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Le présent document est entierement dédié a la notion de dimension d’un espace vecto-
riel. Il ne se base sur aucun programme scolaire en particulier, mais a de rares exceptions

pres, ’essentiel du propos est de niveau L1. Il ne s’agit donc en aucun cas d’un cours.

Apres de brefs rappels sur la définition d’un espace vectoriel, ses sous-structures et ses mor-
phismes, mais avec une vision élargie, nous entrons dans le vif du sujet. Nous ne nous conten-
terons pas de la dimension finie, méme si cette derniere sera largement mise en avant. Nous
proposons également des applications en algebre et en analyse qui peuvent intéresser les can-
didat(e)s aux agrégations de mathématiques. Un prochain papier sera intégralement consacré

a ces applications.
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1 Notion de K-espace vectoriel et morphismes associés

1.1 K-espace vectoriel, sous-espaces vectoriels et applications linéaires

Soit (K, +, x) un corps commutatif et £ un ensemble non vide muni d’une loi interne + et
une loi externe . : Kx E— E, (\,z) = Az

Nous noterons A\p plutdét que A x p la multiplication de deux éléments de K.

Définition 1-1-1 : On dit que E est un K-espace vectoriel si pour tout (z,y) € E? et
pour tout (\, u) € K? :

1. (E,+) est un groupe commutatif.

2. (a) A(x+y) = Ax+ Ay
(b) (A + pu).x = Ax 4+ p.x
(c) (A)-x = A(p-x)
(d) Ig.x =x

Définition 1-1-2 : Soit F un K-espace vectoriel. Ses éléments sont appelés vecteurs et les
éléments de K sont appelés scalaires.

Exemples :
1. K est un K-espace vectoriel.

2. Soient E un K-espace vectoriel et I un ensemble quelconque. Alors ensemble E! des
familles (z;);er indexées par I est un K-espace vectoriel pour les lois :

— (@i)ier + (Yi)ier = (i + vi)ier

— /\-($i>iel = ()\afi)z‘el
3. En particulier, pour tout n € N*, K" est un K-espace vectoriel.
4. L’ensemble KN des suites de scalaires est un K-espace vectoriel.

5. L’ensemble KV des suites de scalaires nulles & partir d’un certain rang est un K-espace
vectoriel.

6. Pour tout n € N*, C" est un C-espace vectoriel, mais aussi un R-espace vectoriel et un
Q-espace vectoriel.

7. K[X] est un K-espace vectoriel pour les lois évidentes.

8. F([0;1],R) est un R-espace vectoriel.

Propriété 1-1-3 (régles de calcul) : Soit E un K-espace vectoriel, z,y € E et A\, u € K.
1. (a) Ogx.z = 0g et (b) \.0g =0

C(—lg)x = —x

C(A=p)ar=Ar—pax

Az =0 <= (A=0g) V(z=0g)

A=A ANAN#£0) = =y

Az =px)AN(z#0g) = A=p

S O e W N



Démonstration : nous nous contenterons de démontrer les points 1 a 4, mais de deux
manieres différentes.
1. (a) Méthode 1 : Soit z € E. Ogx.z = (Og + Ox).z = Og.x 4+ Og.z en vertu de 'axiome
2)(b). Apres simplification dans le groupe E : Og.z = Op

K—FE
Méthode 2 : Fixons = dans E. En vertu de l'axiome 2)(b), ¢, : { \ est un
T A

morphisme de groupes de (K, +) dans (F,+), donc ¢,(0g) = 0 i.e Ox.z = O
(b) Méthode 1 : Soit A € K. A.Og = A.(Og + 0g) = A\.0g + X\.0g en vertu de I'axiome
2)(a). Apres simplification dans le groupe E : \.0g = 0g

est un

E—FE
Méthode 2 : Fixons A dans K. En vertu de l'axiome 2)(a), ¢, : { ~

morphisme de groupes de (E,+) dans (E,+). Donc ¢(0g) = 0g i.e \.0Og = 0g

2. Soit x € E. ¢, étant un morphisme de groupes additifs, on a ¢,(—1x) = —¢(1k), soit
(—1g).z = —x

3. A=pwax= A+ (—p).z= x+ ((—1g)(u)).x = Az + (—1g).(p.z) = Az — p.x

4. Supposons .z = Op. Si A # Ok, alors A™L.(A\.2) = (A™'A).z = 1g.z = 2 Or par 1)
/\_1-0E =0g,douxz=0g

Remarque : L’axiome (F,+) groupe commutatif est inutile en caractéristique # 2. Le
fait que le groupe (F,+) soit commutatif peut se déduire directement des axiomes 2 :
En effet, soit (z,y) € E2. Alors :
— D’une part, (1x + 1g).(z +y) = lg.(x +y) + lx.(z+y) =z +y+z+y
— D’autre part, (Igx + 1x).(x +y) = (lg + Ig).z+ (Ix + lx).y =z +z+y+y
D’ou en simplifiant par = & gauche et par y a droite : y +x = z +y. Donc (E, +) commutatif.

Définition 1-1-4 : Une partie F' de F est un sous-espace vectoriel de E si F' est stable
pour les deux lois interne et externe, et est un espace vectoriel pour les lois induites. En
abrégé, on écrira sev.

Propriété 1-1-5 (caractérisation d’un sev) : Une partie F' de E est un sous-espace
vectoriel de F si :

1. Op e F
2. Y(z,y) € F2, VAE€K, Ao +y € F

Nous prouvons tres souvent qu'un ensemble F' est un espace vectoriel en justifiant que c’est
un sous-espace vectoriel d'un espace vectoriel bien connu.

Définition 1-1-6 (morphismes d’ev) : Soient E et F' deux K-espaces vectoriels. Une
application v : F — F est dite linéaire si :

1. V(z,y) € E? u(z+1vy) =u(z) + u(y)

2. V(\z) e Kx E u(Ax) = Au(z)
On note L(E, F') ou L(E, F) I’ensemble des applications linéaires de E dans F'; si E = F, on
parle d’endomorphisme. Si u est bijective, d’isomorphisme et d’automorphisme pour
un endomorphisme bijectif.

On note £(FE) ou L(E) 'ensemble des endomorphismes d'un espace vectoriel E et GL(E) ou
GL(FE) celui de ses automorphismes.



Définition et propriété 1-1-7 (image et noyau) : Soient E et F' deux K-espaces vec-
toriels et uw € L(E, F).
1. im(u) = u(F) est un sous-espace vectoriel de F', appelé image de F par u.

2. Ker(u) = u~'(0F) est un sous-espace vectoriel de E, appelé noyau de w.

Propriété 1-1-8 : Soient E et F' deux K-espaces vectoriels et u € L(E, F).
1. u est surjectif si et seulement si im(u) = F

2. u est injectif si et seulement si Ker(u) = {0}

Démonstration :
1. u est surjectif si et seulement si u(E) = F' si et seulement si im(u) = F

2. Supposons u injectif. On a bien évidemment {0z} C Ker(u).. Soit = € Ker(u). Alors
u(z) = 0g = u(0g), donc par injectivité de u, x = O et le résultat annoncé.
Réciproquement, supposons que Ker(u) = {Og}. Soient z,y € E tels que u(z) = u(y).
Par linéarité de u : u(z —y) = Op, donc x —y € Ker(u), d’'ott x = y. Donc u injective.

1.2 Une autre définition de la notion d’espace vectoriel

Nous allons réécrire la loi externe dans la définition d’un espace vectoriel par analogie avec
la notion de groupes opérant sur un ensemble (cf annexe). Nous noterons E¥ I’ensemble des
applications de F dans F et 1 pour 1.

Soit (E,+,.) un K-espace vectoriel.
K — EF . E > E
O ¢)\ :
A= (ﬁ,\
1. L’axiome 2)(d) nous dit que ¢; = idg i.e ¢(1) = idg.

Définissons ¢ : { \
T = A

2. L’axiome 2)(a) nous dit que pour tout A € K, ¢, est un endomorphisme du groupe
additif (E, +)

3. L’axiome 2)(b) nous dit que pour tous A\, u € K : ¢pri, = dr + P
(

~— —

4. L’axiome 2)(c) nous dit que pour tous A\, u € K : ¢y, = ¢r 0 ¢,

Notons End(FE) I'ensemble des endomorphismes du groupe (E,+). Alors (End(E),+,0) est
un anneau pour les lois évidentes :

{(f +9)(z) = f(z) + g(x)
(fog)(z)= f(g(x))

Comme usuellement, tous les anneaux sont supposés unitaires et ici 'unité de End(E) est
idp.

(K, +, x) — (End(E),+,0)
A= qf))\

Les remarques précédentes nous assurent que ¢ : { est un mor-

phisme d’anneaux.

Et la réciproque est VRAIE :

Donnons-nous un corps commutatif (K, +, x), un groupe commutatif (E, +) et un morphisme
d’anneaux (unitaires) ¢ du corps (K, +, x) dans 'anneau (End(E), +, o).



Posons pour tout (A, z) e Kx E A.x = ¢(\)(x) € E.

1. Fixons A € K. Alors ¢()\) € End(FE). D’ou pour tout (z,y) € E? : ¢(\)(z +y) =
d(N)(z) + o(N)(y) ie A(z+y) = Az + Ay Dou 2) (a)

2. Fixons A\, € K. Comme ¢ est un morphisme d’anneaux du corps (K, +, x) dans
I'anneau (End(E),+,0), Vo € E, oA+ p)(z) = ¢(N)(z) + ¢(p)(z) ie A+ p).x =
Az + p.x D’ou 2) (b)

3. Fixons A\, € K. Comme ¢ est un morphisme d’anneaux du corps (K, +, x) dans
lanneau (End(E),+,0), Vx € E, ¢(Au)(z) = (6(N) o d(p))(x) i.e (Au).x = A (p.x)
D’ou 2) (c)

4. Comme ¢ est un morphisme d’anneaux du corps (K, +, x) dans ’anneau (End(FE), +, o),
Ve e E, ¢(lg)(x) =idg(z) i.e lx.x =z D’ou 2) (d)

D’ou la :

Propriété 1-2-1 : Définir un K-espace vectoriel I, ¢’est aussi se donner :
— un corps commutatif (K, +, x);
— un groupe commutatif (E, +);
— un morphisme d’anneaux du corps (K, +, x) dans 'anneau (End(E), +,0).

Comme (K, +, x) est un corps, nous savons que (K*, x) est un groupe.
Les axiomes 2) (c) et 2) (d) peuvent se réinterpréter en terme d’actions de groupes : la
restriction ¢ de ¢ a K* définit une action du groupe (K*, x) sur 'ensemble E.

¢ est donc & valeurs dans le groupe symétrique (S(E), o) mais aussi dans End(E) comme vu
auparavant ; bref (VA € K*) ¢()) € (Aut(E), o).
Donc ¢ induit une action de (K*, x) sur E par automorphismes de groupes i.e une action de

(K*, x) sur (Aut(E),o).
Nous noterons désormais Az a la place de A.xz, ce qui n’améne aucune confusion.

Exemple 1-2-2 : R n’est pas un sev de C. Plus généralement, si K C L sont deux corps
commutatifs, alors L est un K-ev, mais I'inverse est impossible.

Démonstration : Clairement C est un R-ev. La réciproque est fausse. Supposons en effet
par 'absurde qu’il existe un morphisme d’anneaux ¢ de (C,+, x) dans (End(R), +, o).

Or (exercice) End(R) ={f, : R - R,z — az, a € R}.

Mais alors, comme ¢(1) = idg, on a : ¢(—1) = ¢(i%) = ¢(i) o ¢(i) d'une part et ¢(—1) =
—¢(1) = —idg d’autre part.

Si I'on note a I'unique réel tel que ¢(i) = aidg, on a : a®idg = —idg, d’out a®> = —1. Absurde!

Applications :

1. Soit E un R-ev de dimension n > 1. On note K(E) = {f : E — E constantes}. Alors
on peut munir K (F) d’une structure de R-ev. En donner la dimension.

2. Soit (G, +) un groupe abélien.
(a) G peut étre muni au plus d’une structure de Q-ev.

(b) G peut étre muni d’une structure de Q-ev ssi (i) G est sans torsion : (¥Yn € N*)(Vz €
G\ {0}) nxz # 0 et (ii) G est divisible : (Vn € N*)(Vx € G)(Jy € G) = = ny.



1.3 Parties/Familles génératrices, Parties/familles libres, Bases

A. Parties/Familles génératrices

Propriété - Définition 1-3-1 (Combinaison linéaire - sev engendré) : Soit I un
ensemble quelconque.

1.

Soit une famille (z;);c; € E!. On appelle combinaison linéaire des vecteurs (z;)icr
tout vecteur x = Z Aixi, ou J est une partie finie de /.
ieJ
Ainsi, toute combinaison linéaire de vecteurs de E sera toujours une somme finie de vecteurs.
Nous pouvons écrire x = Z)\il’m ot (A;)ier est une famille presque nulle d’éléments
i€l
de K i.e tous les \; sont nuls sauf un nombre fini d’entre eux.

. L’intersection d’un nombre quelconque de sev de E est un sev de F.

En particulier ﬂ F est un sev de E. C’est le plus petit sev de E contenant
ACF | F sevde E
la partie A. On le note Vect(A4) ou < A >.

Vect(A) est 'ensemble des combinaisons linéaires d’éléments de A. On I'appelle espace
vectoriel engendré par la partie A.

En particulier, si A = {z; | ¢ € I}, Vect(z;);cs est aussi ’ensemble des combinai-
sons linéaires des vecteurs r; quand ¢ parcourt I.

Définition 1-3-2 : On dit que la partie X est génératrice de E ou engendre F si tout
élément de F est combinaison linéaire de vecteurs de X i.e Vect(X) = E.
Si X ={x; ; i € I}, on dit aussi que la famille (z;);cs est génératrice de E.

Remarque : Dans le cas ou I = [1;n], (z1,...,2,) est une famille génératrice de E si pour

n
tout vecteur z € E, il existe (A1,...,\,) € K" tel que z = Z AiZi.

i=1

K" —= F

Autrement dit, Papplication (linéaire) { est surjective.

(/\1, cey An) — Z?:l AZ‘QZZ‘

Propriété 1-3-3 (propriété des Vect) : Soient F un K-espace vectoriel, X, Y deux
parties de F et x,a,b € E.

1. inclusion : Si X C Y, alors Vect(X) C Vect(Y)

2. Oter un vecteur : Si x € X est combinaison linéaire d’éléments de X \ {z}, alors
Vect(X) = Vect(X \ {z})

3. remplacer un vecteur (lemme d’échange) : Si b est combinaison linéaire d’élé-
ments de X U{a} avec un coefficient non nul sur a, alors Vect(X U{a}) = Vect(X U{b})

Démonstration :

1. X CY C Vect(Y). Comme Vect(X) est le plus petit sev de E contenant X et que le
sev Vect(Y') contient X, on a par minimalité Vect(X) C Vect(Y).

2. X\ {z} C X, donc par ce qui précede Vect(X \ {z}) C Vect(X). Par hypothese, z € X

est combinaison linéaire d’éléments de X \ {z}, donc X C Vect(X \ {z}).
Toujours par 1. Vect(X) C Vect(X \ {z}). D’ou I’égalité annoncée.



3. Posons B = (z;)ier- On a Vect(X U {b}) C Vect(X U{a}). Par hypothese b = p.a +

1
Z)\il‘i, ou J C I est finie et p # 0. D’ou a = m —b+ Z)\ixi € Vect(X U {b}).
ieJ ieJ

Ainsi Vect(X U {a}) C Vect(X U {b}) et I’égalité annoncée.

B. Parties/Familles libres

Définition 1-3-4 : Soit I un ensemble quelconque.

1. Une famille (;);c; € E! est dite libre si pour toute sous-famille finie (z;);cs (J finie) :

Z)\ixiZOE — (\V/ZEJ) X; = 0.
e

2. La famille (z;);cs est dite liée si elle n’est pas libre i.e s’il existe (au moins) un vecteur
Zi, € E/ qui s’écrive comme combinaison linéaire des autres z;.

Remarque : Dans le cas ou I = [1;n], une famille (z1,...,z,) de E est libre si pour tout
n
(A1,-..y An) € K™ tel que Z)\ixi =0g,ona A\ =---=X\,=0.
i=1
K" - FE
Autrement dit, 'application (linéaire) { " est injective.

Propriété 1-3-5 (propriété des parties libres / liées) : Soient F un K-espace vectoriel,
X, Y deux parties de F et y € F.

1. inclusion : Si Y est libre et X C Y, alors X est libre. (par contraposée, si X est liée
et X C Y, alors Y est liée).

2. ajouter un vecteur : Si X est libre et y ¢ Vect(X), alors X U {y} est libre.

Démonstration :
1. Trivial!
2. Sans perte de généralité, on peut supposer X de cardinal fini (relire la définition de
famille libre). Posons X = {x1,...,2,}.
n
Soit (A1, ..., An, p) € K™ tel que > Niw; + py = 0.

=1

1 n
Sip+#0,alorsy = —— Z)\ﬂ:i € Vect(X). Contradiction! Donc p = 0, et partant,
1

i=1
n
Z)\iac,- = 0g. Or X est une famille libre, donc A\; = --- = X\, = 0. Donc X U {y} est
i=1
libre.
C. Bases

Définition 1-3-6 : Soit E un K-espace vectoriel. Une famille B = (z;);cs est une base de
E si B est une famille libre et génératrice.

Remarque : Une base B est donc une famille qui permet d’écrire n’importe quel vecteur de
FE de maniére unique, comme combinaison linéaire de vecteurs de B.




Propriété 1-3-7 : Soit E un K-espace vectoriel et B = (x;);c;r € ET. Alors :

B = (x;)icr est une base de E ssi (Vz € E) (3!(\;)ier presque nulle) tel que z = Z Ai;.
iel

Les scalaires (\;)ier s’appellent les coordonnées du vecteur z dans la base B.

Remarque : Dans le cas ou I = [1;n], une famille (xy,...,2z,) de E est une base de E si

n
pour tout vecteur x € E, il existe un unique n-uplet (A1,...,\,) € K" tel que x = Z A
i=1
K"— FE
Autrement dit, 'application (linéaire) { " est bijective.

1.4 Premiére caractérisation d’une base

Propriété 1-4-1 : Soit B une partie non vide du K-espace vectoriel E. Les propositions
suivantes sont équivalentes :

1. B est une base de F,
2. B est une partie génératrice de £ minimale pour I'inclusion,

3. B est une partie libre maximale de F pour 'inclusion.
Démonstration : Procédons en prouvant que (1) <= (2) et que (1) <= (3).

(1) = (2) : Soit B une base de E. Alors B est une partie génératrice de E. Prouvons qu’elle
est minimale au sens de l'inclusion. Supposons par I'absurde qu’il existe B’ C B tel que B’
soit encore une partie génératrice de E. Soit alors z € B\ B’ : z est combinaison linéaire
d’éléments de B'. Mais alors B’ U {z} est liée, donc B 2 B’ U {z} aussi. Contradiction.

(2) = (1) : Soit B une partie génératrice de E minimale au sens de I'inclusion. Prouvons
que B est une partie libre. Supposons par ’absurde que ce ne soit pas le cas. Il existe alors
une combinaison linéaire non triviale d’éléments de B telle que Z Apb = 0g.
beB
Soit by € B tel que Ay, # 0 : by = S Z b €< B\ {bp} >. D’apres la propriété 1-3-3,
% beB\{bo}
B\ {bo} engendre E, ce qui contredit la minimalité de B comme partie génératrice de E.

(1) = (3) : Soit B une base de E. Alors B est une partie libre de E. Prouvons qu’elle est
maximale au sens de I'inclusion. Supposons par I'absurde qu’il existe B’ 2 B tel que B’ soit
encore une partie libre de E. Soit alors x € B'\ B : BU{x} C B’ est encore une partie libre de
E. Or B, en tant que base est aussi génératrice de E. Donc il existe une combinaison linéaire
d’éléments de B telle que x = Z A\pb. D’ott BU {x} est liée et donc par la propriété 1-3-5, B/

beB
est liée. Contradiction.

(3) = (1) : Soit B une partie libre maximale de E. Supposons par I’absurde que B ne soit
pas génératrice. Il existe alors x € E \ B tel que z ne soit pas combinaison linéaire d’éléments
de B. Par la propriété 1-3-5, BU {x} est libre. Contredit B partie libre maximale de E.



1.5 Applications linéaires et bases

Théoréme 1-5-1 (Construction d’applications linéaires & ’aide de bases) : Soit
(e;)icr une base de E. Pour toute famille (b;);c; de vecteurs de F, il existe une unique appli-
cation linéaire u : E — F telle que : (Vi € I) u(e;) = b;.

Démonstration :
— Existence : on pose pour toute sous-famille finie de scalaires (\;);cy ou J C I :

icJ ied
— Unicité : S'il existe deux applications linéaires u et v telles que pour tout i € I u(e;) =
v(e;) = b;, alors par linéarité de u et v et du fait que (e;)ier est une base de E :

(Vx € F) u(x) = v(x).

Théoréme 1-5-2 (Critére d’isomorphisme) : Soit £ un espace vectoriel muni d’une
base et v : ¥ — F une application linéaire. Les propositions suivantes sont équivalentes :

1. w est un isomorphisme de E sur F.
2. L’image par u de toute base de F est une base de F'.
3. L’image par u d’UNFE base de F est une base de F'.

Démonstration : en exercice.

1.6 De P’influence du corps K

Nous ne nous étendrons pas sur le sujet dans ce document, mais rappelons simplement que
la notion de K-ev est une structure rigide, dédiée au calcul pour traduire des situations
géométriques. Seulement, si R en tant que corps de base semble naturel, il n’est pas le seul!
Ainsi il y a aussi les corps finis tels les Z/pZ (p premier).

Anticipons un peu sur la suite : considérons par exemple K = C. Alors :
1. C est un C-ev de dimension 1; (1) en est une base.
2. C est un R-ev de dimension 2; (1,4) en est une base.
3. C est un Q-ev de dimension infinie.

Plus généralement, soient K C IL deux corps commutatifs (on dit que IL est une extension de
K). Si dimg (L) est finie, on pose [L : K] = dimg(IL) et lentier [L : K] s’appelle le degré de L.
sur K.

Si K est un corps fini, on a : |L| = [K|", avec n = [L : K].

Théoréme 1-6-1 (de la base télescopique) : Soient K C . C M des corps commutatifs,
(ei)ier une base de L sur K et (f;)jes une base de M sur L. Alors (e;f;); jyerx.s est une base
de M sur K.

Démonstration : Nous allons procéder en 2 étapes :
1. (eifj)(i,j)EIXJ est libre sur K : soit ()\ij)(id‘)eIXJ c KIxJ tel que Z )\ijeifj =0.
(i,5)€IxJ

On a donc Z (Z )\ij@-) fj = 0. Comme (f;);cs une base de M sur L, on a pour tout
jeJ \iel




j€eJ: Z)\Zjei = 0.
i€l
Comme (e;);er une base de L sur K, alors pour tout ¢ € I : A\;; = 0. Bref, pour tout
(Z,j) el xJ, )\,‘j:().
2. (eifj),jyerx. engendre M : soit z € M. Comme (f;);es une base de M sur L, il existe
(1)jes € LN tel que y = >~ i fj.
JjeJ
Comme (e;)ier une base de L sur K, alors pour tout j € J, il existe \;; € KM tel que
My = Z)\ijei. D’ou z = Z )\i7jeifj.
iel (i,j)elxJ

Corollaire 1-6-2 (multiplicativité du degré) : En reprenant les hypothéses du théoréme
précédent, si les degrés sont finis, alors : [M : K] = [M : L][L : K].

Nous ne nous aventurerons pas plus loin dans la théorie des corps, mais invitons le lecteur

intéressé a approfondir ses connaissances a travers des ouvrages classiques ou des ressources
disponibles sur le Web.

Un dernier mot quand méme pour le cas des corps finis.

Exercice : Soit F un Z/pZ-ev de dimension n.
1. Combien existe-t-il de bases dans £ 7
2. Combien existe-t-il d’automorphismes de £ 7

3. Combien existe-t-il de sev de dimension k£ dans E 7
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2 Dimension d’un K-espace vectoriel

Définition 2-0 : On dit qu’un K-espace vectoriel E est de dimension finie s’il admet une
famille génératrice finie. Sinon il est dit de dimension infinie.

Remarque : il peut sembler étrange de parler de dimension finie alors méme que nous n’avons
pas encore défini la notion de dimension d’un espace vectoriel! Certains auteurs préférent
d’ailleurs parler d’espaces vectoriels de type fini, par analogie avec les modules de type fini.
Nous n’adopterons pas ce vocable pour rester en cohérence avec les programmes de bac +1.
Nous verrons plus loin que cette définition a un bien un sens.

2.1 Le cas de la dimension finie

Dans toute cette section, nous considérerons que ’espace vectoriel E est de dimension finie i.e
engendré par un nombre fini de vecteurs de E. Le résultat qui suit est a la base de la théorie
des espaces vectoriels de dimension finie. Sa démonstration, tres jolie, est trés instructive et
a retenir.

Lemme fondamental 2-1-1 : Si un K-espace vectoriel F admet une famille génératrice
de n vecteurs, alors toute famille de n + 1 vecteurs est liée.

Démonstration : Remarquons alors que d’apres la propriété 1-3-5, si m > n, toute sur-
famille de m vecteurs sera liée.

Pour ne pas se trainer le cas ou n = 0, on supposera E # {Og} et donc n > 1.

Notons X = (z1,...,zy,) une famille génératrice de E. Supposons par I'absurde qu’il existe
une famille libre Y = (y1,...,yn+1) de n + 1 vecteurs de E.

Posons pour tout k € [0;n], P(k) : "E est engendré par une famille de n vecteurs dont les
n — k premiers appartiennent & X et les k suivants a Y".

Initialisation : E est engendré par les n vecteurs de X, donc P(0) est vraie.

Hérédité : Soit k € [0; n—1]. Supposons P (k) vraie : "E est engendré par (21, ..., Tn—k Y1, - - - Yk)

pour certains x1, ..., Z,_; vecteurs de X et y1,...,yr de Y" - aucun vecteur de Y par conven-
tion si k = 0.
Comme Y a n + 1 éléments, on peut trouver un vecteur yi4+1 € Y distinct de w1, ..., yx.
n—k k
Yktl = Z Aixi + Z ;Y pour certains A1,..., Ap_g et pq,...,up € K
i=1 j=1

Si tous les A; sont nuls, alors yr11 €< {y1,...,yx} >, donc (y1,...,yk+1) C Y liée. Contra-
diction. Donc il existe i € [1;n — k] tel que A; # 0. Quitte a modifier 'ordre des z;, on peut
supposer \,_ # 0. Mais alors x,_p €< {Z1,...,Zpn—k—1,Y1,---,Yk+1} >, ce qui acheéve la
récurrence.

Avec k = n, on en déduit que F est engendré par n vecteurs de Y. Soit y le n 4+ 1-éme vecteur
de Y autre que ces n vecteurs. Alors y est combinaison linéaire de ces n vecteurs et donc Y’
est liée. Absurde! D’ou le résultat annoncé.
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Théoréme 2-1-2 (existence de bases) : Soit G une famille génératrice finie de E et L
une famille libre de E incluse dans G. Alors il existe une base B de E telle que L C B C G.

Remarquons qu’il existe toujours une famille libre L C G : L = (). Donc 1’énoncé précédent a
bien un sens.

Démonstration : Nous proposons deux démonstrations. La premiere, théorique, est tout
a fait valable, mais n’a pas le c6té algorithmique de la seconde qui est plus utile en pratique.

Méthode 1 (théorique) : Soit £L = {L' ; L ¢ L' C G et L' libre}. L # 0 car L € L.
Considérons le sous-ensemble de N : N = {Card(L') ; L' € L}.

N # ) car Card(L) € N.

N est majorée par n = Card(G) d’apres le lemme fondamental. Donc A/ a un élément maxi-
mum p. Soit B € L de cardinal p. Alors B est une base de E. En effet :

B est libre car B € L, et B est génératrice. Sinon il existerait a € G\ B tel que a ¢ Vect(B).
Mais alors B U {a} serait libre et Card(B U {a}) > Card(B), ce qui contredit la maximalité
de Card(B).

Remarquons que nous avons construit ici une famille libre maximale.

Méthode 2 (algorithme de la base incompléte) : on peut supposer L = (z1,...,2p) et
G = (r1,...,x,) avec p < n.

Si L engendre E, on pose B = L (L base car libre et génératrice).

Sinon :

B <— L (on initialise B par L)
Pour ¢ variant de p + 1 a n faire :
Si x; ¢ Vect(L) faire :
Rajouter x; & B (on ne fait rien si z; € Vect(L)).
Fin Si
Fin Pour
Fin Si

La famille B obtenue & la fin de I’algorithme est nécessairement libre (on a conservé la liberté
a chaque étape) et elle est aussi génératrice. Par construction, elle est génératrice minimale :
on a enlevé a G tous les x; "en trop". C’est donc une base de F.

Corollaire 2-1-3 (théoréme de la base incompléte / extraite) : Soit E # {Og} un
K-ev de dimension finie.

1. Théoréme de la base incompléte : Toute famille libre de E peut étre complétée en
une base finie de F.

2. Théoréme de la base extraite : De toute famille génératrice de F, on peut extraire
une base finie de F.

En particulier, E posséde une base finie.

Démonstration : Nous allons nous appuyer sur le théoréme précédent.

1. Soit G une famille finie engendrant E et L une famille libre de E (donc finie par
le lemme fondamental). Alors G’ = L U G (dans le sens on concaténe L et G) est
une famille génératrice de E. Ainsi, L C G’ et en utilisant l’algorithme de la base
incompléte, il existe une base B de F telle que L C B C G'.
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2. Soit G’ une famille génératrice de E. Comme E est engendrée par une famille finie
G, tout élément de G est combinaison linéaire (donc finie) de vecteurs de G’. Nous
pouvons donc nous ramener au cas ou G’ est finie :

En effet, posons G = (z1,...,2zn) et G’ = (€j) ecs. Pour tout ¢ € [1; N, il existe J; C J
finie et (A j)je, € K7 telle que z; = Z i j€j-

Jje€Ji
~ N ~
Posons alors J = U J;i : J est finie et par construction (trés bon exercice) : Vect(G') =
i=1

Vect(z) e 7 = E. Posons G” = (2) ;7. On a G” C G’ en termes de parties.
Par convention, L = () C G” est libre, donc d’apres 'algorithme de la base incompléte,
il existe une base B de E telle que L C BC G’ Cc G".

Théoréme-définition 2-1-4 : Soit E # {0g} un K-ev de dimension finie. Toutes les bases
de E ont le méme cardinal qu’on appelle la dimension de E. On la note dim(FE).
Si E = {0g}, on décide par convention que dim(E) = 0.

Démonstration : Supposons E # {0g}. Comme E est engendré par un nombre fini n de
vecteurs, nous savons d’apres le lemme fondamental que toute partie libre de F est de cardinal
au plus n. En particulier les bases de F.

Soient B et B’ deux bases de E. Comme B’ est libre et B génératrice, alors Card(B’)<
Card(B). En échangeant les roles de B et de B’ : Card(B)< Card(B’).

Donc Card(B) = Card(B’) et toutes les bases de E ont le méme cardinal.

Ce cardinal commun s’appelle la dimension de E.

Remarques :

1. Ainsi, un espace vectoriel F de dimension finie (= engendré par un nombre fini de
vecteurs par définition) a une dimension (cardinal commun de toutes ses bases) qui est
finie! Ce qui justifie a posteriori cette définition.

2. Si E # {0g}, alors il existe un unique n € N* tel que E soit isomorphe a K".
Autrement dit, la dimension caractérise entierement un K-ev engendré par un nombre
fini de vecteurs[l]

Corollaire 2-1-5 : Soit E un K-ev de dimension n et v = (v, ..., ) une famille finie de
cardinal m.

1. Si v est libre, alors m < n,
2. Si v est génératrice, alors m > n,

3. Sim > n, alors v est liée.

Corollaire 2-1-6 (seconde caractérisation d’une base en dimension finie) : Soit
E un K-ev de dimension n et v = (v1,...,1,) une famille de n vecteurs. Il y a équivalence
entre :

1. v est une base,
2. v est libre,

3. v est génératrice.

1. Ce n’est pas le cas des groupes. Par exemple G = Z/4Z et G = 7Z /27 x 7/27 ne sont pas isomorphes
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Remarque : Dans la pratique, on construira une famille libre de n vecteurs de
E. Encore faut-il connaitre déja la dimension de E'!

Applications :
1. Soient u = (1,1) et v = (—2,1). Prouver que B = (u,v) est une base de R? et
déterminer les composantes d'un vecteur X = (z,y) dans cette base.
2. Soient u = (1,1,2), v=(-2,1,0) et w = (3,0,0). Prouver que B = (u,v,w) est une
base de R? et déterminer les composantes d’un vecteur X = (z,y, z) dans cette base.

3. Prouver que dans FF = K", si les a; ne sont pas tous nuls, alors :
n

H= {X = (z1,...,2,) € K" | Zakxk = 0} est un sev de E de dimension n — 1.
k=1
4. Soit E = K,[X] le K-ev des polynomes a coefficients dans K de degré inférieur ou
égal a n. Alors toute famille de n vecteurs de K,,[X] de degrés (resp. de valuations)
échelonné(e)s est une base de E.
5. Soit A € M,,(K). Les propositions suivantes sont équivalentes :
(a) A est inversible,
(b) A est inversible & droite : 3B € M,,(K) | AB = I,,,
(c) A est inversible a gauche : 3B € M, (K) | BA =1,
(d) (VY € K") l’équation (E) : Y = AX possede au moins une solution X € K.
(e) L’équation (Ep) : AX =0 admet 0 pour unique solution.

6. Soient (ay) et (b,) deux suites d’éléments de K. Les suites (u,) vérifiant :
(Vn € N) upy2 = aptnt1 + bpu, forment un sev de lespace E = KN des suites, de
dimension 2.

7. Soit E un K-ev de dimension n.
(a) Prouver que L(E) est de dimension n?.

(b) Soit u € L(E). Prouver qu'il existe un polynéome P € K[X] tel que P(u) = Org).

Lemme 2-1-7 :

1. Soit (e1,...,e,) une famille libre de E et uw € L(E, F). Supposons u injective. Alors
(u(er),...,u(ey,)) est libre dans F.

2. Soit (eq,...,e,) une famille génératrice de E et u € L(E, F). Supposons u surjective.
Alors (u(ey),...,u(e,)) est génératrice de F'.
Démonstration :
n
1. Soit (A1,...,Ap) € K" tel que Z)\iu(ei) = 0p.
n =1 n n
Par linéarité de w : Z Aiu(e;) = u <Z )\ieZ-), d’ou : w (Z )\Z-ez-) =0p.
i=1 i=1 i=1
n
Par injectivité de u : Z Aie; = 0p. Comme (e, ..., e,) est une famille libre de F,
i=1
A1 =---= X, =0. Donc (u(ei),...,u(ey)) est libre dans F'.

2. Soit y € F. Par surjectivité de u, il existe x € F tel que y = u(x).

n
Comme (eq, ..., ey,) est génératrice de E, il existe (A1, ..., A,) € K" tel que x = Z Ai€;.
i=1

n
Donc par linéarité de u, y = Z Aiu(e;). D’ou (u(ey), ..., u(e,)) génératrice de F'.
i=1
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Remarque : Soient F et F' deux K-ev de dimensions respectives n et p et u € L(E, F).
1. Si u injective, alors : n < p (E est le "plus petit" en dimension)

2. Si u surjective, alors : n > p (E est le "plus grand" en dimension)

Théoréme 2-1-8 : Soient E et F' deux K-ev de méme dimension finie, et v € L(E,F).
Alors : (a) u est injective ssi (b) u est surjective ssi (c) u est bijective.

Démonstration :
1. Tl est clair que (¢) = (a) et (¢) = (b).
2. Supposons (a) vraie et soit B = (ey,...,e,) une base de E. Comme u est injective,
on a par le lemme 2-1-7 : (u(ey),...,u(ey,)) libre dans F'. Ainsi, (u(ey),...,u(e,)) est
une famille libre de n vecteurs de F' qui est de dimension n, c’en est donc une base

d’apres le corollaire 2-1-6. u transformant une base de F en une base de F', le théoreme
1-5-2 nous assure que u est bijection linéaire de E sur F.

3. Adapter le raisonnement précédent en remplagant "libre" par "génératrice" et "injective"
par surjective'.

Contre-exemples :

1. Si les dimensions sont finies mais inégales, le résultat tombe en défaut.
Par exemple, u : (z,y) € K? — (x,y,0) € K.

2. Si les dimensions sont infinies et égales, le résultat est aussi faux.
Considérons par exemple les "shifts" : (u,) € KN = (upi1) € KN ou
(un) € KN+ (0,ug,ug,...) € K.

Application : Soit A une K-algebre associative, unitaire et sans diviseurs de zéro. Si A est
de dimension finie, alors A est un corps.

2.2 Dimension des sev, des produits d’ev et des supplémentaires

Dans toute la suite, nous ne considérerons que des ev de dimension finie.

Théoréme 2-2-1 (dimension d’un sev) : Soit F' un sev d'un K-ev E. Alors F est de
dimension finie et dim(F) < dim(E), avec égalité ssi £ = F.

Démonstration : Commencons par remarquer que toute famille libre de F' est aussi une
famille libre de E.

Si F ={0g}, il n’y a rien & démontrer. On suppose donc F' # {0g}.

Posons N' = {Card(L) | L C F et L libre}.

1. Soit z € F'\ {0}. Alors (z) est libre et donc 1 € N. Ainsi N # 0.

2. D’apres le corollaire 2-1-5, A/ est majorée par n = dim(F). Ainsi, N posséde un plus
grand élément p < n.

3. Soit alors L une famille libre de F' a p éléments. Par construction, L est une famille
libre maximale du K-ev F', ¢c’en est donc une base. Comme toutes les bases ont le méme
cardinal, dim(F') = p < n = dim(FE).

Soit £ un K-ev. Nous rappelons que :
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Définition 2-2-2 :
1. Deux sev F et G de E sont en somme directe si FF NG = {0}

2. Deux sev F' et G de E sont supplémentaires dans F si :
— E=F+G
— FnG={0}.

Ceci signifie que (Vo € E)(3!(f,9) € FxG) |z =f+g¢g.Onnote E=F&G

Théoréme 2-2-3 :
1. Soient E; et Eo deux K-ev de dimensions respectives p et ¢. Alors dim(F x Eq) = p+q.

2. Soient F' et G deux sev d’'un méme K-ev FE, de dimensions respectives p et q.
Alors dim(F & G) =p+q.

Démonstration :

1. Soit By = (e1,...,ep) une base de Ey et By = (fi,..., f;) une base de Ey. On vérifie
aisément que {(e1,0),...,(ep,0),(0, f1),...,(0, f;)} est une base de E; x Exs.

4 {F xG—FoG

(f,9)=f+g
¢ est clairement linéaire, surjective par construction. Enfin, ¢ est injective : soit (f, g) €

Ker ¢. Alors f+g=0gie f=—g. Donc f € FNG = {0g} et partant g = 0p.

est un isomorphisme.

Remarque : Dire que F et G sont en somme directe se traduit aussi par : soit (f,g) € F x G
tel que f+ g =0g, alors f =g =0g.

Plus généralement, nous pouvons énoncer le :

Théoréme et définition 2-2-4 : Soit n € N*.

1. Si Fy,..., F, sont n sev d’'un méme K-ev E, on dit que Fi,..., F, sont en somme

n
directe, et on note @ F;si:
i=1

V(xl,...,xn)EFl><'~><Fn,a;1+~-—i—xn:03 = x1=---=x, =0g.
n n
2. On a alors : dim (@ FZ> = Zdim(Fi)
i=1 i=1

n n
3. De maniere générale, dim <Z FZ> < Z dim(F;)
i=1 i=1

Remarque : Nous avons vu au théoreme 1-5-2 qu’une application linéaire u était entiere-
n

ment définie par I'image d’une base. De méme, si E = @ F;, u est entierement définie par sa
i=1
restriction aux Fj.

Théoréme 2-2-5 :
1. Tout sev F' admet (au moins) un supplémentaire G et dim(E) = dim(F') + dim(G).

2. Deux supplémentaires G et H d’un méme sev F' sont isomorphes.
Le résultat est faux en dimension infinie.
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Démonstration :

1. Soit B = (e1,...,ep) une base de F'. On la compléte en une base B = (eq, ..., €p, €pi1, - .-

de E. Alors G = Vect(epy1,. .., e,) est clairement un supplémentaire de F' dans E. On
applique ensuite le théoréme précédent pour établir que dim(F) = dim(F') + dim(G).

2. Soit Bp = (e1,...,ep) une base de F. Soit Bg = (gp+1,- - -, gn) une base de G et By =
(hp+1, ..., hn) une base de H. Par le théoreme 1-5-1, il existe une unique application
linéaire u : G — H telle que (Vi € [p + 1;n]) u(g;) = hi. u transforme une base de G
en une base de H, donc d’apres le critére d’isomorphisme 1-5-2, u est un isomorphisme
de G sur H.

Le cas de la dimension infinie est tres révélateur d’'une complexité croissante.

Considérons par exemple le E = K[X], ot K = R ou C. E est de dimension infinie (cf
paragraphe 2.4). Soit maintenant F' = XK[X]. Il est clair que F' est un sev de E.
Soient G1 = {P € E | P constant} et Go = Vect({X + 1}).

1. Gy est un supplémentaire de F' dans E : en effet, tout polynéme P € E peut s’écrire
sous la forme P = (P — P(0)) + P(0). P— P(0) € F et P(0) € Gy, donc E C F' + Gj.
L’inclusion inverse étant évidente, on a ¥ = F + (37.

De plus, F NGy = {0g} : en effet, soit P € F N Gy, alors P(0) = 0 et comme P
constant, P est identiquement nul.

2. G2 est un supplémentaire de F' dans F : en effet, tout polynéme P € F peut s’écrire
sous la forme P = (P — P(0)(X + 1)) + P(0)(X + 1). P — P(0)(X + 1) € F (facile)
et P(0)(X + 1) € Gg, donc E C F + (9. L'inclusion inverse étant évidente, on a
E =F + Gs.
De plus, F NGy = {0g} : en effet, soit P € F'N Ga, alors P est de la forme k(X + 1)
et P(0) =0, d’ou k =0 puis P = 0p.

3. Et pourtant, G et G2 ne sont pas isomorphes. En effet, dim(G;1) =1 et dim(G2) = 2.

Pour mesurer le "défaut de somme directe", nous avons le :

Théoréme 2-2-6 (Théoréme de Grassmann) : Soit £ un K-ev et F, G deux sev de E
tels que E = F + G. Alors : dim(E) = dim(F) 4+ dim(G) — dim(F N G).

Démonstration : Nous donnons ici deux démonstrations de ce résultat fondamental.

1. Démonstration 1 : Soit B; = (eq,...,e,;) une base de F'N G que 'on compleéte en une
base Br = (e1,...,er, f1,..., fp) de F et en une base Bg = (e1,...,€r,91,...,9q) de
G. Ainsi, dim(FNG) =r, dim(F) =r + p et dim(F) =r +q.

Prouvons que B = (e1, ..., e, fi,..., fp, g1, ..., 9q) est une base de E.
Soient Ai,..., Ap, 41, .., p, V1, ...,V des scalaires tels que :
T p q
doNiei+ Do uifi+ > vkgr =0
i=1 j=1 k=1
Alors :
T p q
Z/\iei—i-zujfj = —Zl/kgk efFnG
i=1 j=1 k=1
————
cF eG
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Donc il existe des scalaires A, ..., A tels que

q T
=Y vkge = Y Nes
k=1 =1
ie:
T q
Z)\;ei + Z vpgr =0
i=1 k=1
Comme (eq,...,€r,g1,...,7q) st une base de G, on a (Vi € [1;7]) X, =0

r P
et (Vk € [1;q]) vk = 0. Dowt = > Nies + > _ ;i fj = 0.
i=1 j=1
Comme (ey,..., e, f1,..., fp) est une base de F', on a (Vi € [1;r]) \i =0
et (Vj € [1;p]) pj = 0.
Ainsi, B = (e1,...,er, f1,..., fps 91, .., 9q) est une famille libre de E. Comme E =
F + G = Vect(F UG), B est aussi une famille génératrice de E. C’est donc une base
de E.
Mais alors, dim(E) = r+p+q = (r+p)+(r+q)—r = dim(F) +dim(G) —dim(FNG).
2. Démonstration 2 : Cette derniére repose sur le théoreme du rang vu au paragraphe
d’apres. Son avantage : la rapidité!

FxG—FE

(z,y) —»z+y

D’apres le théoreme du rang : dim(F' x () = rang(u) + dim ker(u).
Or E = F' + G, donc u est surjective, et donc rg(u) = dim(E).

Par ailleurs, dim(F' x G) = dim(F') + dim(G),

Puis ker(u) = {(z,y) e F xG |z +y =0} ={(z,—x) | z € FNG}.

Considérons ’application linéaire u : {

Finalement, dim(F') + dim(G) = dim(F + G) + dim(F N G).
D’ou dim(F + G) = dim(F) + dim(G) — dim(F N G).

2.3 Notion de rang d’une famille de vecteurs / d’une application linéaire
Définition 2-3-1 : Soit F = (u;);cs une famille de vecteurs d’'un K-ev E. On appelle rang

de F la dimension de Vect(u;);er. On le notera rg(F).

Remarque : Le rang de F est en quelque sorte le nombre maximal de vecteurs linéairement
indépendants de F. En statistiques, on parlerait de degrés de liberté.
Nous travaillons ici en dimension finie, par conséquent le rang de toute famille de vecteurs

sera nécessairement fini. Nous pouvons donc nous limiter & une famille finie (z1,...,zp).
Proposition 2-3-2 :  Soit £ un K-ev de dimension n et (z1, ..., xp) une famille de p vecteurs
de E.

1. rg(z1,...,zp) <petrg(zy,...,zp) < nierg(zy,...,zp) < min(n,p).

2. rg(x1,...,xp) = p ssi la famille est libre (donc forcément p < n).

3. rg(x1,...,xp) = n ssi la famille est génératrice (donc forcément n < p).

Démonstration : Immédiat d’apres la remarque précédente.
Corollaire 2-3-3 : (x1,...,x,) est une base de E ssi rg(z1,...,z,) = n.
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Proposition 2-3-4 : Le rang d’une famille (z1,...,x,) est invariant par les transforma-
tions élémentaires suivantes :

1. permutation des vecteurs x;.
2. multiplication d’un vecteur par un scalaire non nul.

3. addition & un vecteur d’une combinaison linéaire des autres vecteurs.

Application :

1. Soit E = RR le R-ev des fonctions de R dans R. Considérons la famille infinie de
fonctions (f)ner de E (lui aussi de dimension infinie). Alors (fy)ner est de rang 2
dans FE.

2. Dans un ev, soient n vecteurs constituant un systeme de rang r. On en extrait p
vecteurs formant un systéme de rang s. Alors r < s +n — p.

Définition 2-3-5 : Soient E et F' deux K-ev, avec E de dimension finie et u € L(E, F).
Alors :
dim(F) = rg(u) + dim(ker(u))

ou rg(u) = dim(im(u)).

Démonstration : Soient (ej,...,e,) une base de ker(u) que 'on complete en une base
(é1,...,€n) de E. Posons E' = Vect(ey41,...,e,) de sorte que E = ker(u) @ E'.
Une application linéaire étant entierement déterminée par ses restrictions a des sev supplé-
mentaires, il suffit de prouver que E’ et im(u) sont isomorphes.
;o
Considérons ’application linéaire v : {E — im(u)
— v injective ? Soit = € ker(v). Alors x € E' et v(z) = u(x) = 0p. Comme E’ Nker(u) =
{0g} et que O = Opr, on a z = Ogs. Donc v injective.
— v surjective? Soit y € im(u) : (3z € E) y = u(x). Or E = ker(u) & E’, donc
Mg, zp) €ker(u) X E' ; x =xx +xp. Dot u(z) = u(zr) + u(zp) = u(zp).
Comme zg € E', on a u(zg) =v(xg). Doty = v(zg) et v surjective.

Ce théoreme donne toute sa mesure a ’aide de la notion d’espace vectoriel quotient que nous
détaillerons dans un prochain papier.

Remarque et applications :
1. ATTENTION! On ne dit surtout pas que F = ker(u) @ im(u).

2. Comme vu précédemment, nous pouvons utiliser ce théoreme pour retrouver la formule
de Grassmann.

3. Nous pouvons également retrouver le fait qu’en dimension finie, si u € L(F), alors u
bijective ssi u injective ssi u surjective.
4. Soient u € L(E,F) et v € L(F,G). Alors :

(a) Si v est de rang fini, alors v o u aussi et rg(v o u) < rg(v).
(b) Si u est de rang fini, alors v o u aussi et rg(vou) < rg(u).

(c) Siwu et v sont de rangs finis, alors v o u aussi et rg(v o u) < min(rg(u),rg(v)).
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2.4 Le cas de la dimension infinie

Nous ne traitons ici que le probléeme de ’existence de bases en dimension infinie.

Un premier exemple d’espace vectoriel de dimension infinie est par exemple E = K[X], ou
K =R ouC.

Démonstration : Supposons par 'absurde que F = K[X] soit de dimension finie. Il existe
alors une famille G = (P;)1<i<pn de polynémes (que 'on peut supposer de degrés échelonnés)
engendrant E. Notons p; = deg(P;) pour tout i € [1;n].

XPrtl pe peut étre une combinaison linéaire des P;, sinon, il existerait (A1,...,\,) € K™ tel
n n

que XPrtl = Z AP;. D’ou deg(Xp"+1) =pp+1=deg Z )\Pi> < pp. Absurde!
i=1 i=1

Théoréme 2-4-1 : Soit £ un K-ev. Les propriétés suivantes sont équivalentes :
1. E n’est pas de dimension finie

2. Il existe dans F une famille libre infinie.

Exemples : Nous en avons déja rencontré.
1. L’espace vectoriel E = K[X] des polynémes & coefficients dans E = K.

2. L’espace vectoriel E = K& des suites d’éléments de K nulles & partir d’un certain
rang.

3. L’espace vectoriel E = KN des suites d’éléments de K.

4. L’espace vectoriel E = R® des fonctions de R dans R. On le note aussi F(R,R).

Exemples :
1. (X*)pen est une famille libre infinie (et méme une base) de K[X].

2. Posons ¢y = (1,0,0,0,...), eg = (0,1,0,0,...),etc. La famille infinie (e;);cn est une
base de K™ | mais pas de KN.

3. Soit p1 = 2,p2 = 3,p3 = 5,... la suite infinie des nombres premiers. Alors la famille
(In(p1),In(p2),...) est Q-libre dans le Q-ev R.

Théoréme 2-4-2 (existence de bases) : Soit F un K-ev de dimension infinie.
1. E admet une base.
2. Toute famille libre de E peut étre complétée en une base.
3. De toute famille génératrice de F/, on peut extraire une base.
4

. Tout sev F' admet au moins un supplémentaire.

Démonstration : Nous allons utiliser le lemme de Zorn.

1. Notons £ l'ensemble des parties libres de E, ordonné par inclusion (c’est donc un
ordre partiel). Soit (L;)ie;r une famille totalement ordonnée d’éléments de L. Alors
L= U L; est un élément de L : en effet, soit {i1,...,47,} une partie finie de I. Sans

i€l
perte de généralité, puisque (L;);er est une famille totalement ordonnée, on peut sup-
poser L;, C Ly, C --- C L;,. Donc s’il existe des scalaires Aq,... A, et des vecteurs
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n
xj € L;; tels que Z Ajxj = 0, alors comme L;, est libre, Ay = --- = A\, = 0. De plus,
j=1
par construction, L est un majorant de £ : (Vi € I) L; C L.
Donc d’apres le lemme de Zorn, £ admet au moins un élément maximal B pour l'in-
clusion.
Cet élément est une base, car sinon on pourrait trouver un vecteur x ¢ Vect(L) et
alors L U {x} serait encore libre. Absurde par maximalité de L.
2. Le méme argument montre que si L C G, ou L est une partie libre et G une partie
génératrice, il existe une base B telle que L C B C G. C’est le théoréme de la base
incompléte.

3. On peut compléter une base de F' en une base de E.

Remarque : En dimension infinie, on peut trés bien avoir deux ev isomorphes tels que I'un
d’eux contient strictement ’autre.
Considérons par exemple E = K[X] et F = XK[X]. On a F' C FE, et pourtant E ~ F.

E—-F
Il suffit en effet de constater que w : est bien un isomorphisme de E sur F.
P—XP

Théoréme 2-4-3 (équipotence des bases) : Soit £ un K-ev de dimension infinie. Toutes
les bases sont équipotentes.

La démonstration est admise.
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2.5 Synthese : définir correctement la dimension d’un ev de dimension
finie.

Nous considérons ici un K-ev F de dimension finie n : E est de dimension finie si £ admet
une famille génératrice finie. Sinon F est dit de dimension infinie.

Nous supposons connues les notions de familles libres, génératrices et de bases.

Nous connaissons en particulier la caractérisation d’une base :

B est une base de E ssi B est une famille génératrice minimale ssi B est une famille libre
maximale.

Voici les résultats fondamentaux de définition de la dimension d’un ev de dimension finie :

1. Remplacer un vecteur (lemme d’échange) : Si b est combinaison linéaire d’éléments
de X U{a} avec un coefficient non nul sur a, alors Vect(X U {a}) = Vect(X U {b})

2. Lemme fondamental : Si un K-espace vectoriel ¥ admet une famille génératrice de n
vecteurs, alors toute famille de n + 1 vecteurs est liée.

3. Théoréme d’existence de bases (se base sur 'algorithme de la base incomplete ) :
Soit G une famille génératrice finie de E et L une famille libre de F incluse dans G.
Alors il existe une base B de F telle que L C B C G.

4. On déduit du théoreme précédent la version pratique suivante :

(a) Théoréme de la base incompléte : Toute famille libre de E peut étre complétée
en une base finie de E.

(b) Théoréme de la base extraite : De toute famille génératrice de E, on peut
extraire une base finie de FE.

En particulier, I/ posséde une base finie.

5. Théoréme-définition : Soit E # {0g} un K-ev de dimension finie. Toutes les bases
de F ont le méme cardinal qu’on appelle la dimension de E. On la note dim(F).
Si E = {0g}, on décide par convention que dim(F) = 0.
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3 Quelques applications plus poussées

Les présentes applications ne sont que quelques pistes, laissées en exercice au lecteur (a la
lectrice), bien loin de couvrir le sujet. Nous détaillerons leur résolution dans un prochain
article portant sur les applications de la dimension finie en algebre et en analyse. La plupart
sont cependant ultra-classiques et sont traités dans la plupart des ouvrages de niveau L3.

3.1 Applications en algebre

Les deux premiers items concernent la structure d’espace vectoriel ; les suivants se concentrent
spécifiquement sur la notion de dimension.

1. Soit V un Q-ev de dimension finie et f : V — V une application Q-linéaire telle que
f3 = 2idy. On choisit une racine o de P = X3 — 2 dans C. Alors V est naturellement
muni d’une structure de Q[aj-ev. En déduire que 3 divise dimg(V).

2. Soit K un sous-corps d'un corps commutatif I et £ un espace vectoriel non nul.
Les propositions suivantes sont équivalentes :

(a) Il existe sur E une structure de L-ev qui induit la structure de K-ev.
(b) Il existe un morphisme injectif de K-algebre de L dans Lx(FE) envoyant 1 sur idg.

Que dire de dimg(F) si E est un R-ev de dimension finie ?
3. Indice de Fitting
4. Théoreme de Skolem-Noether

5. Lemme de Brauer

3.2 Applications en analyse

Des résultats importants

1. Si E est un K-espace vectoriel normé de dimension finie, K C E est compact si et
seulement si K est fermé et borné.

2. Si E est un K-espace vectoriel normé de dimension finie, toutes les normes sont équi-
valentes.

Théoreme de projection sur un convexe fermé et méthode de Galerkin.
Tout opérateur compact est limite d’opérateurs de rang fini.
Méthode des moindres carrés en statistiques.

Théoréme des extrema liés.

NS et W

Soit (F,d) un C-espace vectoriel métrique complet séparableﬂ S une partie dénom-
brable dense de E et A € L.(E).

Un point 2 € E est dit hypercyclique pour A lorsque lorbite {A™(z);n € N} est dense
dans E. L’ensemble des points hypercycliques pour A est noté HC(A).

Si E est de dimension finie, alors HC'(A) = 0.

8. Théoréme de Grothendieck (mon développement personnel!) : Soit I =]0;1]
et p € [1;400[. Soit S C LP(I) un sous-espace vectoriel fermé. On suppose que S C
L*>(I). Alors S est de dimension finie.

2. un espace métrique est dit séparable s’il admet une partie dénombrable dense
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4 Annexes

4.1 Ensembles ordonnés et lemme de Zorn

Définition 4-1-1 :
1. Soit E un ensemble et R une relation binaire sur £. On dit que R est une relation
d’ordre sur E si :
— R est réflexive : (Vx € FE) zRx
— R est antisymétrique : (Vz,y € E) 2Ry A yRex — z =y
— R est transitive : (Vz,y,z € E) 2Ry N yRz — zRz
2. Le couple (F,R) est appelé ensemble ordonné. On posera souvent < pour R.

3. (E,R) est dit totalement ordonné si (Vz,y € E) z <y V y < x : 2 éléments de
FE sont toujours comparables. Si ce n’est pas le cas, on dit que E est partiellement
ordonné.

4. Soit A C E. On dit que ¢ € FE est UN majorant de A si (Vz € A) x <c.
5. On dit que m € E est UN élément maximal de E si pour tout z € E tel que m < z,
on a nécessairement x = m.

6. On dit que F est inductif si tout sous-ensemble totalement ordonné de E admet un
majorant.

Lemme de Zorn : Tout ensemble ordonné, inductif, non vide, admet un élément maximal.

4.2 Opérations de groupes

Définition 4-2-1 : Soit G un groupe de neutre 1 et F un ensemble. On dit que le groupe
G opére sur ’ensemble F s’il existe une loi externe x : G x E — E, (g,z) — g*x telle
que :

1. VzeE)lxz=x

2. (Vg,9' € G)(Vx € E) g (¢ xx) = (99') *
On dit alors que F est un G-ensemble.

Proposition 4-2-2 : Soit G un groupe de neutre 1 et E un ensemble. G opére sur F si et
seulement s’il existe un morphisme de groupes ¢ de G sur (S(E), o).

Démonstration :

1. Supposons que le groupe G agisse sur 'ensemble E. Notons * la loi externe définie sur

. o G — EF .
G x E a valeurs dans E. Définissons ¢ : ou (Vz € E) ¢(g9)(x) = g*z.

g (9)
Prouvons que (Vg € G) ¢(g) est une bijection de F dans F i.e ¢(g) € S(F).
(a) Commengons par remarquer que puisque (Vz € E) 1 xx =, on a ¢(1) = idg.
(b) De plus, (Vg € G) ¢(g97") = d(g~'g) = ¢(1) = idp.
Or comme (Vz € E) x = 1xz = (g7 'g)*x = g 1% (g*x), on a donc ¢(g~ 1) op(g) =
idg. De méme ¢(g)og(g~") = idp. Donc (Vg € G), ¢(g) € S(E) et d(g)~" = ¢(g7 ).
(c) Enfin, (Vg,9" € G)(Vz € E) g (9" x ) = g (6(9)(2)) = 6(9)(0(d)(2)) = d(g) ©
#(g')(z) dune part, et ¢(gg')(x) = (g99') * x = g * (¢’ x x) d’autre part. Donc
d(99’) = ¢(g) o #(¢'). Ainsi, ¢ est un morphisme de (G,.) sur (S(E), o).
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2. Réciproquement, soit ¢ un morphisme de (G,.) sur (S(E),o).
On a donc ¢(1) = idg. Posons pour tout g € G et pour tout z € E, g xx = ¢(g)(x).

(a) Comme ¢(1) =idg, ona (Vx € E) 1xx = ¢(1)(x) = .

(b) De plus, (Vg,9" € G) ¢(g99") = ¢(g) o #(¢'). Donc (Vx € E) (99) * x = ¢(g99')(x) =
(9(g) o 9(g")) (=) = ¢(9)(¢(g')(x)) = d(9)(g' *x) = g * (¢' * z).

Remarque : Cette équivalence de définition permet de considérer une action de groupes de
deux fagons, I'une ou 'autre étant plus ou moins utile selon le contexte.

Définition 4-2-3 :

1. Le sous-ensemble de F : Gxx = {g*x | g € G} s’appelle 'orbite de = sous l'action
de G.

2. Soit x € E. On appelle stabilisateur de x le sous-groupe de G (exercice) défini par :
Ste ={9€G|grx=a}={g9€G|¢(g)(x) ==z}

Définition 4-2-4 : Soit E un G-ensemble.

1. On dit que G agit transitivement sur E (ou que l'action de G sur FE est transitive)
s’il n’existe qu’une seule orbite i.e (Vo,y € E)(dg € G) y = g * x.

2. Une action est dite libre si tous les stabilisateurs sont réduits au neutre de G.

3. Une action est dite fidéle si 'intersection de tous les stabilisateurs est réduite au neutre

4.3 Anneaux, corps
Définition 4-3-1 : Soit A un ensemble muni de 2 lois de composition interne + et . telles
que :

1. (A, +) soit un groupe commutatif (on notera 0 son neutre).

2. . est distributive par rapport & + : Vx,y,2 € A : z.(y+z)=xy+x.2

3. . possede un élément neutre distinct de 0. On le notera 14. Vx € A : lpx=z.14 =2

(A,+,.) est appelé anneau.

Si de plus la seconde loi . est commutative, on parle d’anneau commutatif.

Tout élément inversible pour la seconde loi . s’appelle une unité de A.

Si tous les éléments non nuls de A sont inversibles, on dit que ’anneau (A, +,.) est un corps.

Remarque : Certains auteurs ne gardent que les points 1 et 2 pour définir un anneau. En
rajoutant le point 3, ils parlent alors d’anneaux unitaires (ou uniféres). Nous décidons ici que
tous les anneaux sont unitaires.

Définition 4-3-2 : Soient A et B deux anneaux (unitaires par convention). On dit qu'une
application ¢ : A — B est un morphisme d’anneaux si :

L.Ve,ye A : ¢z +y) = o)+ oly) et dp(z.y) = ¢(x).0(y)
2. ¢(14) = 1p

Nous noterons désormais zy pour x.y et 1 pour 14.
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4.4 Bibliographie / Webographie
Les ressources internet sont nombreuses et riches, mais quatre m’ont particulierement tapé
dans 'ceil :

1. La chaine Youtube Maths adultes, de Gilles Bailly-Maitre, professeur a I'université de
la Rochelle. Tres pédagogique et pleine de bonne humeur : https://www.youtube.
com/watch?v=AFdeofSJEW0&1ist=PLE8WtfrsTAimNyRsaB2kLZqKvykuliUAr

2. les cours de Christophe Bertault, professeur de MPSI au lycée Saint-Louis : http:
//christophebertault.fr/

3. les cours d’ Alain Troesch, professeur de MP au lycée Lakanal : http://alain.
troesch.free.fr/

4. les cours de Pierre-Jean Hormiere, professeur de chaire supérieure retraité. Une vraie
mine de savoir ! Hélas, le site n’est plus en ligne.
La littérature est aussi abondante, mais j’ai retenu :

1. P. Caldero - J. Germoni - Nouvelles histoires hédonistes de groupes et de géométrie I
- Calvage & Mounet (2019)

. F. Cognet - Algebre linéaire - Bréal (2000)

3. G. Diaz-Toca - H. Lombardi - C. Quitté - Modules sur les anneaux commutatifs -
Calvage & Mounet (2014)

. R. Goblot - Algebre linéaire - Masson (1995)
. S. Roman - Advanced Linear Algebra (Third Edition) - Springer (2008)
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