), . . . , u(en)) est
une famille libre de n vecteurs de F qui est de dimension n, c’en est donc une base
d’après le corollaire 2-1-6. u transformant une base de E en une base de F , le théorème
1-5-2 nous assure que u est bijection linéaire de E sur F .

3. Adapter le raisonnement précédent en remplaçant "libre" par "génératrice" et "injective"
par surjective".

Contre-exemples :
1. Si les dimensions sont finies mais inégales, le résultat tombe en défaut.

Par exemple, u : (x, y) ∈ K2 7→ (x, y, 0) ∈ K3.
2. Si les dimensions sont infinies et égales, le résultat est aussi faux.

Considérons par exemple les "shifts" : (un) ∈ KN 7→ (un+1) ∈ KN ou
(un) ∈ KN 7→ (0, u0, u1, . . . ) ∈ KN.

Application : Soit A une K-algèbre associative, unitaire et sans diviseurs de zéro. Si A est
de dimension finie, alors A est un corps.

2.2 Dimension des sev, des produits d’ev et des supplémentaires

Dans toute la suite, nous ne considérerons que des ev de dimension finie.

Théorème 2-2-1 (dimension d’un sev) : Soit F un sev d’un K-ev E. Alors F est de
dimension finie et dim(F ) ≤ dim(E), avec égalité ssi E = F .

Démonstration : Commençons par remarquer que toute famille libre de F est aussi une
famille libre de E.
Si F = {0E}, il n’y a rien à démontrer. On suppose donc F ̸= {0E}.
Posons N = {Card(L) | L ⊂ F et L libre}.

1. Soit x ∈ F \ {0}. Alors (x) est libre et donc 1 ∈ N . Ainsi N ̸= ∅.
2. D’après le corollaire 2-1-5, N est majorée par n = dim(E). Ainsi, N possède un plus

grand élément p ≤ n.
3. Soit alors L une famille libre de F à p éléments. Par construction, L est une famille

libre maximale du K-ev F , c’en est donc une base. Comme toutes les bases ont le même
cardinal, dim(F ) = p ≤ n = dim(E).

Soit E un K-ev. Nous rappelons que :
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Définition 2-2-2 :
1. Deux sev F et G de E sont en somme directe si F ∩G = {0}
2. Deux sev F et G de E sont supplémentaires dans E si :

— E = F + G
— F ∩G = {0}.
Ceci signifie que (∀x ∈ E)(∃!(f, g) ∈ F ×G) | x = f + g. On note E = F ⊕G

Théorème 2-2-3 :
1. Soient E1 et E2 deux K-ev de dimensions respectives p et q. Alors dim(E1×E2) = p+q.
2. Soient F et G deux sev d’un même K-ev E, de dimensions respectives p et q.

Alors dim(F ⊕G) = p + q.

Démonstration :
1. Soit B1 = (e1, . . . , ep) une base de E1 et B2 = (f1, . . . , fq) une base de E2. On vérifie

aisément que {(e1, 0), . . . , (ep, 0), (0, f1), . . . , (0, fq)} est une base de E1 × E2.

2. ϕ :
{

F ×G→ F ⊕G

(f, g) 7→ f + g
est un isomorphisme.

ϕ est clairement linéaire, surjective par construction. Enfin, ϕ est injective : soit (f, g) ∈
Ker ϕ. Alors f + g = 0E i.e f = −g. Donc f ∈ F ∩G = {0E} et partant g = 0E .

Remarque : Dire que F et G sont en somme directe se traduit aussi par : soit (f, g) ∈ F ×G
tel que f + g = 0E , alors f = g = 0E .

Plus généralement, nous pouvons énoncer le :

Théorème et définition 2-2-4 : Soit n ∈ N∗.
1. Si F1, . . . , Fn sont n sev d’un même K-ev E, on dit que F1, . . . , Fn sont en somme

directe, et on note
n⊕

i=1
Fi si :

∀(x1, . . . , xn) ∈ F1 × · · · × Fn, x1 + · · ·+ xn = 0E =⇒ x1 = · · · = xn = 0E .

2. On a alors : dim
(

n⊕
i=1

Fi

)
=

n∑
i=1

dim(Fi)

3. De manière générale, dim
(

n∑
i=1

Fi

)
≤

n∑
i=1

dim(Fi)

Remarque : Nous avons vu au théorème 1-5-2 qu’une application linéaire u était entière-

ment définie par l’image d’une base. De même, si E =
n⊕

i=1
Fi, u est entièrement définie par sa

restriction aux Fi.

Théorème 2-2-5 :
1. Tout sev F admet (au moins) un supplémentaire G et dim(E) = dim(F ) + dim(G).
2. Deux supplémentaires G et H d’un même sev F sont isomorphes.

Le résultat est faux en dimension infinie.
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Démonstration :
1. Soit BF = (e1, . . . , ep) une base de F . On la complète en une base B = (e1, . . . , ep, ep+1, . . . , en)

de E. Alors G = Vect(ep+1, . . . , en) est clairement un supplémentaire de F dans E. On
applique ensuite le théorème précédent pour établir que dim(E) = dim(F ) + dim(G).

2. Soit BF = (e1, . . . , ep) une base de F . Soit BG = (gp+1, . . . , gn) une base de G et BH =
(hp+1, . . . , hn) une base de H. Par le théorème 1-5-1, il existe une unique application
linéaire u : G → H telle que (∀i ∈ Jp + 1; nK) u(gi) = hi. u transforme une base de G
en une base de H, donc d’après le critère d’isomorphisme 1-5-2, u est un isomorphisme
de G sur H.

Le cas de la dimension infinie est très révélateur d’une complexité croissante.

Considérons par exemple le E = K[X], où K = R ou C. E est de dimension infinie (cf
paragraphe 2.4). Soit maintenant F = XK[X]. Il est clair que F est un sev de E.
Soient G1 = {P ∈ E | P constant} et G2 = Vect({X + 1}).

1. G1 est un supplémentaire de F dans E : en effet, tout polynôme P ∈ E peut s’écrire
sous la forme P = (P − P (0)) + P (0). P − P (0) ∈ F et P (0) ∈ G1, donc E ⊂ F + G1.
L’inclusion inverse étant évidente, on a E = F + G1.
De plus, F ∩ G1 = {0E} : en effet, soit P ∈ F ∩ G1, alors P (0) = 0 et comme P
constant, P est identiquement nul.

2. G2 est un supplémentaire de F dans E : en effet, tout polynôme P ∈ E peut s’écrire
sous la forme P = (P − P (0)(X + 1)) + P (0)(X + 1). P − P (0)(X + 1) ∈ F (facile)
et P (0)(X + 1) ∈ G2, donc E ⊂ F + G2. L’inclusion inverse étant évidente, on a
E = F + G2.
De plus, F ∩G2 = {0E} : en effet, soit P ∈ F ∩G2, alors P est de la forme k(X + 1)
et P (0) = 0, d’où k = 0 puis P = 0E .

3. Et pourtant, G1 et G2 ne sont pas isomorphes. En effet, dim(G1) = 1 et dim(G2) = 2.

Pour mesurer le "défaut de somme directe", nous avons le :

Théorème 2-2-6 (Théorème de Grassmann) : Soit E un K-ev et F, G deux sev de E
tels que E = F + G. Alors : dim(E) = dim(F ) + dim(G)− dim(F ∩G).

Démonstration : Nous donnons ici deux démonstrations de ce résultat fondamental.
1. Démonstration 1 : Soit B1 = (e1, . . . , er) une base de F ∩G que l’on complète en une

base BF = (e1, . . . , er, f1, . . . , fp) de F et en une base BG = (e1, . . . , er, g1, . . . , gq) de
G. Ainsi, dim(F ∩G) = r, dim(F ) = r + p et dim(F ) = r + q.
Prouvons que B = (e1, . . . , er, f1, . . . , fp, g1, . . . , gq) est une base de E.
Soient λ1, . . . , λr, µ1, . . . , µp, ν1, . . . , νq des scalaires tels que :

r∑
i=1

λiei +
p∑

j=1
µjfj +

q∑
k=1

νkgk = 0

Alors :
r∑

i=1
λiei +

p∑
j=1

µjfj︸ ︷︷ ︸
∈F

= −
q∑

k=1
νkgk︸ ︷︷ ︸

∈G

∈ F ∩G
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Donc il existe des scalaires λ′
1, . . . , λ′

r tels que

−
q∑

k=1
νkgk =

r∑
i=1

λ′
iei

i.e :
r∑

i=1
λ′

iei +
q∑

k=1
νkgk = 0

Comme (e1, . . . , er, g1, . . . , gq) est une base de G, on a (∀i ∈ J1; rK) λ′
i = 0

et (∀k ∈ J1; qK) νk = 0. D’où :
r∑

i=1
λiei +

p∑
j=1

µjfj = 0.

Comme (e1, . . . , er, f1, . . . , fp) est une base de F , on a (∀i ∈ J1; rK) λi = 0
et (∀j ∈ J1; pK) µj = 0.
Ainsi, B = (e1, . . . , er, f1, . . . , fp, g1, . . . , gq) est une famille libre de E. Comme E =
F + G = Vect(F ∪ G), B est aussi une famille génératrice de E. C’est donc une base
de E.
Mais alors, dim(E) = r +p+q = (r +p)+(r +q)−r = dim(F )+dim(G)−dim(F ∩G).

2. Démonstration 2 : Cette dernière repose sur le théorème du rang vu au paragraphe
d’après. Son avantage : la rapidité !

Considérons l’application linéaire u :
{

F ×G→ E

(x, y) 7→ x + y

D’après le théorème du rang : dim(F ×G) = rang(u) + dim ker(u).
Or E = F + G, donc u est surjective, et donc rg(u) = dim(E).
Par ailleurs, dim(F ×G) = dim(F ) + dim(G),
Puis ker(u) = {(x, y) ∈ F ×G | x + y = 0} = {(x,−x) | x ∈ F ∩G}.
ker(u) est clairement isomorphe à F ∩G, donc dim ker(u) = dim(F ∩G).
Finalement, dim(F ) + dim(G) = dim(F + G) + dim(F ∩G).
D’où dim(F + G) = dim(F ) + dim(G)− dim(F ∩G).

2.3 Notion de rang d’une famille de vecteurs / d’une application linéaire

Définition 2-3-1 : Soit F = (ui)i∈I une famille de vecteurs d’un K-ev E. On appelle rang
de F la dimension de Vect(ui)i∈I . On le notera rg(F).

Remarque : Le rang de F est en quelque sorte le nombre maximal de vecteurs linéairement
indépendants de F . En statistiques, on parlerait de degrés de liberté.
Nous travaillons ici en dimension finie, par conséquent le rang de toute famille de vecteurs
sera nécessairement fini. Nous pouvons donc nous limiter à une famille finie (x1, . . . , xp).

Proposition 2-3-2 : Soit E un K-ev de dimension n et (x1, . . . , xp) une famille de p vecteurs
de E.

1. rg(x1, . . . , xp) ≤ p et rg(x1, . . . , xp) ≤ n i.e rg(x1, . . . , xp) ≤ min(n, p).
2. rg(x1, . . . , xp) = p ssi la famille est libre (donc forcément p ≤ n).
3. rg(x1, . . . , xp) = n ssi la famille est génératrice (donc forcément n ≤ p).

Démonstration : Immédiat d’après la remarque précédente.

Corollaire 2-3-3 : (x1, . . . , xn) est une base de E ssi rg(x1, . . . , xn) = n.
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Proposition 2-3-4 : Le rang d’une famille (x1, . . . , xp) est invariant par les transforma-
tions élémentaires suivantes :

1. permutation des vecteurs xi.
2. multiplication d’un vecteur par un scalaire non nul.
3. addition à un vecteur d’une combinaison linéaire des autres vecteurs.

Application :
1. Soit E = RR le R-ev des fonctions de R dans R. Considérons la famille infinie de

fonctions (fh)h∈R de E (lui aussi de dimension infinie). Alors (fh)h∈R est de rang 2
dans E.

2. Dans un ev, soient n vecteurs constituant un système de rang r. On en extrait p
vecteurs formant un système de rang s. Alors r ≤ s + n− p.

Définition 2-3-5 : Soient E et F deux K-ev, avec E de dimension finie et u ∈ L(E, F ).
Alors :

dim(E) = rg(u) + dim(ker(u))

où rg(u) = dim(im(u)).

Démonstration : Soient (e1, . . . , er) une base de ker(u) que l’on complète en une base
(e1, . . . , en) de E. Posons E′ = Vect(er+1, . . . , en) de sorte que E = ker(u)⊕ E′.
Une application linéaire étant entièrement déterminée par ses restrictions à des sev supplé-
mentaires, il suffit de prouver que E′ et im(u) sont isomorphes.

Considérons l’application linéaire v :
{

E′ → im(u)
x 7→ u(x)

— v injective ? Soit x ∈ ker(v). Alors x ∈ E′ et v(x) = u(x) = 0F . Comme E′ ∩ ker(u) =
{0E} et que 0E = 0E′ , on a x = 0E′ . Donc v injective.

— v surjective ? Soit y ∈ im(u) : (∃x ∈ E) y = u(x). Or E = ker(u) ⊕ E′, donc
∃!(xK , xE′) ∈ ker(u)× E′ ; x = xK + xE′ . D’où u(x) = u(xK) + u(xE′) = u(xE′).
Comme xE′ ∈ E′, on a u(xE′) = v(xE′). D’où y = v(xE′) et v surjective.

Ce théorème donne toute sa mesure à l’aide de la notion d’espace vectoriel quotient que nous
détaillerons dans un prochain papier.

Remarque et applications :
1. ATTENTION ! On ne dit surtout pas que E = ker(u)⊕ im(u).
2. Comme vu précédemment, nous pouvons utiliser ce théorème pour retrouver la formule

de Grassmann.
3. Nous pouvons également retrouver le fait qu’en dimension finie, si u ∈ L(E), alors u

bijective ssi u injective ssi u surjective.
4. Soient u ∈ L(E, F ) et v ∈ L(F, G). Alors :

(a) Si v est de rang fini, alors v ◦ u aussi et rg(v ◦ u) ≤ rg(v).
(b) Si u est de rang fini, alors v ◦ u aussi et rg(v ◦ u) ≤ rg(u).
(c) Si u et v sont de rangs finis, alors v ◦ u aussi et rg(v ◦ u) ≤ min(rg(u), rg(v)).
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2.4 Le cas de la dimension infinie

Nous ne traitons ici que le problème de l’existence de bases en dimension infinie.

Un premier exemple d’espace vectoriel de dimension infinie est par exemple E = K[X], où
K = R ou C.

Démonstration : Supposons par l’absurde que E = K[X] soit de dimension finie. Il existe
alors une famille G = (Pi)1≤i≤n de polynômes (que l’on peut supposer de degrés échelonnés)
engendrant E. Notons pi = deg(Pi) pour tout i ∈ J1; nK.
Xpn+1 ne peut être une combinaison linéaire des Pi, sinon, il existerait (λ1, . . . , λn) ∈ Kn tel

que Xpn+1 =
n∑

i=1
λPi. D’où deg(Xpn+1) = pn + 1 = deg

(
n∑

i=1
λPi

)
≤ pn. Absurde !

Théorème 2-4-1 : Soit E un K-ev. Les propriétés suivantes sont équivalentes :
1. E n’est pas de dimension finie
2. Il existe dans E une famille libre infinie.

Exemples : Nous en avons déjà rencontré.
1. L’espace vectoriel E = K[X] des polynômes à coefficients dans E = K.
2. L’espace vectoriel E = K(N) des suites d’éléments de K nulles à partir d’un certain

rang.
3. L’espace vectoriel E = KN des suites d’éléments de K.
4. L’espace vectoriel E = RR des fonctions de R dans R. On le note aussi F(R,R).

Exemples :
1. (Xk)k∈N est une famille libre infinie (et même une base) de K[X].
2. Posons e0 = (1, 0, 0, 0, . . . ), e1 = (0, 1, 0, 0, . . . ), etc. La famille infinie (ei)i∈N est une

base de K(N), mais pas de KN.
3. Soit p1 = 2, p2 = 3, p3 = 5, . . . la suite infinie des nombres premiers. Alors la famille

(ln(p1), ln(p2), . . . ) est Q-libre dans le Q-ev R.

Théorème 2-4-2 (existence de bases) : Soit E un K-ev de dimension infinie.
1. E admet une base.
2. Toute famille libre de E peut être complétée en une base.
3. De toute famille génératrice de E, on peut extraire une base.
4. Tout sev F admet au moins un supplémentaire.

Démonstration : Nous allons utiliser le lemme de Zorn.
1. Notons L l’ensemble des parties libres de E, ordonné par inclusion (c’est donc un

ordre partiel). Soit (Li)i∈I une famille totalement ordonnée d’éléments de L. Alors
L =

⋃
i∈I

Li est un élément de L : en effet, soit {i1, . . . , in} une partie finie de I. Sans

perte de généralité, puisque (Li)i∈I est une famille totalement ordonnée, on peut sup-
poser Li1 ⊂ Li2 ⊂ · · · ⊂ Lin . Donc s’il existe des scalaires λ1, . . . λn et des vecteurs
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xj ∈ Lij tels que
n∑

j=1
λjxj = 0, alors comme Lin est libre, λ1 = · · · = λn = 0. De plus,

par construction, L est un majorant de L : (∀i ∈ I) Li ⊂ L.
Donc d’après le lemme de Zorn, L admet au moins un élément maximal B pour l’in-
clusion.
Cet élément est une base, car sinon on pourrait trouver un vecteur x /∈ Vect(L) et
alors L ∪ {x} serait encore libre. Absurde par maximalité de L.

2. Le même argument montre que si L ⊂ G, où L est une partie libre et G une partie
génératrice, il existe une base B telle que L ⊂ B ⊂ G. C’est le théorème de la base
incomplète.

3. On peut compléter une base de F en une base de E.

Remarque : En dimension infinie, on peut très bien avoir deux ev isomorphes tels que l’un
d’eux contient strictement l’autre.
Considérons par exemple E = K[X] et F = XK[X]. On a F ⊊ E, et pourtant E ∼ F .

Il suffit en effet de constater que u :
{

E → F

P 7→ XP
est bien un isomorphisme de E sur F .

Théorème 2-4-3 (équipotence des bases) : Soit E un K-ev de dimension infinie. Toutes
les bases sont équipotentes.

La démonstration est admise.
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2.5 Synthèse : définir correctement la dimension d’un ev de dimension
finie.

Nous considérons ici un K-ev E de dimension finie n : E est de dimension finie si E admet
une famille génératrice finie. Sinon E est dit de dimension infinie.
Nous supposons connues les notions de familles libres, génératrices et de bases.
Nous connaissons en particulier la caractérisation d’une base :
B est une base de E ssi B est une famille génératrice minimale ssi B est une famille libre
maximale.

Voici les résultats fondamentaux de définition de la dimension d’un ev de dimension finie :

1. Remplacer un vecteur (lemme d’échange) : Si b est combinaison linéaire d’éléments
de X ∪ {a} avec un coefficient non nul sur a, alors Vect(X ∪ {a}) = Vect(X ∪ {b})

2. Lemme fondamental : Si un K-espace vectoriel E admet une famille génératrice de n
vecteurs, alors toute famille de n + 1 vecteurs est liée.

3. Théorème d’existence de bases (se base sur l’algorithme de la base incomplète ) :
Soit G une famille génératrice finie de E et L une famille libre de E incluse dans G.
Alors il existe une base B de E telle que L ⊂ B ⊂ G.

4. On déduit du théorème précédent la version pratique suivante :
(a) Théorème de la base incomplète : Toute famille libre de E peut être complétée

en une base finie de E.
(b) Théorème de la base extraite : De toute famille génératrice de E, on peut

extraire une base finie de E.
En particulier, E possède une base finie.

5. Théorème-définition : Soit E ̸= {0E} un K-ev de dimension finie. Toutes les bases
de E ont le même cardinal qu’on appelle la dimension de E. On la note dim(E).
Si E = {0E}, on décide par convention que dim(E) = 0.
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3 Quelques applications plus poussées
Les présentes applications ne sont que quelques pistes, laissées en exercice au lecteur (à la
lectrice), bien loin de couvrir le sujet. Nous détaillerons leur résolution dans un prochain
article portant sur les applications de la dimension finie en algèbre et en analyse. La plupart
sont cependant ultra-classiques et sont traités dans la plupart des ouvrages de niveau L3.

3.1 Applications en algèbre

Les deux premiers items concernent la structure d’espace vectoriel ; les suivants se concentrent
spécifiquement sur la notion de dimension.

1. Soit V un Q-ev de dimension finie et f : V → V une application Q-linéaire telle que
f3 = 2idV . On choisit une racine α de P = X3 − 2 dans C. Alors V est naturellement
muni d’une structure de Q[α]-ev. En déduire que 3 divise dimQ(V ).

2. Soit K un sous-corps d’un corps commutatif L et E un espace vectoriel non nul.
Les propositions suivantes sont équivalentes :
(a) Il existe sur E une structure de L-ev qui induit la structure de K-ev.
(b) Il existe un morphisme injectif de K-algèbre de L dans LK(E) envoyant 1 sur idE .
Que dire de dimR(E) si E est un R-ev de dimension finie ?

3. Indice de Fitting
4. Théorème de Skolem-Noether
5. Lemme de Brauer

3.2 Applications en analyse

Des résultats importants
1. Si E est un K-espace vectoriel normé de dimension finie, K ⊂ E est compact si et

seulement si K est fermé et borné.
2. Si E est un K-espace vectoriel normé de dimension finie, toutes les normes sont équi-

valentes.
3. Théorème de projection sur un convexe fermé et méthode de Galerkin.
4. Tout opérateur compact est limite d’opérateurs de rang fini.
5. Méthode des moindres carrés en statistiques.
6. Théorème des extrema liés.
7. Soit (E, d) un C-espace vectoriel métrique complet séparable 2, S une partie dénom-

brable dense de E et A ∈ Lc(E).
Un point x ∈ E est dit hypercyclique pour A lorsque l’orbite {An(x); n ∈ N} est dense
dans E. L’ensemble des points hypercycliques pour A est noté HC(A).
Si E est de dimension finie, alors HC(A) = ∅.

8. Théorème de Grothendieck (mon développement personnel !) : Soit I =]0; 1[
et p ∈ [1; +∞[. Soit S ⊂ Lp(I) un sous-espace vectoriel fermé. On suppose que S ⊂
L∞(I). Alors S est de dimension finie.

2. un espace métrique est dit séparable s’il admet une partie dénombrable dense
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4 Annexes

4.1 Ensembles ordonnés et lemme de Zorn

Définition 4-1-1 :
1. Soit E un ensemble et R une relation binaire sur E. On dit que R est une relation

d’ordre sur E si :
— R est réflexive : (∀x ∈ E) xRx
— R est antisymétrique : (∀x, y ∈ E) xRy ∧ yRx =⇒ x = y
— R est transitive : (∀x, y, z ∈ E) xRy ∧ yRz =⇒ xRz

2. Le couple (E,R) est appelé ensemble ordonné. On posera souvent ≤ pour R.
3. (E,R) est dit totalement ordonné si (∀x, y ∈ E) x ≤ y ∨ y ≤ x : 2 éléments de

E sont toujours comparables. Si ce n’est pas le cas, on dit que E est partiellement
ordonné.

4. Soit A ⊂ E. On dit que c ∈ E est UN majorant de A si (∀x ∈ A) x ≤ c.
5. On dit que m ∈ E est UN élément maximal de E si pour tout x ∈ E tel que m ≤ x,

on a nécessairement x = m.
6. On dit que E est inductif si tout sous-ensemble totalement ordonné de E admet un

majorant.

Lemme de Zorn : Tout ensemble ordonné, inductif, non vide, admet un élément maximal.

4.2 Opérations de groupes

Définition 4-2-1 : Soit G un groupe de neutre 1 et E un ensemble. On dit que le groupe
G opère sur l’ensemble E s’il existe une loi externe ∗ : G× E → E, (g, x) 7→ g ∗ x telle
que :

1. (∀x ∈ E) 1 ∗ x = x

2. (∀g, g′ ∈ G)(∀x ∈ E) g ∗ (g′ ∗ x) = (gg′) ∗ x

On dit alors que E est un G-ensemble.

Proposition 4-2-2 : Soit G un groupe de neutre 1 et E un ensemble. G opère sur E si et
seulement s’il existe un morphisme de groupes ϕ de G sur (S(E), ◦).

Démonstration :
1. Supposons que le groupe G agisse sur l’ensemble E. Notons * la loi externe définie sur

G× E à valeurs dans E. Définissons ϕ :
{

G→ EE

g 7→ ϕ(g)
où (∀x ∈ E) ϕ(g)(x) = g ∗ x.

Prouvons que (∀g ∈ G) ϕ(g) est une bijection de E dans E i.e ϕ(g) ∈ S(E).
(a) Commençons par remarquer que puisque (∀x ∈ E) 1 ∗ x = x, on a ϕ(1) = idE .
(b) De plus, (∀g ∈ G) ϕ(gg−1) = ϕ(g−1g) = ϕ(1) = idE .

Or comme (∀x ∈ E) x = 1∗x = (g−1g)∗x = g−1 ∗(g∗x), on a donc ϕ(g−1)◦ϕ(g) =
idE . De même ϕ(g)◦ϕ(g−1) = idE . Donc (∀g ∈ G), ϕ(g) ∈ S(E) et ϕ(g)−1 = ϕ(g−1).

(c) Enfin, (∀g, g′ ∈ G)(∀x ∈ E) g ∗ (g′ ∗ x) = g ∗ (ϕ(g′)(x)) = ϕ(g)(ϕ(g′)(x)) = ϕ(g) ◦
ϕ(g′)(x) d’une part, et ϕ(gg′)(x) = (gg′) ∗ x = g ∗ (g′ ∗ x) d’autre part. Donc
ϕ(gg′) = ϕ(g) ◦ ϕ(g′). Ainsi, ϕ est un morphisme de (G, .) sur (S(E), ◦).
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2. Réciproquement, soit ϕ un morphisme de (G, .) sur (S(E), ◦).
On a donc ϕ(1) = idE . Posons pour tout g ∈ G et pour tout x ∈ E, g ∗ x = ϕ(g)(x).
(a) Comme ϕ(1) = idE , on a (∀x ∈ E) 1 ∗ x = ϕ(1)(x) = x.
(b) De plus, (∀g, g′ ∈ G) ϕ(gg′) = ϕ(g) ◦ ϕ(g′). Donc (∀x ∈ E) (gg′) ∗ x = ϕ(gg′)(x) =

(ϕ(g) ◦ ϕ(g′))(x) = ϕ(g)(ϕ(g′)(x)) = ϕ(g)(g′ ∗ x) = g ∗ (g′ ∗ x).

Remarque : Cette équivalence de définition permet de considérer une action de groupes de
deux façons, l’une ou l’autre étant plus ou moins utile selon le contexte.

Définition 4-2-3 :
1. Le sous-ensemble de E : G ∗ x = {g ∗ x | g ∈ G} s’appelle l’orbite de x sous l’action

de G.
2. Soit x ∈ E. On appelle stabilisateur de x le sous-groupe de G (exercice) défini par :

Stx = {g ∈ G | g ∗ x = x} = {g ∈ G | ϕ(g)(x) = x}.

Définition 4-2-4 : Soit E un G-ensemble.
1. On dit que G agit transitivement sur E (ou que l’action de G sur E est transitive)

s’il n’existe qu’une seule orbite i.e (∀x, y ∈ E)(∃g ∈ G) y = g ∗ x.
2. Une action est dite libre si tous les stabilisateurs sont réduits au neutre de G.
3. Une action est dite fidèle si l’intersection de tous les stabilisateurs est réduite au neutre

4.3 Anneaux, corps

Définition 4-3-1 : Soit A un ensemble muni de 2 lois de composition interne + et . telles
que :

1. (A, +) soit un groupe commutatif (on notera 0 son neutre).
2. . est distributive par rapport à + : ∀x, y, z ∈ A : x.(y + z) = x.y + x.z

3. . possède un élément neutre distinct de 0. On le notera 1A. ∀x ∈ A : 1A.x = x.1A = x

(A, +, .) est appelé anneau.
Si de plus la seconde loi . est commutative, on parle d’anneau commutatif.
Tout élément inversible pour la seconde loi . s’appelle une unité de A.
Si tous les éléments non nuls de A sont inversibles, on dit que l’anneau (A, +, .) est un corps.

Remarque : Certains auteurs ne gardent que les points 1 et 2 pour définir un anneau. En
rajoutant le point 3, ils parlent alors d’anneaux unitaires (ou unifères). Nous décidons ici que
tous les anneaux sont unitaires.

Définition 4-3-2 : Soient A et B deux anneaux (unitaires par convention). On dit qu’une
application ϕ : A→ B est un morphisme d’anneaux si :

1. ∀x, y ∈ A : ϕ(x + y) = ϕ(x) + ϕ(y) et ϕ(x.y) = ϕ(x).ϕ(y)
2. ϕ(1A) = 1B

Nous noterons désormais xy pour x.y et 1 pour 1A.
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4.4 Bibliographie / Webographie

Les ressources internet sont nombreuses et riches, mais quatre m’ont particulièrement tapé
dans l’œil :

1. La chaine Youtube Maths adultes, de Gilles Bailly-Maitre, professeur à l’université de
la Rochelle. Très pédagogique et pleine de bonne humeur : https://www.youtube.
com/watch?v=AFdeofSJEW0&list=PLE8WtfrsTAimNyRsaB2kLZqKvykuliUAr

2. les cours de Christophe Bertault, professeur de MPSI au lycée Saint-Louis : http:
//christophebertault.fr/

3. les cours d’ Alain Troesch, professeur de MP au lycée Lakanal : http://alain.
troesch.free.fr/

4. les cours de Pierre-Jean Hormière, professeur de chaire supérieure retraité. Une vraie
mine de savoir ! Hélas, le site n’est plus en ligne.

La littérature est aussi abondante, mais j’ai retenu :
1. P. Caldero - J. Germoni - Nouvelles histoires hédonistes de groupes et de géométrie I

- Calvage & Mounet (2019)
2. F. Cognet - Algèbre linéaire - Bréal (2000)
3. G. Diaz-Toca - H. Lombardi - C. Quitté - Modules sur les anneaux commutatifs -

Calvage & Mounet (2014)
4. R. Goblot - Algèbre linéaire - Masson (1995)
5. S. Roman - Advanced Linear Algebra (Third Edition) - Springer (2008)
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