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Résumé : Ce document inaugure une trilogie destinée aux étudiants en statistiques appliquées
(psychologie, pharmacie, BTS) ainsi qu’aux enseignants qui souhaitent se former à la notion
de tests d’hypothèse.

Le premier épisode souhaite introduire doucement mais sûrement le lecteur à la notion de tests
d’hypothèses, ainsi que détailler a minima les techniques qui leur sont rattachées. Un accent
particulier sera porté sur la délicate notion de p−valeur si utile en pratique mais parfois mal
comprise. L’outil informatique (via les logiciels R et Geogebra) nous servira d’illustration dans
divers contextes pratiques. L’accent est mis sur Geogebra pour des raisons pédago-
giques mais R et Python seront mis à l’honneur dans les TP. De nombreux Quiz
émailleront ces trois documents dans le but de familiariser le lecteur avec ces concepts-clefs.
Les solutions seront presque toutes données à la fin.

Le second épisode couvrira les tests d’indépendance du khi-deux, les tests de préférence, la
régression linéaire, les tests de normalité, l’ANOVA, les tests non paramétriques, etc.

Enfin, le troisième et dernier épisode concernera des cas pratiques d’ACP et d’AFC ou de
classification hiérarchique ascendante, utiles dans les classes de BTSA.
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1 Principes d’un test d’hypothèses

Nous supposons le lecteur familier avec les notions de population, d’échantillon aléatoire
simple, et d’estimation. Les lois usuelles comme la loi normale, la loi de Student ou la
loi du khi-deux sont supposées connues.

1.1 Scène et acteurs

Exemple 1 :
Une pandémie sévit dans une certaine région du globe. Un test de dépistage est disponible
pour celle-ci, mais n’est pas fiable à 100%. Nous cherchons à déterminer si un individu prélevé
au hasard dans la population est sain ou malade à l’aide de ce test.

Il est usuel en statistiques de définir deux situations incompatibles entre lesquelles il nous
faudra faire un choix :

1. L’hypothèse nulle, notée H0 : "Il n’y a pas d’effet significatif",

2. L’hypothèse alternative, notée Ha ou H1 : "Il y a un effet significatif"

Mais qu’est-ce qu’un effet non significatif dans le cas présent ? Ou son contraire ?
Il semble naturel ici de reformuler nos deux hypothèses par :

— H0 : "L’individu est sain"
— H1 : "L’individu est malade"

Ce que nous pouvons résumer dans le tableau suivant :

Décision
Réalité

H0 vraie H1 vraie

H0 décidée Vrai négatif Faux négatif
H1 décidée Faux positif Vrai positif

Quiz 1 : Nous supposons que la probabilité pour un individu donné d’être malade est de
0,005. La sensibilité (Se) est la probabilité qu’un test réalisé sur une personne malade se
révèle positif ; autrement dit, que le test soit positif sachant que la personne est malade. La
spécificité (Sp) est la probabilité qu’un test réalisé sur une personne saine se révèle négatif ;
autrement dit, que le test soit négatif sachant que la personne n’est pas malade. On note VP
(resp. VN) la probabilité d’avoir un vrai positif (resp. un vrai négatif) et FP (resp. FN) la
probabilité d’avoir un faux positif (resp. un faux négatif).

1. La sensibilité d’un test est égale à :
(a) V P

V P+V N (b) V P
FP+V N (c) V P

V P+FN (d) V P
FP+FN

2. la spécificité d’un test est égale à :
(a) V N

V P+V N (b) V N
FP+V N (c) V N

V P+FN (d) V N
FP+FN

3. La sensibilité du test est estimée à 0,997. La probabilité qu’un individu aléatoire soit
testé positif et soit malade est de :
(a) 0,0997 (b) 0,0499 (c) 0,00499 (d) 0,0055

4. La probabilité qu’un individu aléatoire soit testé négatif et soit sain est de 0,9552. La
spécificité du test est de :
(a) 0,094 (b) 0,96 (c) 0,0095 (d) 0,9755

5. Un laboratoire effectue ce test sur 10 individus indépendants choisis aléatoirement.
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(a) La probabilité qu’un individu donné soit déclaré sain à l’issue d’un test est égale à :
(a) 0,005 (b) 0,0448 (c) 0,995 (d) 0,9552

(b) La probabilité qu’au moins un individu soit déclaré malade à l’issue des 10 tests est
égale à :
(a) 0,0489 (b) 0,3677 (c) 0,6323 (d) 0,1385

1.2 Erreurs de type 1 et de type 2 - Puissance d’un test

La lecture du tableau précédent nous amène à considérer deux types d’erreurs : déclarer un
individu sain comme malade (Faux positif) ou déclarer un individu malade comme sain (Faux
négatif).
Le cas présent (très artificiel) nous permet de calculer exactement ces erreurs.

Ainsi, en reprenant les données du Quiz 1 :
α = PH0 vraie(Décider H1) = Pêtre sain(avoir un test positif) = 1− Sp = 0, 04.
β = PH1 vraie(Décider H0) = Pêtre malade(avoir un test négatif) = 1− Se = 0, 003.

Définition 1-2-1 :

1. On appelle erreur de première espèce et on note α la probabilité de décider H1 alors
que H0 est vraie (i.e la probabilité de rejeter H0 à tort).

2. On appelle erreur de seconde espèce et on note β la probabilité de décider H0 alors que
H1 est vraie (i.e la probabilité d’accepter H0 à tort).

Le tableau précédent peut se reformuler ainsi :

Décision
Réalité

H0 vraie H1 vraie

H0 décidée 1− α β
H1 décidée α 1− β

Définition 1-2-2 : On appelle puissance d’un test statistique la probabilité de décider H1

(dire qu’il y a un effet significatif) alors que H1 est vraie (il y a effectivement un effet signifi-
catif). Autrement dit, la puissance du test est égale à 1− β.

Le lecteur se convaincra sans peine que la puissance du test précédent est de 0,997 (c’est la
sensibilité Se). Ce qui, nous le verrons en détail, est excellent. Mais nous avions toutes les
données en main !
Une autre remarque : si p désigne la proportion de malades dans la population, Se la sensibilité
du test et Sp la spécificité du test, la probabilité qu’un individu soit déclaré positif à l’issue
du test est égale à :

pSe+ (1− p)(1− Sp)

Un autre exemple éclairant est la tenue d’un procès. À vous de formuler les hypothèses
H0 et H1 et d’interpréter les deux types d’erreur.

Passons maintenant à un cas plus calculatoire.

Exemple 2 : On s’intéresse à la masse moyenne d’un élevage de lapins dans la ville de Clapiers.
On confronte deux hypothèses :
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— H0 : la masse des lapins est distribuée selon une loi normale de moyenne µ0 = 1, 4 kg
et d’écart-type σ0 = 0, 3 kg,

— H1 : la masse des lapins est distribuée selon une loi normale de moyenne µ1 = 1, 7 kg
et d’écart-type σ1 = 0, 4 kg.

On prélève un échantillon aléatoire simple de 16 lapins dans cet élevage. Nous rappelons que si
X ↪→ N (µ;σ), alors la variable aléatoire X̄ qui à tout E.A.S (échantillon aléatoire simple) de
taille n associe la moyenne du caractère observé, suit la loi normale de moyenne µ et d’écart-

type σ√
n

i.e X̄ ↪→ N
(
µ;

σ√
n

)
.

On se donne la règle de décision suivante : si la masse moyenne des lapins de l’échantillon est
inférieure à 1,5 kg, on ne rejette pas H0, sinon on rejette H0.
Calculer les risques α et β et en donner une interprétation graphique.

Soit X̄ la variable aléatoire qui à tout échantillon aléatoire simple de 16 lapins lui associe sa
masse moyenne.
Sous H0, X̄ ↪→ N (1, 4; 0, 075).
α = PH0 vraie(Décider H1) = PH0 vraie(X̄ ≥ 1, 5) = 0, 0912.
Sous H1, X̄ ↪→ N (1, 7; 0, 1).
β = PH1 vraie(Décider H0) = PH1 vraie(X̄ ≤ 1, 5) = 0, 0228.

Illustrons ceci graphiquement :

Quiz 2 : Deux scientifiques souhaitent comparer la taille des tardigrades d’un glacier. Pour
ceci, ils se réfèrent chacun à deux études distinctes. La première étude, de grande ampleur, af-
firme que les tailles des tardigrades sont distribuées selon une loi normale de moyenne 1,1 mm
et d’écart-type 0,012 mm. La seconde prétend que les tailles des tardigrades sont distribuées
selon une loi normale de moyenne 1,116 mm et d’écart-type 0,018 mm.
On prélève un échantillon (assimilé à un échantillon aléatoire simple) de 16 tardigrades de
ce glacier. On se donne la règle de décision suivante : si la taille moyenne des tardigrades de
l’échantillon est inférieure à 1,106 mm, on ne rejette pas les données de la première étude ;
sinon, on ne rejette pas les données de la seconde étude.
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On appelle µ la taille moyenne des tardigrades de ce glacier. On décide pour hypothèse nulle
H0 : µ = 1, 1 et pour hypothèse alternative H1 : µ = 1, 116.

1. Le risque α est égal à :
(a) 0,9996 (b) 0,6915 (c) 0,9772 (d) 0,0228

2. La puissance du test est égale à :
(a) 0,0004 (b) 0,9869 (c) 0,0478 (d) 0,6915

3. Par quelle valeur faut-il remplacer 1,106 pour que le risque α soit égal à 1% ?
(a) 1,108 (b) 1,109 (c) 1,107 (d) 1,105

4. Augmenter la taille de l’échantillon (plusieurs réponses possibles) :
(a) augmente le risque α (b) diminue le risque α (c) augmente le risque β (d) di-
minue le risque β

5. On appelle courbe de puissance la courbe représentative de la fonction P définie sur
[0; 1] à valeurs dans [0; 1], qui à chaque risque α associe la puissance 1− β du test.
(a) La fonction P est croissante (b) La fonction P est décroissante (c) La fonction
P n’est pas monotone

La règle de décision précédente entre nos deux hypothèses H0 et H1 parait bien arbitraire.
En fait, il est possible, pour un risque α fixé a priori, et pour ce genre d’hypothèses simples
(µ = µ0 vs µ = µ1), de déterminer la valeur critique 1 qui sépare les zones de non-rejet
et de rejet de H0 avec une puissance maximale. Dans la pratique, les hypothèses H0 et H1

ne jouent pas un rôle symétrique. Aussi, nous nous fixerons a priori le risque de première
espèce α et supposerons l’hypothèse nulle H0 vraie. Il s’agit donc d’une hypothèse sur la
population étudiée (condition très forte). Et ce sont les données de notre échantillon qui
vont nous permettre de pencher vers une hypothèse plutôt que pour l’autre. L’outil essentiel,
qui dépendra de la nature du paramètre de la population que nous souhaitons évaluer, sera
une variable de décision i.e une variable aléatoire. Nous pouvons donc définir . . .

Définition 1-2-3 : Un test statistique est un mécanisme qui permet de trancher entre
deux hypothèses incompatibles H0 et H1 au vu des résultats d’un échantillon, en quantifiant
le risque associé à la décision prise.

Remarque 1-2-4 :
1. L’hypothèse H0 joue souvent un rôle particulier. Imaginons par exemple qu’un boulan-

ger prétende que les baguettes de sa production pèsent en moyenne 250 g. Un client
suspicieux pèse chaque jour les baguettes qu’il lui achète et se rend compte que sur un
échantillon de 30 baguettes le poids moyen est de 249,5 g. Le cas présent nous incite à
poser pour hypothèse nulle H0 : µ = 250 et pour hypothèse alternative H1 : µ < 250,
où µ désigne la masse moyenne d’une baguette de la production.
L’hypothèse nulle vient du fait que l’on peut la réécrire sous la forme µ− 250 = 0 ; on
peut aussi l’interpréter comme "nulle" ne prouve rien si elle est acceptée. Quant
à son alternative, nous parlerons de test unilatéral à gauche.
L’hypothèse alternative µ ̸= 250 (resp. µ > 250) nous conduit à un test bilatéral (resp.
à un test unilatéral à droite).

2. C’est le contexte qui décidera de la nature de l’hypothèse alternative que nous choisi-
rons. Remarquons que dans le cas des tests bilatéraux, l’erreur de première espèce sera
"coupée en deux parties d’aires égales". Nous mettrons ceci en lien avec les intervalles
de fluctuation.

1. à l’aide du théorème de Neyman et Pearson que nous admettrons ici
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Définition 1-2-5 : Une hypothèse est dite simple si la loi de la variable aléatoire X en
jeu est totalement spécifiée quand cette hypothèse est réalisée. Sinon, on parle d’hypothèse
multiple ou composite.

Remarque 1-2-6 :

1. Si θ est un paramètre de la population à estimer, l’hypothèse θ = θ0 est une hypothèse
simple ; l’hypothèse θ ̸= θ0 est une hypothèse composite : θ peut prendre une infinité
de valeurs.

2. L’écriture θ = θ0 ne signifie pas une égalité mathématique au sens propre du terme
mais s’interprète plutôt comme θ et θ0 ne sont pas significativement différents. Les
éventuelles différences observées sont imputables à la fluctuation d’échan-
tillonnage.

Exemple 3 : On initie une séance de dégustation à l’aveugle auprès d’un groupe de 20 amateurs
de vin. Chacun d’entre eux a trois verres opaques à disposition. Deux verres contiennent le
même vin et le troisième contient un vin différent. On admet que la répartition des trois
vins dans chaque lot (AAB ou BBA) est effectuée au hasard et que les dégustateurs sont
indépendants. Par ailleurs, chacun d’entre eux donne obligatoirement une réponse à la question
"Quel verre contient le vin différent ?" 2. Notre panel nous fournit 12 bonnes réponses.
Soit X la variable aléatoire qui à tout échantillon aléatoire simple de 20 dégustateurs associe
le nombre de bonnes réponses obtenues.
Supposons que tous les amateurs répondent au hasard. Le lecteur se convaincra aisément que

X suit une loi binomiale de paramètres n = 20 et p =
1

3
. Ce sera notre hypothèse nulle

H0 : p = 1/3 (pas d’effet dégustateur).

1. Étape 1 : formulation des hypothèses.{
H0 : p = 1/3

H1 : p > 1/3 (test unilatéral à droite)
Ce choix s’impose de lui-même pour justifier qu’il y a un "effet dégustateur".

2. Étape 2 : Fixons a priori le risque α à 5%.

3. Étape 3 : Sous H0, nous utilisons la variable X comme variable de décision.

4. Étape 4 : Trouvons le seuil critique qui va séparer la zone de rejet de H0 de sa zone
de non-rejet, que nous qualifierons un peu abusivement de zone d’acceptation de H0.
Un software nous permet de voir que P (X ≥ 10) ≥ 0, 05 et que P (X ≥ 11) < 0, 05.

2. Un tel test est appelé test triangulaire. Pour plus de détails cf http://www.numdam.org/article/JSFS_
1994__135_3_21_0.pdf
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5. Étape 5 : Énonçons la règle de décision :
— si x (nombre de bonnes réponses) est inférieur ou égal à 10, on ne rejette pas H0,
— si x > 10 i.e si x ≥ 11 ici, on rejette H0.

6. Étape 6 : conclusion.
Le nombre de bonnes réponses est de 12. Nous sommes donc dans la zone de rejet de
H0. Au risque de première espèce de 5%, nous pouvons supposer (mais ce n’est pas une
preuve) qu’il est improbable qu’il n’y ait aucun effet "dégustateur".

La loi de X étant discrète, nous ne pouvons pas trouver une valeur réelle unique xc telle que
P (X > xc) = 0, 05. Ceci ne sera bien sûr pas le cas avec des variables aléatoires absolument
continues telles la loi normale.

Remarque 1-2-7 : Ces six étapes sont classiques pour mener un test d’hypothèses. Et selon
la nature du test, nous serons amenés à utiliser une variable de décision qu’il faudra bien
définir, soit de manière exacte ou approchée. Cette variable de décision est construite
sous l’hypothèse que H0 est vraie.
D’autre part, remarquez que nous ne nous sommes pas basés sur le calcul de P (X = 12) mais
bien sur P (X ≥ 12) : probabilité d’obtenir 12 bonnes réponses ou plus.
Nous aurions pu également dès l’étape 4 calculer P (X ≥ 12). C’est ce que l’on appelle une
p−valeur : "obtenir 12 bonnes réponses ou plus extrême". On trouve que P (X ≥ 12) =
0, 013 < α = 0, 05. C’est une notion que nous détaillerons plus loin.

Exercice 1 : Expliquez par exemple la case "nombre de jugements = 11" et "nombre minimum
de jugements corrects = 8" pour un seuil de confiance de 99% du document http://www2.
agroparistech.fr/IMG/pdf/Test_triangulaire.pdf

Exemple 4 : Il est inscrit sur un emballage de boites de conserves une contenance de 420 g.
Il est admis que l’écart-type σ de la production est de 3 g et que la distribution des masses
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est supposée normale. Lors d’un contrôle qualité, on prélève un échantillon (assimilé à un
échantillon aléatoire simple) de 15 boites de conserves. La masse moyenne observée est de 422
g. Peut-on, au risque de première espèce de 5%, supposer que la masse moyenne d’une boite
de conserve est :

1. différente de 420 g ?

2. supérieure à 420 g ?

Question 1 : Comme dans l’exemple précédent, nous allons formaliser notre démarche par
étapes.

1. Étape 1 : formulation des hypothèses.
Soit µ la masse moyenne d’une boite de conserve de la production.{
H0 : µ = 420

H1 : µ ̸= 420 (test bilatéral)

2. Étape 2 : le risque α est fixé à 5%.

3. Étape 3 : Soit X̄ la variable aléatoire qui à tout EAS de 15 boites de conserve associe

la masse moyenne observée. Sous H0, X̄ ↪→ N
(
420;

3√
15

)
4. Étape 4 : Trouvons les seuils critiques qui vont séparer la zone de rejet de H0 de sa

zone de non-rejet. Ceci revient à trouver les fractiles a et b d’ordres respectifs 0,025
et 0,975 de X̄ i.e a est tel que P (X̄ ≤ a) = 0, 025 et b est tel que P (X̄ ≤ b) = 0, 975.
Un software nous permet de voir que a = 418, 482 et que b = 421, 518.

5. Étape 5 : Énonçons la règle de décision :
— si x̄ ∈ [418, 482; 421, 518], on ne rejette pas H0,
— si x̄ /∈ [418, 482; 421, 518], on rejette H0.
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6. Étape 6 : conclusion.
La masse moyenne de l’échantillon est x̄ = 422. Nous sommes donc dans la zone de
rejet de H0. Au risque de première espèce de 5%, nous pouvons affirmer que µ ̸= 420.
La machine qui remplit les boites des conserves est certainement déréglée.

Remarque 1-2-8 :

1. X̄ = 420 +
3√
15

U , où U ↪→ N (0; 1). Nous aurions ainsi pu prendre U comme variable

de décision et non X̄. Les valeurs critiques sont alors -1,96 et 1,96 et la règle de décision

devient : si u =
x̄− 420

3/
√
15

∈ [−1, 96; 1, 96], on conserve H0, sinon on rejette H0. C’est

cette option qui est utilisée dans la pratique car les fractiles usuels de la loi normale
centrée-réduite sont bien connus et une table de sa fonction de répartition est disponible.

2. Sous H0 : µ = 420, l’intervalle de non-rejet de H0 : [418, 482; 421, 518] apparait comme
un intervalle de fluctuation (ou de pari) de la masse moyenne d’une boite de
conserve au seuil de confiance de 95%.

3. Si à partir de l’échantillon, nous avions voulu calculer un intervalle de confiance de µ,
nous aurions trouvé (exercice) : [420, 482; 423, 518]. 420 est en dehors ! Ceci correspond
au rejet de l’hypothèse nulle H0.

Question 2 : la résolution de la question précédente nous amène directement à la même conclu-
sion. Pourquoi ? Car le seuil de rejet de H0 qui détermine la valeur critique est nécessairement
inférieur à 421,518 : notre test est ici un test unilatéral à droite.
La fonction de répartition FX̄ de X̄ est continue et strictement croissante, donc définit une
bijection de R sur FX̄(R) =]0; 1[. Ainsi, F−1

X̄
définit une bijection strictement croissante de

]0; 1[ sur R. 1 - 0,05 < 1 - 0,05/2, d’où F−1
X̄

(0, 95) ≤ F−1
X̄

(0, 975) (faire un dessin).
Un software nous donne comme nouvelle valeur critique F−1

X̄
(0, 95) = 421, 274.
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Remarque 1-2-9 : Ce dernier résultat nous permet de constater qu’un test unilatéral est
plus puissant qu’un test bilatéral. Nous reviendrons en détail sur la notion de puissance d’un
test (comment l’améliorer notamment) dans la section dédiée aux p−valeurs et dans la section
compléments théoriques et pratiques.

Quiz 3 : Une affection fongique atteint environ 11% des plantes d’une espèce donnée.
Une année pluvieuse et anormalement chaude, on constate que sur un échantillon supposé
aléatoire simple de 200 plantes, 28 d’entre elles présentent cette affection. Soit π la proportion
de plantes atteintes cette année par cette affection. Nous posons H0 : π = 0, 11. Soit F la
variable aléatoire qui à tout échantillon aléatoire simple de 200 plantes associe la proportion
de plantes atteintes par le champignon.

1. La valeur f prise par F dans notre échantillon est de :
(a) 0,28 (b) 0,11 (c) 0,14 (d) 0,12

2. Au vu de l’échantillon, quelle assertion est-il la plus raisonnable de poser ?
(a) H1 : π = 0, 11 (b) H1 : π > 0, 11 (c) H1 : π < 0, 11 (d) H1 : π ̸= 0, 11

3. Sous l’hypothèse nulle, P (F ≥ 0, 14) est égale à :
(a) 0,11 (b) 0,0876 (c) 0,0749 (d) 0,1094

4. On teste H0 : π = 0, 11 vs H1 : π > 0, 11 au risque α de 5%. On rejette H0.
(a) Vrai (b) Faux

5. sous H0, le couple (E(F ), σ(F )) est égal à :
(a) (0,11 ; 19,58) (b) (0,11 ; 4,42) (c) (0,022 ; 0,11) (d) (0,11 ; 0,022)

6. On admet que les conditions pour "approcher" F par une loi normale de paramètres
donnés par l’item précédent sont acquises (cette approximation tient au théorème
central-limit que nous retrouverons dans la partie Compléments). Si bien que U =
F − E(F )

σ(F )
↪→ N (0; 1). En prenant U comme variable de décision, la zone de rejet de

H0 est :
(a) ]1, 645;+∞[ (b) ]0, 12; 0, 153[ (c) ]−∞; 1, 645] (d) ]0, 1462;+∞[

7. Retrouvez-vous la conclusion obtenue avec la loi exacte de F ?
(a) Oui (b) Non (c) Je ne sais pas

Exemple 5 : Effectuons une petite simulation artificielle avec R : le paramètre étudié dans
la population, ici une proportion, est supposé inconnu (pas vrai ici). Donc l’expérimentateur
n’y a pas accès. Sinon la simulation n’aurait aucun intérêt !
Supposons par exemple un énorme sac contenant 4200 haricots blancs et 5800 haricots rouges :
la population. Appelons π la proportion d’haricots blancs présents dans le sac (π = 0, 42).
Nous allons prélever des échantillons de 50 haricots de ce sac afin d’essayer d’estimer la pro-
portion d’haricots de chaque sorte puis tester l’hypothèse π = 0, 5 vs π ̸= 0, 5. Nous allons
comparer deux modes de prélèvement :

— tirage simultané de 50 haricots,
— tirage successif avec remise de 50 haricots (tirage aléatoire simple).

1 #simula t i on d ’ e chan t i l l onnage d ’ une propor t ion ( grands e c h an t i l l o n s )
2 pop <− 1:10000 #l e s 4200 ha r i c o t s b lancs et 5800 ha r i c o t s rouges
3 t a i l l e_ech <− 50 #t a i l l e d ’ un e ch an t i l l o n
4 nSims <− 10000 #l e nombre de s imu la t i on s
5 prop <− numeric ( nSims ) #pour s t o cke r l e s p ropor t i ons s imu lee s
6 bars <− 40 #l e nombre de s ubd i v i s i o n s de l ’ histogramme
7 f o r ( i in 1 : nSims )
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8 {ech <− sample (pop , t a i l l e_ech ) #e chan t i l l o n exhau s t i f
9 blancs <− length ( ech [ ech <4201]) #compte l e nb d ’ h a r i c o t s b lancs

10 prop [ i ] <− blancs / t a i l l e_ech #et l e s tocke en f r equence dans prop
11 }
12 #histogramme
13 h i s t ( prop , breaks = bars , x lab=" Proport ions d ’ h a r i c o t s b lancs " ,
14 ylab=" E f f e c t i f s " , axes=FALSE,
15 main=paste ( " D i s t r i bu t i on des propor t i ons " ) ,
16 c o l=" grey " , xl im=c ( 0 . 1 , 0 . 7 5 ) , yl im=c (0 , nSims/ 4) )
17 ax i s ( s i d e =1, at=seq (0 , 1 , 0 . 0 5 ) , l a b e l s=seq ( 0 , 1 , 0 . 0 5 ) )
18 ax i s ( s i d e =2, at=seq (0 , nSims/ 4 , nSims/ 8) ,
19 l a b e l s=seq (0 , nSims/ 4 , nSims/ 8) , l a s =2)

Remarque 1-2-10 : La simple vue de l’histogramme suffit à nous convaincre que π ̸= 0, 5,
ce qui évite d’avoir recours à un test : la conclusion est évidente !
Sauf que dans la pratique, il est irréel d’effectuer 10000 tests pour vérifier une théorie. Ce
qui rend cette simulation amusante certes, mais uniquement d’un point de vue théorique. Le
commande R mean(prop) nous donne une estimation de π :
> mean(prop)
[1] 0.419894

Convaincu ? Le lecteur s’amusera à modifier la taille de l’échantillon, le mode d’échantillonnage
(avec remise par exemple), etc. Nous allons entrer un peu plus dans la démarche de simulation
dès les sections suivantes, ce qui nous amène également à quelques notions théoriques et à la
pratique d’une méthode : celle du maximum de vraissemblance (en complément).

1.3 Les p−valeurs

Ceci pourrait commencer par une question : "Où sont les extrêmes ?" : à droite ? à gauche ?
Ou des deux côtés en valeur absolue ? Vous n’avez pas tout compris ? Alors voici ce quiz :

Quiz 4 : Une usine produit des sodas dont le pH moyen est estimé à 2,7. On suppose la
répartition des pH normale et d’écart-type σ = 0, 25. Lors d’un contrôle qualité, on pré-
lève un E.A.S de 20 sodas. Soit X̄ la variable aléatoire qui à tout E.A.S de 20 sodas asso-
cie leur pH moyen. Notre échantillon nous donne un pH moyen de x̄ = 2, 57. Nous posons
pour hypothèse nulle H0 : "le PH est conforme au pH indiqué" et pour hypothèse alternative
H1 : "le pH est strictement inférieur au pH indiqué".

1. (a) C’est un test bilatéral (b) C’est un test unilatéral à droite (c) C’est un test
unilatéral à gauche (d) C’est un test à la con !
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2. Sous H0, la loi de X̄ est une loi normale de paramètres (µ0;σ0,n) égaux à :
(a) (2,7 ; 0,25) (b) (2,57 ; 0,25) (c) (2,57 ; 0,056) (d) (2,7 ; 0,056)

3. Sous H0, P (X̄ ≤ 2, 57) est égale à :
(a) 0,0101 (b) 0,3015 (c) Autre (d) 0,5

4. Sous H0, on prend pour variable de décision U =
X̄ − µ0

σ0,n
↪→ N (0; 1). uobs est égal à :

(a) −2, 3255 (b) −1, 8556 (c) 2,3255 (d) 1,3642

5. P (X̄ ≤ 2, 57) et P (U ≤ uobs) sont égaux.
(a) Vrai (b) Faux

6. P (U ≤ uobs) < α revient à rejeter H0.
(a) Faux (b) Vrai

7. On prend pour hypothèse alternative H1 : "le pH est différent du pH indiqué". Au

risque de première espèce α de 5% et en prenant U =
X̄ − µ0

σ0,n
↪→ N (0; 1) comme

variable de décision sous H0, la zone de non rejet de H0 est :
(a) [−2, 58; 2, 58] (b) [−1, 96; 1, 96] (c) [−1, 645; 1, 645] (d) Autre

8. Quelles données reviennent à rejeter H0 ? (plusieurs réponses possibles)
(a) uobs /∈ [−1, 96; 1, 96] (b) P (|U | > |uobs|) < α (c) P (|U | > |uobs|) ≥ α

Nous supposons que nous cherchons à vérifier la conformité d’une moyenne µ à une norme
théorique µ0.
H0 : "il n’y a pas de différence significative entre la moyenne observée et la moyenne théorique",
ce qui se traduit formellement par µ = µ0. Nous distinguerons deux cas :

1. L’écart-type σ du paramètre observé dans la population est connu,

2. L’écart-type σ du paramètre observé dans la population est inconnu.

Ces deux situations amènent à utiliser deux types de variables de décision différentes que nous
résumons dans le tableau ci-dessous.

σ connu H1 Variable de décision sous H0 p−valeurs
µ ̸= µ0 P (|U | > |uobs|)

Z−test µ > µ0 Z = U =
X̄ − µ

σ/
√
n

P (U > uobs)

µ < µ0 P (U < uobs)

σ inconnu H1 Variable de décision sous H0 p−valeurs
µ ̸= µ0 P (|T | > |tobs|)

T−test µ > µ0 T =
X̄ − µ

Ŝ/
√
n

P (T > tobs)

µ < µ0 P (T < tobs)

La variable T suit une loi de Student 3 à n − 1 degrés de liberté (ddl). T et Z = U (la loi
normale centrée-réduite) ont des fonctions de densités symétriques par rapport à l’axe des
ordonnées. Ainsi, si nous notons X pour U ou T indifféremment :

3. détaillé dans la partie compléments
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images issues de Google

Nous pouvons résumer la notion de p−valeur sous cette forme imagée : PH0(D+) , où D+

désigne l’événement "X prend D ou une valeur plus extrême" comme résumé graphiquement
ci-dessus.
Autrement dit, nous évaluons sous l’hypothèse nulle H0 la vraisemblance de l’événement D+.
Alors qu’en fait, nous cherchons, au vu de nos données, à évaluer PD+(H0). Nous discuterons
de ceci dans un prochain article sur les statistiques bayésiennes.

Retenons le fait suivant : si la p−valeur < α, alors nous rejetons H0.

Ce qui nous amène à la rédaction d’un test en quatre étapes :

1. Formulation des hypothèses H0 et H1

2. On se fixe le seuil de risque de première espèce α

3. Sous H0, on donne la loi de probabilité d’une variable de décision X

4. En utilisant les données de notre échantillon et X, on calcule la p−valeur. Si cette
dernière est strictement inférieure à α, on rejette H0 et on conclut que les données
observées ne sont probablement pas que "du bruit". Il faut chercher une explication
ailleurs que dans une simple fluctuation d’échantillonnage.

Pour le moment, nous allons faire une constatation fondamentale : la distribution des
p−valeurs est directement reliée à la puissance du test.
Une petite simulation va nous aider à y voir plus clair 4 . . .

4. le script qui suit est inspiré de celui de Daniel Lakens de l’université technique d’Eindhoven (NL)
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Considérons une usine de sodas. Le pH moyen des bouteilles de cette production est supposé
égal à 2,5. La réalité (inconnue du contrôleur qualité) est que le pH des sodas de cette pro-
duction est distribué selon une loi normale de moyenne µ = 2, 3 et d’écart-type σ = 0, 32.

1 #U t i l i s a t i o n du package pwr pour c a l c u l e r l a pu i s sance du t e s t
2 i f ( ! r e qu i r e (pwr ) ){ i n s t a l l . packages ( ’ pwr ’ )}
3 l i b r a r y (pwr )
4 #Desact ive l a notat ion s c i e n t i f i q u e ( 1 . 05 e10 )
5 opt ions ( s c ipen =999)
6 nSims <− 10000 #nombre de s imu la t i on s
7 M <− 2.3 #moyenne de l a populat ion dont e s t i s s u l ’ e c h an t i l l o n
8 t a i l l e_ech <− 14 #t a i l l e de l ’ e c h an t i l l o n
9 SD <− 0.32 #ecart−type des donnees s imu lee s

10 p <− numeric ( nSims ) #vecteur de stockage des p−va l eu r s
11 bars <− 20
12 f o r ( i in 1 : nSims ){ #pour chaque expe r i ence s imulee
13 x <− rnorm (n = t a i l l e_ech , mean = M, sd = SD) #donnees c r e e s
14 z <− t . t e s t (x , mu = 2 . 5 ) #appl ique un t−t e s t de con formite a mu
15 p [ i ] <− z$p . va lue #ca l c u l e l a p−va l eur et l a s tocke dans p
16 }
17 #Calcu l pra t ique de l a pu i s sance
18 pr in t ( " pu i s sance du t e s t : " )
19 pr in t (sum(p < 0 .05 ) /nSims ) #pui s sance empir ique
20 #Calcu l de l a pu i s sance avec l a package pwr
21 power <− pwr . t . t e s t (d=(M−2.5) /SD, n=t a i l l e_ech , s i g . l e v e l =0.05 , type="one . sample" ,
22 a l t e r n a t i v e="two . s ided " ) $power
23 #Trace de l a d i s t r i b u t i o n prat ique des p−va l eu r s
24 op <− par (mar = c (5 , 7 , 4 , 4 ) )
25 h i s t (p , breaks=bars , x lab="p−va l eu r s " , ylab="nombre de p−va l eu r s \n" , axes=FALSE,
26 main=paste ( " D i s t r i bu t i on des p−va l eu r s avec " , round ( power∗ 100 , d i g i t s =1) ,
27 "% de pu i s sance " ) ,
28 c o l=" grey " , xl im=c (0 , 1 ) , yl im=c (0 , nSims ) )
29 ax i s ( s i d e =1, at=seq (0 , 1 , 0 . 1 ) ,
30 l a b e l s=seq ( 0 , 1 , 0 . 1 ) )
31 ax i s ( s i d e =2, at=seq (0 , nSims , nSims/ 4) , l a b e l s=seq (0 , nSims , nSims/ 4) , l a s =2)

Avec une taille d’échantillon de 14, on obtient une puissance de l’ordre de 58% et une distri-
bution empirique des p−valeurs qui a pour allure :
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Avec une taille d’échantillon de 25 (prendre taille_ech < − 25), on obtient une puissance de
l’ordre de 85% et une distribution empirique des p−valeurs qui a pour allure :

Remarque 1-3-1 : La taille de l’échantillon augmente donc sans conteste la puissance du
test. Mais allons plus loin dans la compréhension . . .

Quiz 5 : Le but de ce quiz est de tester empiriquement les paramètres qui jouent sur la
puissance d’un test et d’étudier les deux cas :

— il y a vraiment un effet significatif (H0 est fausse)
— il n’y a pas d’effet significatif (H0 est vraie)
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1. Obtenir une p−valeur strictement inférieure à α à l’issue d’un test signifie que :
(a) H1 est vraie (b) H0 est fausse (c) Sous H0, les données obtenues sont
improbables (d) Sous H1, les données obtenues sont vraisemblables

2. Considérons le t-test de conformité à une moyenne de l’exemple précédent. Pour aug-
menter sa puissance, on peut :
(a) diminuer |M − 2, 5| (b) Augmenter |M − 2, 5| (c) augmenter SD (d) di-
minuer SD

3. Réaffecter à M la valeur 2,5 dans le script précédent (ce qui revient à supposer H0

vraie). La distribution des p−valeurs semble :
(a) être uniforme (b) être normale (c) être exponentielle (d) autre

4. La puissance obtenue à la question 3 est indépendante de la taille de l’échantillon.
(a) Vrai (b) Faux

5. Le défaut de puissance d’un test conduit plus souvent à ne pas rejeter H0.
(a) Vrai (b) Faux

Le prochain quiz devrait vous permettre de ne pas tomber dans un jeu d’interprétations er-
ronnées. Surtout, pensez à la définition d’une p−valeur !

Quiz 6 : Vrai ou faux ? Mais comprenez pourquoi !

1. Lors d’un test statistique, on obtient une p−valeur de 0,03. Ceci signifie que la proba-
bilité que H0 soit vraie est de 0,03.
(a) Vrai (b) Faux

2. Obtenir une grande p−valeur est une preuve en faveur de H0.
(a) Vrai (b) Faux

3. Rejeter l’hypothèse nulle car on a obtenu une p−valeur p ≤ 0, 05 signifie que la proba-
bilité de se tromper est de 5%.
(a) Vrai (b) Faux

4. Quand la même hypothèse nulle est testée dans différentes études et qu’aucune ou une
minorité des tests sont statistiquement signifiants (tout ou presque tous les p > 0,05),
ceci est une preuve globale en faveur de H0.
(a) Vrai (b) Faux

5. La notion de p−valeur est une notion fréquentiste.
(a) Vrai (b) Faux
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1.4 Survol de quelques tests classiques en BTSA

Avant de poursuivre plus avant, effectuons une synthèse partielle de ce que nous avons appris
précédemment : un test d’hypothèse consiste à confronter deux hypothèses incompatibles H0

et H1 portant sur un paramètre de la population (cas des tests paramétriques étudiés ici). En
supposant H0 vraie, nous regardons, avec un seuil d’erreur fixé à l’avance (celui de rejeter H0

à tort), si nos données nous amènent à rejeter H0 ou à la conserver, sans que ceci ne prouve
rien sur sa véracité. Un pseudo-raisonnement par l’absurde !

1.4.1 Tests de conformité

Nous allons présenter dans ce paragraphe trois situations classiques :

1. le test de conformité d’une moyenne à une norme (déjà abordé auparavant),

2. le test de conformité d’une variance,

3. et le test de conformité d’une proportion (cas des grands échantillons).

Une hypothèse (éventuellement à vérifier) est faite pour les deux premiers tests : le caractère
quantitatif étudié est supposé réparti normalement.

1.4.1.1 : Test de conformité d’une moyenne (H0 : µ = µ0).

σ connu H1 Variable de décision sous H0

µ ̸= µ0

Z−test µ > µ0 Z =
X̄ − µ

σ/
√
n

µ < µ0

σ inconnu H1 Variable de décision sous H0

µ ̸= µ0

T−test µ > µ0 T =
X̄ − µ

Ŝ/
√
n

µ < µ0

Ŝ est la variable aléatoire qui à tout EAS de taille n lui associe son écart-type corrigé ŝ (cf
paragraphe suivant).

Exemple 6 : Un scientifique souhaite comparer le QI moyen des habitants d’une ville bretonne
avec le QI moyen de la population française, estimé à 100. Pour ceci, il prélève un échantillon
(assimilé à un échantillon aléatoire simple) de 20 individus de cette ville. Il constate que le QI
moyen observé est de 106 et l’écart-type corrigé 5 de 15,2. Peut-on conclure à une différence
significative entre le QI des habitants de cette ville bretonne et celui de la population française ?

Nous allons à travers cet exemple détailler deux manières de traiter un test statistique classique
(avec les zones de rejet et les p-valeurs). La situation choisie est celle où l’écart-type de la
population est inconnue (réaliste). Le cas d’école est traité en exercice.

5. ŝ =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2, noté sd (standard deviation) chez les anglo-saxons
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Méthode 1 : Nous allons raisonner en 6 étapes.

Soit µ le QI moyen d’un habitant de cette ville bretonne.

Étape 1 : formulation des hypothèses.{
H0 : µ = 100

H1 : µ ̸= 100 (test bilatéral)

Étape 2 : on se fixe le risque de première espèce α.
On choisit ici α = 5%.

Étape 3 : on détermine la variable de décison en supposant H0 vraie.
Il est implicite ici, mais ceci mérite d’être précisé, que le QI des français est distribué norma-
lement dans la population. L’écart-type σ de la population étant inconnu et l’échantillon de
taille 20 < 30 nous incite à utiliser la loi de Student.
Soit X̄ (resp. Ŝ) la variable aléatoire qui à tout EAS de 20 individus de cette ville bretonne
associe le QI moyen (resp. l’écart-type corrigé). Alors :

T =
X̄ − 100

Ŝ√
20

↪→ Student à 20-1 = 19 ddl

Remarque : La variable de décision T s’exprime aussi sous la forme T =
X̄ − µ

S/
√
n− 1

, où S2 est

la variable aléatoire qui à tout E.A.S de taille n lui associe sa variance (non corrigée).

Étape 4 : on détermine les zones de rejet (car test bilatéral) et de non-rejet de H0.
La détermination des seuils critiques se fait à l’aide d’un software ou d’une table de Student.

Étape 5 : on énonce la règle de décision.

— Si tobs ∈ [−2, 09; 2, 09], on ne rejette pas H0,
— Si tobs /∈ [−2, 09; 2, 09], on rejette H0.

Étape 6 : on calcule la statistique observée et on conclut à l’aide de la règle de décision.

tobs =
106− 100

15, 2√
20

= 1, 765 ∈ [−2, 09; 2, 09].

Donc au risque de première espèce de 5%, on ne rejette pas H0. On impute la différence ob-
servée aux fluctuations d’échantillonnage et on peut affirmer que le QI moyen des habitants

18



de cette ville bretonne n’est pas significativement différent du QI moyen en France.

Méthode 2 : Elle se base sur l’utilisation des p−valeurs, données par tous les softwares en
statistiques.
Les étapes 1, 2 et 3 sont identiques.
L’étape 4 consiste à calculer la p−valeur à l’aide des données de notre échantillon et de la
nature du test.
Ici, il s’agit donc de calculer P (|T | ≥ tobs) i.e P (|T | ≥ 1, 765), où T ↪→ Student à 19 ddl.
L’utilisation de Geogebra nous amène à p = 0, 0936. Cette valeur dépasse 0,05 donc nous ne
rejettons pas l’hypothèse nulle au risque de première espèce de 5%.

Nous conservons donc H0 avec un risque β inconnu.

Exercice 2 : Un boulanger produit des baguettes dont la masse affichée est 250g. Un client
suspicieux relève pendant deux semaines les masses des baguettes (exprimée en grammes) qu’il
achète : 249, 251, 248, 247, 251, 250, 251, 248, 249, 252, 250, 251, 249, 249. Nous supposons
de plus que les masses sont réparties normalement dans la production.

1. Calculer la moyenne, l’écart-type et l’écart-type corrigé de cet échantillon.

2. En supposant l’écart-type de la production égal à 2g, peut-on supposer, au risque de
première espèce de 5%, que la masse moyenne µ d’une baguette est inférieure aux 250g
affichés.

3. Même question, mais en supposant l’écart-type de la production inconnu.

1.4.1.2 : Test de conformité d’une variance (H0 : σ
2 = σ2

0)

Soient x1, x2, . . . , xn n observations d’une variable aléatoire quantitative. Nous définissons :

— La moyenne des xi par x̄ =
1

n

n∑
i=1

xi,

— la somme des carrés des écarts à la moyenne par SCE =

n∑
i=1

(xi − x̄)2
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La variance s2 de notre échantillon est égale à
SCE
n

=
1

n

n∑
i=1

(xi− x̄)2. C’est une réalisation de

la variable aléatoire S2 qui à tout E.A.S de taille n associe sa variance.
Problème : la variable aléatoire S2 est biaisée ! En effet, nous pouvons prouver que E(S2) =
n− 1

n
σ2, où σ2 est la variance du caractère dans la population. Par linéarité de l’espérance,

nous définissons Ŝ2 =
n

n− 1
S2, de sorte que E(Ŝ2) = σ2 : Ŝ2 est ainsi un estimateur non

biaisé de la variance σ2 et ŝ2 une de ses réalisations. Nous avons nS2 = (n− 1)Ŝ2 .

Remarquons que pour "passer de Z = U à T" dans la variable de décision du test de conformité
d’une moyenne, nous avons remplacé σ (connu dans le premier cas) par son estimateur Ŝ.
Attention, Ŝ n’est pas un estimateur sans biais de l’écart-type σ.

ATTENTION AUX NOTATIONS : Dans de nombreux ouvrages ou logiciels comme
Geogebra, l’écart-type corrigé de l’échantillon (parfois appelé écart-type expérimental) est
noté s et non ŝ. C’est sd (standard deviation) sous R ou Python.
Aussi, au moment de saisir les données dans ces logiciels, c’est donc l’écart-type corrigé qu’il
faudra indiquer !

Théorème 1.4.1.2 (a) :
(n− 1)Ŝ2

σ2
=

nS2

σ2
↪→ χ2 à n− 1 degrés de liberté.

Ce résultat va nous permettre de construire un intervalle de confiance de la variance pour un

risque α fixé. Mais comprenez-vous pourquoi
nS2

σ2
suit la loi du χ2 à n− 1 degrés de liberté ?

Théorème 1.4.1.2 (b) : Un intervalle de confiance au risque de confiance 1−α de la variance

σ2 d’un caractère de la population est

[
ns2

χ2
n−1;1−α/2

;
ns2

χ2
n−1;α/2

]
=

[
(n− 1)ŝ2

χ2
n−1;1−α/2

;
(n− 1)ŝ2

χ2
n−1;α/2

]
.

Quiz 7 : Intervalle de confiance et test bilatéral.
Un technicien agricole souhaite réaliser une étude sur les masses des porcelets nés vivants dans
une ferme expérimentale. Un échantillon aléatoire simple indépendant de 16 porcelets nés le
mois précédent est prélevé dans la ferme. On suppose que les masses des porcelets nés vivants
sont distribuées normalement.
Les masses mesurées, en kilogramme, sont les suivantes :
1,85 1,36 1,75 0,88 1,72 1,99 1,40 1,40 1,49 1,22 1,43 1,65 1,38 1,65 1,17 1,48

1. La variance de cet échantillon est égale à 10−4 près à :
(a) 0,0762 (b) 0,0811 (c) 0,0765 (d) 0,0717

2. La borne inférieure de l’intervalle de confiance de σ2 au seuil de confiance de 95% est
égale à 10−3 près à :
(a) 0,052 (b) 0,041 (c) 0,082 (d) 0,182

3. On teste l’hypothèse H0 : σ2 = 0, 204 contre H1 : σ2 ̸= 0, 204. Rejette-t-on H0 au
risque α de 5% ?
(a) Oui (b) Non

Exemple 7 : En vue d’estimer le rendement d’une culture de blé tendre, un technicien agri-
cole a pesé, en kg, les grains récoltés sur 16 parcelles de 2m2 choisies au hasard de manière
indépendante.
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Les valeurs relevées sont les suivantes :
1,32 1,07 1,26 1,02 1,17 1,05 1,27 1,12 1,21 1,15 1,27 1,20 1,23 1,10 1,06 1,14
Peut-on affirmer, au vu de cet échantillon, que l’écart-type du rendement est significativement
supérieur à 3,5 q/ha ?

Solution : L’énoncé nous incite à poser H0 : σ ≤ 3, 5 vs H1 : σ > 3, 5, qui sont deux hypo-
thèses composites. Comme la loi de la statistique de décision doit être parfaitement déterminée
sous H0, nous la reformulons comme H0 : σ = 3, 5 (à comprendre comme la borne supérieure
de l’écart-type du rendement n’est pas significativement différente de 3,5 q/ha).
Reformulons encore notre hypothèse nulle, puisque comparer des écarts-type est équivalent à
comparer des variances (quantités toutes positives) :

Étape 1 : formulation des hypothèses

{
H0 : σ

2 = 3, 52 = 12, 25

H1 : σ
2 > 12, 25 (test unilatéral à droite)

Étape 2 : on se fixe le risque de première espèce α à 5 %.

Étape 3 : on détermine la variable de décison en supposant H0 vraie.
Soit S2 la variable aléatoire qui à tout EAS de 16 parcelles associe la variance du rendement.

K =
16S2

12, 25
↪→ χ2 à 15 ddl.

Étape 4 : on détermine les zones de rejet et de non-rejet de H0. On se sert pour trouver le
seuil critique d’une table statistique du khi-deux ou d’un software.

Étape 5 : on énonce la règle de décision.
— Si kobs ≤ 25, on ne rejette pas H0,
— Si kobs > 25, on rejette H0.

Étape 6 : on calcule la statistique observée et on conclut à l’aide de la règle de décision.
Et là, oh là, oh là, oh là là ! Pour une fois c’est ici que ça devient délicat ! Toutes les données

21



que nous observons sur nos parcelles doivent être exprimées en quintaux par hectare ! Nos
observations sont s = 0,088 kg/2m², soit après conversion s = 4,4 q/ha.

D’où kobs =
16× 4, 42

12, 25
= 25, 29 > 25.

Donc au risque de première espèce de 5%, on rejette H0. On impute la différence observée à
une cause autre que les fluctuations d’échantillonnage et on peut affirmer que l’écart-type du
rendement est significativement supérieur à 3,5 q/ha.

Question : si l’on avait utilisé un test bilatéral, la conclusion aurait-elle été identique ? Proposer
une explication.

Exercice 3 : Dans une exploitation, on a relevé les masses d’un lot de 24 agneaux lors d’une
pesée. On suppose que les masses sont distribuées normalement.
Les relevés, en kg, sont les suivants :
21,3 18,6 20,5 19,6 20,2 20,3 19,6 20,8
19,0 23,1 16,8 21,0 20,1 16,8 21,4 18,3
19,7 22,1 20,9 17,3 21,6 16,4 20,3 20,1

1. Donner une estimation ponctuelle non biaisée de la variance des masses des agneaux,

2. Donner une estimation par intervalle de confiance de la variance des masses des agneaux
au risque de 5%,

3. Peut-on affirmer, au vu de cet échantillon et au risque de 5%, que l’écart-type des
masses des agneaux est significativement différent de 2,5 kg ?

1.4.1.3 : Test de conformité d’une proportion (H0 : π = π0)

Conformément au programme, nous traiterons le cas des grands échantillons (n>30). Le cas
des petits échantillons peut être résolu avec la loi exacte que nous avons déjà rencontrée au
quiz 3. Par souci de détail, nous comparerons loi exacte et loi approchée de la variable de
décision de notre test.
Considérons un caractère que présentent certains individus dans une population : couleur des
yeux, groupe sanguin, taille, etc. On note π la proportion d’individus présentant ce caractère.
Dans certains cas, on cherche à savoir si cette proportion π est conforme à une norme π0.

Théorème 1.4.1.3 (a) : Soit F la variable aléatoire qui à tout échantillon aléatoire simple de
taille n associe la proportion p (parfois notée f) d’individus présentant le caractère observé.

1. F =
X

n
, où X ↪→ B(n, π),

2. E(F ) = π,

3. V ar(F ) =
π(1− π)

n
.

Théorème 1.4.1.3 (b) : Si n > 30, nπ ≥ 5 et n(1− π) ≥ 5, alors on peut "approcher" la loi

de F par la loi normale de moyenne µ = π et d’écart-type σ =

√
π(1− π)

n
.

Ainsi, U =
F − π√
π(1− π)

n

↪→ N (0; 1).

Théorème 1.4.1.3 (c) : Si n > 30, np ≥ 5 et n(1− p) ≥ 5, alors :
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1. Une estimation ponctuelle de π est p (valable sans les conditions précitées),

2. Un intervalle de confiance de π au seuil de confiance 1− α est[
p− u1−α/2

√
p(1− p)

n
; p+ u1−α/2

√
p(1− p)

n

]

Quiz 8 : Pour chaque item, une seule réponse est possible.
Une affection atteint 11% des ovins en France. Un vétérinaire teste un nouveau vaccin sur
un troupeau de 150 ovins. Parmi les bêtes vaccinées, on dénombre 14 bêtes atteintes par
cette affection. Le but est de savoir si le vaccin est efficace i.e contribue à baisser le taux de
contamination.

1. Une estimation ponctuelle p de la proportion de bêtes vaccinées atteintes par l’affection
est :
(a) 0,0867 (b) 0,0933 (c) 0,1111 (d) 0,1215

2. La borne supérieure de l’intervalle de confiance, au seuil de risque de 10%, de la pro-
portion de bêtes vaccinées atteintes par l’affection est :
(a) 0,1324 (b) 0,0542 (c) 0,1399 (d) 0,1546

3. Au vu de la question, l’hypothèse alternative H1 est une hypothèse :
(a) bilatérale (b) unilatérale à droite (c) unilatérale à gauche (d) bancale

4. On prend X comme variable de décision (compteur de bêtes infectées sous H0) et un
risque α de 5%. On rejette H0 dans le cas où x = 150p appartient à :
(a) J0; 9K (b) J0; 10K (c) J10; 141K (d) J141; 150K

5. Avec X comme variable de décision, on rejette H0.
(a) Vrai (b) Faux

6. On prend U comme variable de décision. La valeur uobs prise par U pour notre échan-
tillon est :
(a) −0, 7435 (b) 0,6537 (c) 1,3469 (d) −0, 6537 (e) 0,7435

7. Avec U comme variable de décision, on rejette H0.
(a) Vrai (b) Faux

Exemple 8 : Le taux de réussite moyen au concours d’emplumeurs d’oreillers est de 23%.
On prélève dans la grande région du sud-ouest de la Canardie un EAS de 500 étudiants à
ce concours. 122 d’entre eux sont reçus. Peut-on, au vu de cet échantillon, et au risque de
première espèce de 5%, affirmer que le taux de réussite à ce concours des étudiants de cette
région est différent de la moyenne nationale ?

Solution : soit π la proportion de reçus au concours des futurs d’emplumeurs d’oreillers en
Canardie. On teste H0 : π = 0, 23 vs H1 : π ̸= 0, 23.

On rejette H0 si |uobs| =
|f − 0, 23|√

0, 23× 0, 77/500
> 1, 96. Ici, |uobs| = 0, 744, donc au vu de cet

échantillon et au risque de première espèce de 5%, on ne rejette pas H0 : on peut affirmer que
le taux de réussite à ce concours des étudiants de la région n’est pas significativement différent
du taux national.
Remarque : on aurait pu raisonner à l’aide d’un intervalle de confiance (exercice).
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1.4.2 Tests de comparaison

Nous allons présenter dans ce paragraphe trois situations classiques :
1. le test de comparaison de deux proportions (cas des grands échantillons).
2. le test de comparaison de deux variances,
3. le test de comparaison de deux moyennes.

Une hypothèse (éventuellement à vérifier) est faite pour les deux derniers tests : le caractère
quantitatif étudié est supposé réparti normalement.

1.4.2.1 : Test de comparaison de deux proportions (H0 : π1 = π2).

Nous travaillerons dans le cas de "grands échantillons". Mais raisonnons d’abord en terme de
lois exactes.
Considérons deux populations desquelles nous prélevons deux échantillons aléatoires simples
indépendants de tailles respectives n1 et n2. Appelons X1 (resp. X2) la variable aléatoire qui
à tout EAS de n1 (resp. n2) individus de la population 1 (resp. population 2), lui associe le
nombre d’individus présentant le caractère observé.
X1 (resp. X2) suit la loi binomiale de paramètres n1 et π1 (resp. n2 et π2).

Mais comme nous cherchons à comparer deux proportions, il nous faut un estimateur de
π1 − π2.

Posons donc F1 =
X1

n1
et F2 =

X2

n2
qui sont deux estimateurs (sans biais) des proportions

inconnues π1 et π2.
Sous H0, nous avons par linéarité de l’espérance : E(F1)−E(F2) = E(F1−F2) = π1−π2 = 0.
Par indépendance de F1 et de F2, nous avons : V ar(F1 − F2) = V ar(F1) + V ar(F2) =
V ar(X1)

n2
1

+
V ar(X2)

n2
2

=
π1(1− π1)

n1
+

π2(1− π2)

n2
= π(1 − π)

(
1

n1
+

1

n2

)
, où π est la valeur

commune mais inconnue de π1 et de π2.

Ainsi, si l’on pose F = F1 − F2, alors sous H0 : E(F ) = 0 et σ(F ) =

√
π(1− π)

(
1

n1
+

1

n2

)
.

Hélas, π est encore inconnue ! Il va falloir l’estimer aussi.
L’idée est de se servir d’une "proportion pondérée" tout comme on calcule une moyenne
pondérée : on estime π par π̂ =

n1π1 + n2π2
n1 + n2

.

Sous H0, F est centrée. Réduisant F en remplaçant π par π̂, on a comme variable de décision

D =
F1 − F2√

π̂(1− π̂)

(
1

n1
+

1

n2

)
Sous les conditions standard n1, n2 ≥ 30, n1π̂ ≥ 5, n1(1− π̂) ≥ 5, n2π̂ ≥ 5, n2(1− π̂) ≥ 5, on
peut approximer D par la loi normale centrée-réduite Z.

Sous H0 : π1 = π2 et les conditions standard énoncées, la variable de décision sera :

Z =
F1 − F2√

π̂(1− π̂)

(
1

n1
+

1

n2

) ↪→ N (0, 1)
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Exemple 9 : Deux populations homogènes de lapins ont été exposées à la redoutable bactérie
Bacillus cretinisus. Mais le professeur Longuoreille et son équipe ont conçu deux vaccins censés
protéger nos Leporidae (famille des lapins) préférés.

— Avec le vaccin 1, 26 lapins sur 150 de la population 1, ont été infectés.
— Avec le vaccin 2, 19 lapins sur 120 de la population 2, ont été infectés.

On suppose les échantillons de lapins vaccinés indépendants.
Au vu de cet échantillon, et au risque α de 5%, peut-on affirmer que le second vaccin est plus
efficace que le premier ?

Solution : Appelons π1 (resp. π2) la proportion de lapins de la population 1 (resp. de la
population 2) vaccinés mais qui vont tomber malades.
Remarquons que nous ne connaissons ni π1, ni π2 car seuls une petite partie de chaque popu-
lation (nos deux échantillons) ont reçu ce vaccin.
Au vu de notre énoncé, nous allons tester H0 : π1 = π2 vs H1 : π1 > π2 (test unilatéral à
droite).
En effet, dire que le vaccin 2 est plus efficace que le vaccin 1 revient à dire qu’après vaccina-
tion, la proportion π2 de contaminés dans la population 2 est inférieure à la proportion π1 de
contaminés dans la population 1.

Nous pouvons raisonner en 4 étapes ou 6 étapes comme précédemment (bon exercice de ré-
daction). Pour gagner un peu de temps, utilisons l’onglet statistiques du software Geogebra.

La p−valeur i.e PH0 vraie(Z ≥ 0, 3286) = 0, 3712 > α = 0, 05. Donc au vu de nos échantillons
et au risque α de 5%, on ne rejette pas H0.
On ne peut pas conclure que le second vaccin soit plus efficace que le premier.

1.4.2.2 : Test de comparaison de deux variances (H0 : σ
2
1 = σ2

2).

Nous cherchons à comparer les variances σ2
1 et σ2

2 de deux populations. Pour ce faire, nous
prélevons deux échantillons indépendants de tailles n1 et n2 de chacune de ces populations.
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Notons s21 et s22 (resp. ŝ12 et ŝ2
2) les variances (resp. les variances corrigées) des échantillons

1 et 2.

Théorème : Soit Ŝ1
2

(resp. Ŝ2
2
) la variable aléatoire qui à tout EAS de taille n1 de la

population 1 (resp. à tout EAS de taille n2 de la population 2) lui associe sa variance corrigée.
Alors :

F =
Ŝ1

2

Ŝ2
2 ↪→ Fisher-Snedecor à (n1 − 1, n2 − 1) ddl

Nous mettrons en œuvre ce test dès le paragraphe suivant. Donnons cependant un aperçu de
sa fonction de densité. Ici F ↪→ Fisher-Snedecor à (10, 5) ddl

Remarque : Historiquement, on ne disposait que de tables statistiques de la loi F de Fisher-
Snedecor, dont toutes les valeurs prises étaient supérieures ou égales à 1. On devait donc
décider que la population 1 était celle dont l’échantillon avait la variance corrigée la plus
grande. Auquel cas, la règle de décision était un peu plus simple, puisque le fobs ne pouvait
prendre que des valeurs supérieures à 1. Exercice : énoncez-la !

1.4.2.3 : Test de comparaison de deux moyennes (H0 : µ1 = µ2).

Les deux échantillons considérés par la suite sont supposés indépendants et issus de deux
populations dont le caractère quantitatif étudié est distribué normalement.

Paramètre des 2 populations :
On note µ1 (resp. µ2) la valeur moyenne du caractère étudié dans la population 1 (resp. dans
la population 2).
On note σ1 (resp. σ2) l’écart-type du caractère étudié dans la population 1 (resp. dans la
population 2).

Paramètres des 2 échantillons :
On note x̄1 (resp. x̄2) la valeur moyenne du caractère étudié dans l’échantillon 1 (resp. dans
l’échantillon 2).
On note ŝ1 (resp. ŝ2) l’écart-type corrigé du caractère étudié dans l’échantillon 1 (resp. dans
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l’échantillon 2).
On note σ̂ la pooled-variance, qui correspond à une variance pondérée et corrigée calculée à
partir des tailles et des variances de chacun des 2 échantillons :

σ̂2 =
SCEtotale

nombre de ddl

soit :

σ̂2 =
(n1 − 1)ŝ21 + (n2 − 1)ŝ22
(n1 − 1) + (n2 − 1)

=
(n1 − 1)ŝ21 + (n2 − 1)ŝ22

n1 + n2 − 2

ou en termes de variances non corrigées :

σ̂2 =
n1s

2
1 + n2s

2
2

n1 + n2 − 2

Variables de décision en fonction des cas :

σ1 et σ2 connus H1 Variable de décision sous H0 p−valeurs
µ1 ̸= µ2 P (|Z| > |zobs|)

Z−test µ1 > µ2 Z =
X̄1 − X̄2√
σ2
1

n1
+

σ2
2

n2

P (Z > zobs)

µ1 < µ2 P (Z < zobs)

σ1 et σ2 inconnus mais égaux H1 Variable de décision sous H0 p−valeurs
µ1 ̸= µ2 P (|T | > |tobs|)

T−test µ1 > µ2 T =
X̄1 − X̄2

σ̂

√
1

n1
+

1

n2

P (T > tobs)

µ1 < µ2 P (T < tobs)

σ1 et σ2 inconnus et inégaux H1 Variable de décision sous H0 p−valeurs
µ1 ̸= µ2 P (|T | > |tobs|)

T−test de Welch µ1 > µ2 T =
X̄1 − X̄2√
ŝ1

2

n1
+

ŝ2
2

n2

P (T > tobs)

µ1 < µ2 P (T < tobs)

Exemple 10 : nous souhaitons comparer les rendements moyens de blé tendre dans deux
départements différents.

1. En Eure-et-Loir, sur 20 exploitations, nous avons obtenu un rendement moyen de 82
q/ha et un écart-type de 5 q/ha.

2. En Seine Maritime, sur 16 exploitations, nous avons obtenu un rendement moyen de
86 q/ha et un écart-type de 8 q/ha.

Peut-on considérer au risque de première espèce de 5% que les rendements de blé tendre en
Seine maritime sont supérieurs à ceux d’Eure-et-Loir ?
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Solution : Appelons population 1 (resp. population 2) l’ensemble des exploitations produi-
sant du blé tendre en Eure-et-Loir (resp. en Seine maritime).
Remarquons que nous ne connaissons rien des deux populations : σ1 et σ2 sont incon-
nues (tout comme µ1 et µ2) !
En revanche, nous connaissons tout des échantillons :

— n1 = 20, x̄1 = 82 q/ha et s1 = 5 q/ha,
— n2 = 16, x̄2 = 86 q/ha et s2 = 8 q/ha.

Étape 1 : Test d’égalité des variances.

Soient σ2
1 et σ2

2 les variances des productions de blé tendre en Eure-et-Loir et en Seine maritime.

1. H0 : σ2
1 = σ2

2 vs H1 : σ2
1 ̸= σ2

2.

2. on se fixe un risque de première espèce α = 5%.

3. Soient Ŝ1
2

(resp. Ŝ2
2
) la variable aléatoire qui à tout EAS d’effectif 20 de la population

1 (resp. d’effectif 16 de la population 2), lui associe sa variance corrigée.

Sous H0 : F =
Ŝ1

2

Ŝ2
2 ↪→ Fisher-Snedecor à (19, 15) ddl

4. On détermine les zones de rejet et de non-rejet de H0 à l’aide d’un software.

— Si fobs ∈ [0, 3821; 2, 773], on ne rejette pas H0,
— Si fobs /∈ [0, 3821; 2, 773], on rejette H0.

5. Pour calculer fobs, nous avons besoin de calculer ŝ1
2 =

20

19
s21 et ŝ2

2 =
16

15
s21. On trouve

ŝ1
2 = 26, 31 et ŝ2

2 = 68, 27. Ainsi, fobs =
26, 31

68, 27
= 0, 385.

6. fobs = 0, 385 ∈ [0, 3821; 2, 773], donc au risque de première espèce de 5% et au vu de nos
deux échantillons, on ne rejette pas H0. Nous pouvons donc supposer que les variances
σ2
1 et σ2

2 sont égales.

Comme précisé auparavant, nous n’avons pas démontré que les variances σ2
1 et σ2

2 sont égales,
mais nous ne pouvons pas dire le contraire, même si fobs n’était pas loin d’une des deux valeurs
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critiques.

Étape 2 : Test de comparaison des moyennes.

Soient µ1 et µ2 les rendements moyens de blé tendre en Eure-et-Loir et en Seine maritime.
Au vu de l’étape 1, nous allons utiliser le T-test de comparaison des moyennes.

Calcul préliminaire de la pooled-variance : σ̂2 =
20× 52 + 16× 82

20 + 16− 2
≈ 44, 82. D’où σ̂ ≈ 6, 7.

1. H0 : µ1 = µ2 vs H1 : µ1 < µ2

2. on se fixe un risque α = 5%

3. Soit X̄1 (resp. X̄2) la variable aléatoire qui à tout EAS de 20 exploitations d’Eure-et-
Loir (resp. de 16 exploitations de Seine maritime) associe le rendement moyen de blé
tendre.

Sous H0 : T =
X̄1 − X̄2

σ̂

√
1

20
+

1

16

↪→ Student à 20+16-2 = 34 ddl

4. On détermine les zones de rejet et de non-rejet de H0 à l’aide d’une table statistique
ou d’un software :

— Si tobs ≥ −1, 69, on ne rejette pas H0,
— Si tobs < −1, 69, on rejette H0.

5. tobs =
82− 86

6, 7×
√

1

20
+

1

16

≈ −1, 78.

6. tobs = −1, 78 < −1, 69, donc au risque de première espèce de 5% et au vu de nos
échantillons, on rejette H0. Nous pouvons dire que le rendement moyen de blé tendre
en Seine maritime est supérieur à celui à Eure-et-Loir.

Remarque importante : on peut à juste titre objecter le fait qu’on ait pris pour hypothèse
l’égalité des variances de chaque population, puisque conserver H0 : σ2

1 = σ2
2 ne prouve rien

en fait sur sa véracité. Auquel cas, on peut directement appliquer le test de Welch.
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En utilisant l’onglet statistiques de Geogebra, avec n1 = 20, n2 = 16, x̄1 = 82, x̄2 = 86,
ŝ1 =

√
26, 31 = 5, 13 et ŝ2 =

√
68, 27 = 8, 26, nous obtenons :

Et là, ô (petite) surprise, en utilisant ce test, nous trouvons une p-valeur de 0,9483 largement
supérieure au risque α de 5%. Bref, nous ne pouvons pas rejeter H0 et dire que le rendement
moyen de blé tendre est supérieur en Seine maritime !
Nous reviendrons sur cette contradiction apparente en TP.
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2 Corrigé des quiz et compléments

2.1 Corrigés des quiz et exercices

Quiz 1 : corrigé rapide.

1. (c)

2. (b)

3. (c) : 0, 005× 0, 997 ≈ 0, 00499

4. (b) : 0, 9552/(1− 0, 005) = 0, 96

5. (a) (d) : 0, 995× 0, 96 + 0, 005× 0, 003 = 0, 9552

(b) (b) : 1− 0, 955210 = 0, 3677

Quiz 2 : Les calculs ont été effectués à l’aide du software Geogebra.

1. (d) : 0,0028

2. (b) : 0,9869

3. (c) : 1,107 mm

4. Augmenter la taille n de l’échantillon : (b) diminue le risque α et (d) diminue le risque
β (donc augmente la puissance du test).

5. (a) P est croissante

Exercice 1 : on évalue P (X ≥ 8) où X ↪→ B(11; 1/3).

P (X ≥ 8) = 0, 0088 < α = 0, 01 et P (X ≥ 7) = 0, 0386 > 0, 01. CQFD.
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Quiz 3 : Les calculs ont été effectués avec le software Geogebra

1. (c) 28/200 = 0,14

2. (b) π > 0, 11 est la plus raisonnable. On peut aussi poser (d) π ̸= 0, 11

3. (d) P (F ≥ 0, 14) = P (X ≥ 0, 14× 200) = P (X ≥ 28) = 0, 1094, où X ↪→ B(200; 0, 11)
(loi exacte)

4. (b) Faux. On rejette H0 si f ≥ 30/200 = 0, 15. Or f = 0, 14 < 0, 15

5. (d) (0,11 ; 0,022) : E(F ) = π et σ(F ) =
√
π(1− π)/200

6. (a) ]1, 645;+∞[ : 1,645 est le fractile d’ordre 0,95 de U

7. (a) Oui, même conclusion qu’avant. uobs = (0, 14− 0, 11)/0, 022 = 1, 36 < 1, 645

Quiz 4 : Les calculs ont été effectués avec le software Geogebra

1. (c) C’est un test unilatéral à gauche

2. (d) E(X̄) = 2, 7 et σ(X̄) =
σ√
20

= 0, 056.

3. (a) 0,0101

4. (a) −2, 3255

5. (a) Vrai : par translation et homothétie de rapport positif

6. (b) Vrai

7. (b) [−1, 96; 1, 96]

8. (a) et (b)

Quiz 5 : Les calculs ont été effectués avec le software R

1. (c) Sous H0, les données obtenues sont improbables (seuil α fixé à l’avance). La notion
de p−valeur ne porte pas sur H1 donc on ne retient pas (d). Il est ainsi classique, quand
cela est possible de calculer la puissance du test après le rejet de H0.

2. (b) : "sépare" bien les courbes sous H0 : µ = 2, 5 et H1 : µ = M et (d) : "rend pointues"
les gaussiennes.

3. (a) distribution uniforme (plate)

4. (a) Vrai

5. (a) Vrai

Quiz 6 : Un florilège d’idées fausses !

1. (b) Faux ! Avoir une p−valeur de 0,03 signifie que sous H0, la probabilité d’obtenir nos
données ou plus extrêmes est de 0,03.

2. (b) Faux ! Il est possible d’obtenir une grande p−valeur même si H0 est fausse. Une des
causes possibles est le manque de puissance de notre test : c.f graphiques de distribution
des p−valeurs.

3. (b) Faux !

4. (a) Vrai

5. (a) Vrai
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Exercice 2 : Démarche standard

1. x̄ = 249, 64g et sx = 1, 394g (l’écart-type corrigé est ŝx = 1, 447g)

2. On suppose ici σ = 2g. Nous testons H0 : µ = 250 contre H1 : µ < 250.
Comme l’écart-type de la population est connu, la variable de décision sous H0 est

U =
X̄ − µ

σ/
√
14

↪→ N (0; 1).

Si uobs < −1, 645, on rejette H0, sinon on ne rejette pas H0. uobs = (249, 64 −
250)

√
14/2 = −0, 673 ≥ −1, 645, donc au risque de première espèce de 5% on ne

rejette pas H0. On ne peut pas suspecter le boulanger de fraude.

3. Cette fois-ci, l’écart-type de la population est inconnu. La variable de décision est

T =
X̄ − 250

Ŝ/
√
14

↪→ Student à 14-1 = 13 ddl.

En utilisant la table de la loi de Student ou un software, on obtient la règle de décision
suivante : si tobs < −1, 77, on rejette H0, sinon on ne rejette pas H0. tobs = (249, 64−
250)

√
14/1, 447 = −0, 93 ≥ −1, 77, donc au risque de première espèce de 5% on ne

rejette pas H0. La conclusion est la même que précédemment.

Quiz 7 : Se servir d’un intervalle de confiance pour un test bilatéral !

1. (d) 0,0717

2. (b) χ2
15;0,975 = 27, 488, d’où 16× 0, 0717/27, 488 = 0, 041 par défaut.

3. (a) Oui. La borne supérieure de l’intervalle de confiance de σ2 au seuil de confiance de
95% est 0,184 par excès. 0, 204 /∈ [0, 041; 0, 184], donc on rejette H0. La démarche clas-
sique en 4 ou 6 étapes aurait abouti à la même conclusion : kobs = 16×0, 0717/0, 204 =
5, 623 /∈ [6, 262; 27, 488].

Exercice 3 : Encore les intervalles de confiance.

1. ŝ2 = 3, 0186.

2. IC0,95 = [1, 82; 5, 94]

3. 2, 52 = 6, 25 /∈ [1, 82; 5, 94], donc au risque de première espèce de 5%, on rejette H0 :
σ2 = 2, 52.

Quiz 8 : Toute proportion gardée . . .

1. (b) 14/150 = 0,0933

2. (a) 0,1324

3. (c) unilatérale à gauche. On cherche à savoir si π < 0, 11.

4. (a) J0; 9K : P (X ≤ 9) < 0, 05 et P (X ≤ 10) > 0, 05, où X ↪→ B(150; 0, 11).
5. (b) Faux : 14 > 9.

6. (d) uobs =
0, 0933− 0, 11√

0, 0933(1− 0, 0933)/150
= −0, 6537

7. (b) Faux : uobs ∈]− 1, 645;+∞[ (zone de non-rejet de H0).
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Quelques exercices non corrigés . . .

Règle de décision : La taille d’un crapaud commun (Bufo bufo L.) est la mesure en mil-
limètre de la distance de l’extrémité du museau à la pointe de l’urostyle de l’animal. Les
naturalistes ont mis en évidence qu’à l’âge adulte :

— la taille des femelles est distribuée selon une loi normale d’espérance 94 et d’écart-type
11,

— la taille des mâles est distribuée selon une loi normale d’espérance 73 et d’écart-type 5.

1. Écrire une légende pour le graphique ci-contre :

2. (a) Donner le pourcentage de femelles ayant une taille comprise entre 90 et 120 milli-
mètres,

(b) Donner le pourcentage de mâles ayant une taille comprise entre 70 et 80 millimètres,
(c) Déterminer le premier et le neuvième décile de la distribution des tailles des crapauds

mâles. On rappelle que le premier décile d’une distribution est la valeur en dessous
de laquelle on trouve 10% des tailles et que le neuvième décile est celle en dessous
de laquelle on trouve 90% des tailles.

3. Pour sexer rapidement un crapaud adulte, un naturaliste adopte la règle de décision
suivante :
Si la taille du crapaud est inférieure à 80 mm alors il admet que c’est un mâle.
Sinon il admet que c’est une femelle.
Représenter graphiquement et déterminer les probabilités des évènements suivants :

(a) Un crapaud mâle pris au hasard a une taille supérieure à 80 mm
(b) Un crapaud femelle pris au hasard a une taille inférieure à 80 mm

4. En supposant que le sex ratio des crapauds communs est de sept mâles pour une femelle,
déterminer la probabilité de se tromper lorsque l’on applique cette méthode. On pourra
s’aider d’un arbre pondéré.

Interprétation : On donne ci-dessous plusieurs informations. Entourez celles qui sont vraies.

1. Affirmation 1 : Ne pas rejeter H0 : µ = µ0, c’est prouver qu’il n’y a pas de différence
significative entre µ et µ0.

2. Affirmation 2 : Rejeter H0, c’est prouver que notre échantillon était "exceptionnel".

3. Affirmation 3 : Dans une ville donnée, la proportion de gauchers est p = 0, 2. On
prélève un échantillon aléatoire simple de 200 individus de cette ville. Un intervalle de
fluctuation asymptotique au seuil de confiance de 95% de p est [0,1445 ; 0,2555].

4. Affirmation 4 : Dans une autre ville, on prélève un échantillon aléatoire simple de 80
individus. On s’aperçoit qu’il contient 14 gauchers. Un intervalle de confiance au seuil
de confiance de 95% de p, la proportion de gauchers dans la ville, est [0,0969 ; 0,2531]

5. Affirmation 5 : Plus la puissance d’un test est grande, plus on rejette H0 à raison.
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Puissance et taille : Un éleveur breton utilise une ration A pour engraisser ses porcs. Il
estime l’écart-type de leurs masses à 20 kg. Il veut tester une ration B avec laquelle il espère
un gain de masse de 12 kg. Quelle doit-être la taille de l’échantillon de son expérimentation
afin d’avoir une puissance d’au moins 0,8 ?

Tests de conformité :

1. Nous prélevons 150 bouteilles dans une production de bouteilles d’eau dont on mesure
le pH. Nous observons que 25 bouteilles ont un pH supérieur à 7,5. Peut-on dire, au
risque de première espèce de 5% que la proportion de bouteilles dont le pH dépasse 7,5
est supérieure à 10%?

2. Afin de vérifier la qualité du lait d’une exploitation agricole, on effectue des prélève-
ments journaliers pour lesquels on dose l’acidité du lait.
On considère que le lait est « suspecté de mouillage » (dilution frauduleuse par l’agri-
culteur) si son dosage moyen d’acidité est inférieur à 12 degrés Dornic.
Voici les résultats obtenus sur 15 prélèvements : 13 15 11,5 13 10 9,5 10 10 12 11,5

12,5 14 11 10 12
On supposera que le dosage de l’acidité du lait est une variable aléatoire normalement
distribuée.
Peut-on au risque de première espèce de 5% suspecter le lait de cette exploitation de
mouillage ?

Tests de comparaison :

1. Une firme pharmaceutique met au point un somnifère qu’elle teste sur deux groupes de
patients, issus de deux populations :
L’échantillon 1, issu de la population 1, contient 150 patients et à l’issue du test, 110
d’entre eux ont vu leur sommeil réparé de manière significative.
L’échantillon 2, issu de la population 2, contient 280 patients et à l’issue du test, 200
d’entre eux ont vu leur sommeil réparé de manière significative.
Au vu de cet échantillon, et au risque de 5%, peut-on affirmer que la population 2 est
moins sensible au somnifère que la population 1 ?

2. On s’intéresse aux rendements de Cabernet Franc dans 10 exploitations du Sud-Ouest
et de 16 exploitations du Languedoc.
On a obtenu les résultats suivants :
Pour les exploitations du Sud-Ouest, le rendement moyen a été en 2020 de 56,2 hl/ha
avec un écart-type de 2,5 hl/ha.
Pour les exploitations du Languedoc, le rendement moyen a été en 2020 de 53,5 hl/ha
avec un écart-type de 1,5 hl/ha.
Peut-on affirmer, avec un risque de première espèce de 5 % que le rendement de Ca-
bernet Franc dans le Sud-Ouest est supérieur à celui du Languedoc ?
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