
Arithmétique et Python 1 - divisibilité / congruences

Yannick Le Bastard

31 juillet 2024

Table des matières

1 Généralités sur les entiers - Divisibilité 2
1.1 Divisibilité . 2
1.2 Écriture dans une base quelconque . 5
1.3 Congruences . 8
1.4 PGCD-PPCM . 10

2 Exercices 18
2.1 Énoncés des exercices . 18
2.2 Solutions des exercices . 19

3 Compléments utiles 25

4 Bibliographie 27

Résumé : L’Arithmétique ! Le sujet est si vaste et si passionnant qu’il convient de se limiter
dès le début tant les résultats et les approches sont foisonnantes. En ce qui nous concerne,
nous travaillerons essentiellement avec des entiers naturels ou relatifs conformément aux pro-
grammes du secondaire, mais n’excluons aucun prolongement si le besoin s’en fait sentir. Nous
reprendrons dans le corps de cet article des résultats élémentaires mais fondamentaux en nous
limitant à une présentation de niveau secondaire. Nous irons parfois plus loin dans l’esprit
des Olympiades de mathématiques, et nous rencontrerons quelques fonctions arithmétiques
classiques généralement enseignées dans le supérieur.
Le présent document est cependant essentiellement à destination des enseignants en devenir
ou en exercice, et suppose connus les thèmes abordés, ainsi qu’une certaine familiarité avec le
langage Python, notamment l’utilisation raisonnée des listes.
Beaucoup de notions seront présentées de manière duale, en illustrant un cadre purement
théorique par une approche informatique efficiente. L’évolution des programmes du secondaire
nous incite en effet à ce cheminement afin de les exposer en classe à l’aide de l’outil TICE. Ce-
dernier peut et doit servir de "testeur", d’approche inventive et rigoureuse, avant de donner,
si le contexte le permet, une solution standard d’un exercice ou d’un problème intéressant.
Réactiver les souvenirs de collège des élèves de seconde sur les nombres premiers et l’algorithme
d’Euclide, leur exposer une vraie démarche scientifique, les faire chercher bien évidemment
sans quoi aucune appropriation n’est possible, est une activité essentielle avant la formali-
sation rigoureuse des concepts. Et puis, depuis fort longtemps maintenant, arithmétique et
informatique font ménage commun dans les transactions bancaires ou en sécurité militaire. Si
la reine des sciences est La Mathématique et si la reine des mathématiques est l’Arithmétique,
sa petite cousine l’informatique ne peut que s’enorgueillir de la parer de ses plus beaux atours !

1

Je remercie chaleureusement ma collègue Hélène Carles pour sa relecture attentive, et l’exercice
n’est pas simple, ainsi que pour ses suggestions pertinentes.

1 Généralités sur les entiers - Divisibilité

Nous supposons acquise la notion d’entier (naturel ou relatif), de valeur absolue, et nous ad-
mettrons les propriétés suivantes :

— Toute partie A non vide de N admet un plus petit élément m,
— Toute partie A non vide, et majorée de N admet un plus grand élément M ,
— Le corps R est archimédien : ∀(x, y) ∈ R∗

+ × R il existe n ∈ N∗ tel que nx > y.

1.1 Divisibilité

Théorème 1-1-1 (de la division euclidienne) : Soient (a, b) ∈ N×N∗. Alors il existe un
unique couple (q, r) ∈ N2 tel que a = bq + r, et 0 ≤ r < b.

Démonstration :
Unicité : Soient (a, b) ∈ N × N∗. Supposons qu’il existe (q, r) ∈ N2 tel que a = bq + r, et
0 ≤ r < b, ainsi que (q′, r′) ∈ N2 tel que a = bq′ + r′, et 0 ≤ r′ < b.
Mais alors, bq + r = bq′ + r′ et donc b|q − q′| = |r − r′|. Or |r − r′| < b, d’où nécessairement
|q − q′| = 0 i.e q = q′, puis r = r′.
Existence : Soit A = {k ∈ N; a − bk ∈ N}. A ̸= ∅ : 0 ∈ A et A est majoré par a + 1 :
a − b(a + 1) = a(1 − b) − b < 0. Donc A admet un élément maximum que nous noterons q.
Posons alors r = a− bq.
Supposons par l’absurde que r ≥ b. Alors : 0 ≤ r−b = a−b(q+1). D’où q+1 ∈ A et q+1 > q.
Contradiction avec q maximal. D’où r < b.

Remarque 1-1-2 : Pour mieux faire ressortir la définition de R archimédien, nous aurions
aussi pu introduire l’ensemble A = {n ∈ N ; nb ≤ a} et considérer son élément maximal.

Exercice résolu 1-1-3 : Nous pouvons traduire la preuve d’existence précédente informa-
tiquement sans l’aide des opérateurs modulo % et // renvoyant respectivement le reste de la
division euclidienne de a par b et le quotient de la division euclidienne de a par b. Moralement,
si a ≥ b, on construit une suite arithmétique de premier terme a et de raison −b. Notons q+1
le premier entier tel que a− b(q+1) < 0. Alors q est le quotient recherché et r = a− bq. Nous
donnons ici un script sans test de vérification (a ≥ 0 et b > 0). Le lecteur complètera.
Remarquons que q = E(a/b), que l’on note aussi q = [a/b].

2

#script de H. Carles
#Entree : deux entiers naturels a et b (b non nul)
#Sortie : le quotient dans la division euclidienne de a par b
def division(a,b) :

5 c = a #on part de a
if c < b :

return 0
else :

q = 0 #le compteur de pas
10 while c >= 0:

c -= b #on enleve b a chaque pas
q += 1 #increment du compteur

return q-1

15 a = int(input("saisir un entier naturel a : "))
b = int(input("saisir un entier naturel b : "))
print(a,"= ",b," *", division(a,b),"+",a-b*division(a,b))

Corollaire et définition 1-1-4 : De ce qui précède, nous pouvons déduire que pour tout
couple (a, b) ∈ Z×N∗,il existe un unique couple (q, r) ∈ Z×N tel que a = bq+ r, et 0 ≤ r < b.
q s’appelle le quotient et r le reste dans la division euclidienne de a par b.

Corollaire et remarque 1-1-5 : Si (a, b) ∈ Z2, pour tout couple (a, b) ∈ Z × Z∗, il existe
un unique couple (q, r) ∈ Z× N tel que a = bq + r, et 0 ≤ r < |b|.
Si nous n’imposons pas au reste r d’être dans N en remplaçant la condition 0 ≤ r < |b| par
la condition |r| < |b|, alors l’unicité est perdue. Par exemple : 24 = 5 × 4 + 4, mais aussi
24 = 5× 5− 1.

■ Vous pouvez faire ici l’exercice 0.

Définition 1-1-6 : Soient a et b deux entiers (b ̸= 0). On dit que a est divisible par b (ou
que a est un multiple de b) s’il existe un entier k tel que a = kb.
Autrement dit, a est divisible par b si le reste r de la division euclidienne de a par b est nul.

Remarque 1-1-7 : il résulte de cette définition que 0 est divisible par n’importe quel en-
tier (k = 0 convient toujours). Nous exclurons ce cas dans le script suivant mais le lecteur
pointilleux le prendra en compte via un test de saisie.

Exercice corrigé 1-1-8 : Écriture d’un entier N non nul sous la forme a× b (a ≤ b) : par
exemple si l’on saisit N = 20, il sera renvoyé :
N = 1× 20
N = 2× 10
N = 4× 5

N = int(input("Saisir un entier N>=2 : "))
D = [i for i in range(1,N+1) if N%i == 0] #diviseurs de N
for div in D :

if div <= N//div : #pour eviter les doublons
5 print(N,"=",div,"*",N//div)

■ Vous pouvez faire ici les exercices 1 et 2.

3

Propriété 1-1-9 : Soient a, b et c trois entiers non nuls.

1. Si a|b et si b|c, alors a|c (la relation de divisibilité est transitive),

2. Si a|b et si a|c, alors pour tout entiers (k, l) ∈ Z2, a|kb+ lc,

3. Si a|b, alors |a| ≤ |b|,
4. Si a|b et b|a, alors a = ±b

Démonstration :

1. a|b donc il existe u ∈ Z tel que b = ua. De même, il existe v ∈ Z tel que c = vb. D’où
c = uva et donc a|c.

2. a|b donc il existe u ∈ Z tel que b = ua. De même, il existe v ∈ Z tel que c = va. Mais
alors pour tout (k, l) ∈ Z2, kb+ lc = (ku+ lv)a d’où le résultat.

3. a|b donc il existe u ∈ Z tel que b = ua. De plus, a, b > 0 donc nécessairement u ̸= 0,
donc |b| = |u||a| ≥ |a|.

4. Immédiat de par ce qui précède.

Notation et exemples 1-1-10 : Notons Dk l’ensemble des diviseurs d’un entier k. Nous
savons que Dk ̸= ∅ puisque de manière évidente 1 ∈ Dk.

1. Résoudre dans Z2 l’équation :

(a) n+ 1|n+ 7

(b) 10|n2 + (n+ 1)2 + (n+ 3)2

2. Un entier naturel N est dit parfait si la somme de ses diviseurs stricts est égal à N .
Par exemple, 6 a pour diviseurs stricts 1, 2 et 3 et 1+2+3 = 6. Donc 6 est un nombre
parfait. Écrire un script Python qui détermine la liste de tous les nombres parfaits
inférieurs ou égaux à 10000.

3. Trouver le plus petit entier n tel que 2|n− 1, 3|n− 2, . . . , 9|n− 8.

Solutions : Théorique comme pratique !
Les équivalences des questions 1 et 2 sont évidentes, mais il peut être utile de raisonner par
condition nécessaire et suffisante en classe.

1. La solution théorique n’appelle pas de solution pratique :

(a)

n+ 1 | n+ 7 ⇔ n+ 1 | (n+ 1) + 6

⇔ n+ 1 | 6
⇔ n+ 1 ∈ {−6;−3;−2;−1; 0; 1; 2; 3; 6}
⇔ n ∈ {−7;−4;−3;−2;−1; 0; 1; 2; 5}

(b)

10 | n2 + (n+ 1)2 + (n+ 3)2 ⇔ 10 | 3n2 + 8n+ 10

⇔ 10 | 3n2 + 8n

En attendant le paragraphe sur les congruences, examinons pour le moment à l’aide
de Python les cas n = a+ 10k, a = 0, 1, . . . , 9 ; k ∈ Z (les "a" sont les restes de la
division euclidienne de n par 10) et calculons 3n2+8n. Si n vérifie 3n2+8n ≡ 0[10]
alors n convient. Il suffit en fait de tester les restes a.

4

def diviseurs() :
L = []
for a in range(10) : #a varie de 0 a 9

if (3*a**2+8*a)%10 == 0 :
5 L.append(a)

return L

print(diviseurs())

On trouve [0; 4]. Autrement dit, les entiers n solutions sont de la forme n = 10k ou
n = 4 + 10k, k ∈ Z.

2. Les listes en Python sont vraiment pratiques !

def ListeParfaits(N) :
L = []
for k in range(2,N) :

D = [i for i in range(1,k) if k%i == 0] #les diviseurs stricts de k
5 if k == sum(D) :

L.append(k)
return L

print(ListeParfaits(10000))

On trouve 6, 28, 496, 8128.
3. Faisons appel à Python.

def diviseurMin() :
n = 1
condition = [(n-j+1)%j == 0 for j in range(2,10)]
while condition != [True for i in range(8)] :

5 n += 1
condition = [(n-j+1)%j == 0 for j in range(2,10)]

return n

print(diviseurMin())

On trouve 2519.

1.2 Écriture dans une base quelconque

Nous avons tous l’habitude de raisonner en base 10 de par notre numérotation décimale clas-
sique. Mais historiquement, c’est le système sexagésimal (base 60) qui était utilisé depuis la
plus haute antiquité (dès 3000 av J.C par les sumériens, puis vers 2000 av J.C par les baby-
loniens. Il en fut de même en Inde et en Chine, puis par la culture arabe qui l’emprunta à la
culture indienne. Les grecs suivirent à leur tour). Nous le retrouvons à l’heure actuelle dans le
décompte du temps : 1 heure = 60 minutes ; 1 minute = 60 secondes.

Écriture en base 10 Tout entier naturel a s’écrit sous la forme

a =
∑
i≥0

ai10
i, 0 ≤ ai ≤ 9

où les coefficients ai sont presque tous nuls i.e il existe un rang N à partir duquel tous les ai
sont nuls.

Dans la pratique, on posera alors a =

N−1∑
i=0

ai10
i.

5

Écriture en base b

Théorème 1-2-1 : Soit b un entier supérieur ou égal à 2. Tout entier a > 0 s’écrit de manière
unique sous la forme :

a =
∑
i≥0

aib
i, ai ∈ {0; 1; . . . ; b− 1}, où les ai sont presque tous nuls

L’unicité signifie que si a =
n∑

i=0

aib
i =

m∑
j=0

a′jb
j ; ai, a

′
j ∈ {0; 1; . . . ; b − 1}, alors m = n et

ai = a′i pour tout i ∈ {0, . . . , n}.

Un exemple pour mieux comprendre : Considérons a = 236. La division euclidienne de a par
5 donne :
236 = 47× 5 + 1
Divisons le quotient précédent 47 par 5 :
47 = 9× 5 + 2
De même :
9 = 1× 5 + 4
1 = 5× 0 + 1 (quotient nul)
soit : 236 = (((5× 0 + 1)× 5 + 4)× 5 + 2)× 5 + 1.
En développant : 236 = 1× 53 + 4× 52 + 2× 51 + 1.
On écrit : 136 = 1421

5 ou si aucune confusion n’est à craindre : 136 = 1421.
Le chiffre des unités est le reste de la division euclidienne par 5.
Il suffit donc de remonter depuis le dernier reste obtenu jusqu’au premier afin d’ob-
tenir l’écriture de n en base 5.

Démonstration : Elle est à retenir absolument car son principe algorithmique (division en cas-
cade) donne l’idée du script permettant de convertir un entier naturel écrit en base 10 dans
sa forme écrite en base b. Tout repose sur le principe de division euclidienne vu auparavant !
n←− entier naturel
b←− entier naturel ≥ 2
r ←− n%b
L←− [r] (L est une liste)
Tant que n//b ̸= 0 faire :

n←− n//b
r ←− n%b
Ajouter r à L

Fin Tant que
Inverser L
Afficher les éléments de L

Ceci permet de donner le script suivant (base 10 vers base b) :

def conversionBase10b(n,b) : #de la base 10 vers la base b
r = n%b
L = [r]
while (n//b) != 0 :

5 n = (n//b)
r = n%b
L.append(r)

6

L.reverse()
return L

10
n = int(input("Saisir un entier naturel en base 10 : "))
b = int(input("saisir une base b (entier >=2) : "))
print(conversionBase10b(n,b))

Remarquons que la réciproque est facile à établir :
def conversionBaseb10(n,b) : #de la base b vers la base 10

n,nb = str(n),0
for i in range(len(n)) :

nb += int(n[len(n)-1-i])*b**i
5 return nb

b = int(input("saisir une base b (entier >=2) : "))
n = int(input("Saisir un entier naturel en base b : "))
print(conversionBaseb10(n,b))

Exercice résolu 1-2-2 : Quelques exemples :

1. Convertir 234
(5) et 11001000110

(2) en base dix,
2. En base supérieure à dix, on utilisera les lettres A, B, C, . . .comme chiffres au-delà de

9. Convertir AAB
(12) en base 10 puis en base 7. Même question avec A8D

(12) en base
10 puis en base 4.

Solution :
1. 234

(5)
= 4 + 3× 5 + 2× 52 = 69.

11001000110
(2)

= 2 + 22 + 26 + 29 + 210 = 1606

2. AAB
(12)

= 11 + 10 × 12 + 10 × 122 = 1571 en base 10, puis (utilisation du script
précédent) : 4403 en base 7.
A8D

(12)
= 13 + 8× 12 + 10× 122 = 1549 en base 10, puis 120031 en base 4.

Opérations usuelles dans une base : Profs comme élèves : en retenue !

Le principe est le même qu’en base 10 : il ne faut pas oublier les retenues. Donnons par exemple
la table d’addition en base 6 :

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 10
2 2 3 4 5 10 11
3 3 4 5 10 11 12
4 4 5 10 11 12 13
5 5 10 11 12 13 14

De même, en base 6, 10 + 10 = 20, 20 + 40 = 100, 20 + 50 = 110, etc.

Un exemple d’addition en base 6 : 345 + 23.
En base 6, 5+3 = 12. On pose 2 on retient 1.
4 +2 = 10 , donc 1+ (4+2) = 11. On pose 1 et on retient 1.
Enfin, 1+3 = 4. Mettre sous forme posée.
Au final, 345(6) + 23

(6)
= 412

(6).
Faisons de même pour la table de multiplication en base 4 :

7

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 10 12
3 0 3 12 21

■ Vous pouvez faire ici les exercices 3 et 4.

Écriture en binaire, octodécimal et hexadécimal C’est le mode de représentation usuel
des nombres par un ordinateur. Nous y reviendrons en détail dans un thème d’étude appro-
fondissant les notions vues dans cet article.

D’après le théorème d’écriture d’un entier en base b, nous savons que tout entier a > 0
s’écrit de manière unique sous la forme :

a =
∑
i≥0

ai2
i, ai ∈ {0; 1}, où les ai sont presque tous nuls

Il s’agit de la représentation binaire d’un entier.
En base 8, nous parlons de représentation octodécimale, et en base 16 de représentation
hexadécimale.

1.3 Congruences

Voici une section extrêmement importante ! Nous allons moduler tout ça . . .

Définition 1-3-1 : Soit n ∈ N∗. On dit que deux entiers a et b sont congrus modulo n, et
on note a ≡ b[n] ou a ≡ b (mod n) si a− b est un multiple de n, ou de manière équivalente si
n divise a− b.

Remarque 1-3-2 : La relation a ≡ 0[n] signifie que n divise a.

Propriété 1-3-3 :

1. La relation de congruence modulo n est une relation d’équivalence.

2. Cette relation est compatible avec l’addition : si a ≡ b[n] et si c ≡ d[n], alors

a+ c ≡ b+ d[n]

3. Cette relation est compatible avec la multiplication : si a ≡ b[n] et si c ≡ d[n], alors

ac ≡ bd[n]

4. Soit d un diviseur positif de n. Si a ≡ b[n], alors a ≡ b[d],

5. Soit r le reste de la division euclidienne de a ∈ Z par n ∈ N∗. Alors a ≡ r[n].

La démonstration de ces propriétés est immédiate. Prouvons juste 3 :
a ≡ b[n] donc il existe un entier k tel que a = b + kn. De même, il existe un entier l tel que
c = d+ ln. D’où ac = (b+ kn)(d+ ln) = bd+ (bl + kd+ kln)n. CQFD.

Remarque 1-3-4 : Nous verrons d’autres propriétés des congruences une fois connues les
notions de PGCD et de PPCM.

8

Corollaire 1-3-5 : Soit n ∈ N∗. Tout entier a ∈ Z est congru à un unique entier r ∈
{0, 1, . . . , n− 1}.

Corollaire 1-3-6 : Soit n ∈ N∗. Si a ≡ b[n], alors pour tout entier naturel k, ak ≡ bk[n].

Cette notion de congruence permet de prouver les critères de divisibilité classiques par 3, par
9 et par 11.

Propriété 1-3-7 : Soit n = an × 10n + an−1 × 10n−1 + · · · + a0, (0 ≤ ai ≤ 9) l’écriture
en base 10 d’un entier n. Alors modulo 3 (resp. modulo 9), l’entier n est congru à la somme
an + · · ·+ a0 de ses chiffres modulo 10.
Le nombre n est ainsi multiple de 3 (resp. de 9) si la somme de ses chiffres est un multiple de
3 (resp. de 9).

Démonstration : 10 ≡ 1[3], donc pour tout entier naturel i, 10i ≡ 1[3]. Ainsi, an ≡
n∑

i=0

ai[3].

Propriété 1-3-8 : Soit n = an × 10n + an−1 × 10n−1 + · · ·+ a0, (0 ≤ ai ≤ 9) l’écriture en
base 10 d’un entier n. Alors modulo 11, l’entier n est congru modulo 10 à la somme alternée
de ses chiffres en partant du chiffre des unités : a0 − a1 + a2 + · · ·+ (−1)nan.

Remarque 1-3-9 : En Python, la notion de congruence entre deux entiers naturels existe
via l’instruction %. Testez par exemple dans le shell :
>>>10%3
1 # on a bien 10 = 3× 3 + 1
En revanche, il y a souci entre deux entiers relatifs (cf remarque 1-1-5). Testez :
>>>-10%-3
−1

Exercice résolu 1-3-10 :
1. Prouver que pour tout entier naturel n, 32n − 2n est multiple de 7,
2. Pour quelles valeurs de n le nombre 4n + 2n + 1 est-il divisible par 7 ?
3. Prouver que l’équation diophantienne 56x2 + 87y2 = 134 n’a pas de solution dans Z.

Solution :
1. 9 ≡ 2[7], donc (corollaire 1-3-6) 32n − 2n ≡ 2n − 2n = 0[7], ce qui prouve le résultat

annoncé.
2. Il suffit de regarder les restes de la division euclidienne de n par 7 en vertu du corollaire

1-3-5.

def Restes() :
L = []
for reste in range(7) :

if (4**reste+2**reste+1)%7 == 0 :
5 L.append(reste)

return L

print(Restes())
#Le script renvoie [1, 2, 4, 5]

On en déduit que les entiers de la forme 1 + 7k, 2 + 7k, 4 + 7k, 5 + 7k (k ∈ Z) sont
solutions.

9

3. Nous allons raisonner par l’absurde en supposant que l’équation admette des solutions
entières. Le principe de la démonstration est que si A = B dans Z, alors pour tout entier
naturel n on a A ≡ B[n]. En choisissant de "bonnes valeurs" de n, la contradiction
apparaitra.
La décomposition en facteurs premiers des coefficients donne 56 = 23 × 7, 87 = 3× 29
et 134 = 2× 67. Raisonnons modulo 7, histoire de supprimer un terme.
L’équation diophantienne se réécrit (87 ≡ 3[7] et 134 ≡ 1[7]) : 3y2 ≡ 1[7].
Le corollaire 1-3-5 nous permet de nous limiter au cas des restes, autrement dit il suffit
de regarder si pour y ∈ {0, 1, . . . , 6}, l’équation 3y2 ≡ 1[7] a une solution. On vérifie
aisément que ce n’est pas le cas. Ce qui achève la preuve.
Remarque : pourquoi ne pas avoir raisonné modulo 2 afin de supprimer deux termes ?

■ Vous pouvez faire ici l’exercice 5.

1.4 PGCD-PPCM

Propriété et définition 1-4-1 : Considérons deux entiers a et b non tous deux nuls. L’en-
semble des diviseurs communs Da∩Db à a et à b est fini et non vide. Il possède donc un plus
grand élément, appelé plus grand commun diviseur de a et de b, et noté PGCD(a,b) ou
a ∧ b.
De même, l’ensemble des multiples communs positifs à a et à b est non vide (mais infini). Il
possède donc un plus petit élément, appelé plus petit commun multiple de a et de b, et
noté PPCM(a,b) ou a ∨ b.
On définit de même par récurrence le PGCD et le PPCM de n entiers.

Démonstration (pour le PGCD) : Da ∩ Db ⊂ Z, est non vide (1 est élément) et borné (par
max |a|, |b|), donc admet un plus grand élément positif.

Notation 1-4-2 : On note aussi D(a, b) l’ensemble des diviseurs communs à a et b.

Définition 1-4-3 :

1. Deux entiers naturels a et b sont dits premiers entre eux si leur plus grand diviseur
commun (PGCD) est égal à 1 i.e a ∧ b = 1,

2. N entiers naturels a1, a2, . . . , aN sont dits premiers dans leur ensemble si leur plus
grand diviseur commun (PGCD) est égal à 1. On note a1 ∧ a2 ∧ · · · ∧ aN = 1,

3. N entiers naturels a1, a2, . . . , aN sont dits premiers entre eux deux à deux si pour
tout (i, j) ∈ {1; . . . ;N} ai ∧ aj = 1.

Remarque 1-4-4 : N entiers premiers entre eux dans leur ensemble ne le sont pas néces-
sairement deux à deux. Considérer par exemple 2, 5 et 10. Ce résultat est à comparer avec la
notion d’indépendance d’événements en probabilités : dans ce dernier contexte, des événements
deux à deux indépendants ne le sont pas nécessairement mutuellement. Nous reviendrons sur
ce point en exercice.

Propriété 1-4-5 : Revenons sur la notion de divisibilité.

1. a ∧ 0 = |a|
2. Si d = a ∧ b, alors n divise a et b si et seulement si n divise d i.e si n ∈ D(a, b), alors

n | a ∧ b.
Ceci signifie que d est maximal pour la relation de divisibilité entre entiers.

10

3. Si m = a ∨ b, alors n est un multiple de a et de b si et seulement si n est un multiple
de m.

4. Si a, b, n sont des entiers non nuls (avec n > 0), alors (na) ∧ (nb) = n(a ∧ b).
5. Si n > 0 divise a et b, alors a

n ∧
b
n = 1

na ∧ b

6. Si d = a ∧ b, alors il existe (a′, b′) ∈ Z2 tels que a = da′, b = db′ et a′ ∧ b′ = 1.
Très utile en pratique !

7. Soient (a, b, k, l, k′, l′) ∈ Z6. Alors D(a, b) ⊂ D(ak′ + bl′, ak + bl), avec égalité si et
seulement si |k′l − kl′| = 1. En particulier, on a alors a ∧ b = (ak + bl) ∧ (ak′ + bl′).

Démonstration :
1. 0 = a× 0 et a ̸= 0. De plus a ∧ 0 ∈ N∗, d’où a ∧ 0 = |a|.
2. Évident par définition de a ∧ b

3. De même !
4. Posons d = a ∧ b et D = na ∧ nb. d divise a et b, donc nd divise na et nb. Par 2. nd

divise D. Réciproquement D divise na et nb. Donc l’entier D
n divise a et b, et donc D

n
divise d. D’où D divise nd. Il résulte que D = ±nd et comme tous deux sont positifs,
D = nd.

5. Même raisonnement
6. Soit d = a ∧ b. Comme d divise a et b, posons a′ = a

d et b′ = b
d . Supposons que a′ et

b′ ne soient pas premiers entre eux. Alors δ = a′ ∧ b′ > 1. Mais alors dδ divise a et b,
donc divise d. D’où δ = 1. Contradiction.

7. L’inclusion est évidente. Ceci entraine que d = a ∧ b divise D = (ak + bl) ∧ (ak′ + bl′).
Réciproquement, supposons que |k′l−kl′| = 1. Pour fixer les idées, disons que k′l−kl′ =
1. Alors D divise l(ak′ + bl′)− l′(ak + bl) = a. De même, D divise b, d’où D divise d.
On en déduit que d = D.

Remarque technique 1-4-6 : Pour prouver l’égalité de deux PGCD, on prouve fréquem-
ment que chacun divise l’autre.

Algorithme d’Euclide 1-4-7 : Soient (a, b) ∈ N× N∗.
1. a ∧ b = b ∧ r où r désigne le reste de la division euclidienne de a par b.
2. a = bq0 + r0, où 0 ≤ r0 < b. Si r0 = 0 alors c’est fini : a ∧ b = b, sinon on recommence

en remplaçant a par b et b par r0 :
b = q1r0 + r1, où r1 < r0. Si r1 = 0, alors c’est fini : a ∧ b = r0, sinon on recommence
en remplaçant b par r0 et r0 par r1, etc.
La suite d’entiers positifs ou nuls (ri)i≥0 est strictement décroissante, et ne pouvant
être infinie, s’annule à partir d’un certain rang. Le PGCD est le dernier reste non nul.

3. Ce qui précède nous permet d’établir l’algorithme suivant (dont le nombre de pas est
fini) :
a←− entier naturel
b←− entier naturel non nul
r ←− a%b
Tant que r ̸= 0 faire :

a←− b
b←− r
r ←− a%b

Fin Tant que
Afficher PGCD(a, b) = b (dernier reste non nul)

11

def Euclide(a,b) :
r = a%b
while r != 0 :

a = b
5 b = r

r = a%b
return b

a = int(input("saisir un entier naturel a "))
10 b = int(input("saisir un entier naturel b "))

print("Le PGCD de",a,"et",b,"est de :",Euclide(a,b))

Exemple 1-4-8 : Déterminons le PGCD de 144 et 38. Nous allons faire apparaitre en plus
les quotients des divisions euclidiennes successives afin de "remonter" l’algorithme d’Euclide.
Ceci nous permettra de déterminer deux entiers relatifs u et v tels que au + bv = d. Nous
obtenons ainsi l’algorithme d’Euclide étendu.
Descente : Posons a = 144 et b = 38 ; 144 = 38× 3 + 30.

a b r q
144 38 30 3
38 30 8 1
30 8 6 3
8 6 2 1
6 2 0 3

Le dernier reste non nul est 2, donc 144 ∧ 38 = 2.
La nature même de l’algorithme d’Euclide nous permet de définir une suite récurrente linéaire
d’ordre 2 en posant conventionnellement (notations Python) :
r−2 = a, r−1 = b et pour tout entier naturel n : rn−2 = qnrn−1 + rn, où qn = rn−2//rn−1,
sous réserve que rn−1 ̸= 0 bien sûr !

Ainsi définie, la suite d’entiers naturels (rn) est strictement décroissante, et comme elle ne
peut être infinie, elle est donc nulle à partir d’un certain rang N + 1.
On a r−2 ∧ r−1 = r−1 ∧ r0 = · · · = rN ∧ rN+1 = rN ∧ 0 = rN .

Remontée : Commençons "à la main". L’analyse du tableau nous apprend que :

2 = 8− 6× 1

= (38− 30)− (30− 8× 3)

= 38− 30× 2 + 8× 3

Or 30 = 144− 38× 3, d’où 8 = 38× 4− 144. D’où :

2 = 38− (144− 38× 3)× 2 + (38× 4− 144)× 3 = 144× (−5) + 38× 19

Le couple (u, v) = (−5, 19) vérifie 144u+ 38v = 2.

Généralisons la démarche précédente. Nous poserons d = a ∧ b.
À chaque étape de l’algorithme d’Euclide, on a une égalité de la forme :

rn−2 = rn−1qn + rn

12

À l’avant-dernière étape, on a rN = d, et donc une égalité de la forme :

rN−2 = rN−1qN + d

soit :
d = rN−2 − qNrN−1

À l’étape précédente, on a :
rN−1 = rN−3 − qN−1rN−2

Ces deux égalités permettent d’exprimer d comme combinaison linéaire de rN−3 et de rN−2.
Continuant à remonter, on aboutit à une inégalité de la forme :

d = ur−2 + vr−1 = au+ bv

Nous allons construire par récurrence deux suites (ũn)n≥−2 et (ṽn)n≥−2 telles que pour tout
entier n ≥ −2 : rn = aũn + bṽn (1) . Les coefficients uN et vN conviendront alors.

Rappelons que l’on a posé r−2 = a et r−1 = b.
De manière à travailler avec des indices positifs ou nuls, posons pour tout entier naturel n :
an := rn−2, un := ũn−2 et vn := ṽn−2.
Posons (u0, v0) = (1, 0) et (u1, v1) = (0, 1) de sorte que la relation (1) écrite avec (an) soit
valide : an = aun + bvn (1).
D’autre part, an = qn+2an+1 + an+2, soit :

an − qn+2an+1 = an+2 (2)

Se servant de (1), nous en déduisons que :

an+2 = aun + bvn + qn+2(aun+1 + bvn+1)

soit :
an+2 = a(un − qn+2un+1) + b(vn − qn+2vn+1)

Ceci nous amène à poser un+2 = un − qn+2un+1 ainsi que vn+2 = vn − qn+2vn+1.
On rappelle que qn+2 = an//an+1.

La notion d’affectation parallèle en Python est très utile pour définir des suites récurrentes
d’ordre n ≥ 2. C’est cette dernière qui nous permet d’écrire un script plus compact, sans
utiliser de "variable tampon".
def EuclideEtendu(a,b):

if a%b == 0 : #b divise a
return [0,1] #car alors PGCD(a,b)=b

else :
5 u,U = 1,0

v,V = 0,1
q,r = a//b,a%b
while r != 0 :

u,U = U,u-q*U
10 v,V = V,v-q*V

a,b = b,r
r = a%b
q = a//b

15 return [U,V]

print(EuclideEtendu(a,b))

13

■ Vous pouvez faire ici les exercices 6 et 7.

Théorème 1-4-9 : Tous reposent sur la notion de division euclidienne. Ils sont très utilisés
en pratique.

1. Théorème de Bachet-Bezout : Si d = a ∧ b, alors il existe (u, v) ∈ Z2 tel que
au+ bv = d.

2. Théorème de Bezout : a et b sont des entiers premiers entre eux, si et seulement si
il existe des entiers u et v tels que au+ bv = 1.

3. Théorème de Gauss : Si a | bc et si a ∧ b = 1, alors a | c.
4. Si deux entiers a et b premiers entre eux divisent un entier n, alors ab divise n.

Démonstration :

1. Le théorème de Bachet-Bezout résulte de l’algorithme d’Euclide étendu.

2. Supposons que les entiers a et b soient premiers entre eux. Alors d = 1. On conclut avec
le théorème de Bachet-Bezout.

3. Si a | bc, alors il existe un entier k tel que bc = ak. De plus, puisque a ∧ b = 1, le
théorème de Bezout nous assure l’existence de deux entiers u et v tels que au+ bv = 1.
Multipliant par c, nous obtenons auc+ bcv = c, i.e auc+ akv = c i.e a(uc+ kv) = c.
Comme uc+ kv ∈ Z, on en déduit que a | c.

4. Puisque a et b divisent n, il existe deux entiers k et l tels que n = ak = bl (∗). En
particulier a | bl et comme a ∧ b = 1, le théorème de Gauss nous assure que a | l.
Donc il existe un entier m tel que l = am. Reportant ceci dans (*), nous obtenons que
n = abm, et donc ab | n.

Exercice résolu 1-4-10 : Le PGCD de deux nombres entiers a et b est d = 4. Les quotients
successifs dans la recherche du PGCD par l’algorithme d’Euclide(poursuivi jusqu’au reste 0)
sont 2, 3, 1, 2. Déterminez a et b.
Même question avec d = 6 et les quotients 10, 1, 2, 3, 1, 2.
Sauriez-vous programmer ceci ?

Nous pouvons présenter les divisions euclidiennes successives à l’aide d’un tableau :

a b r q

a0 = a a1 = b a2 q2 = 2

a1 a2 a3 q3 = 3

a2 a3 a4 q4 = 1

a3 a4 = 4 a5 = 0 q5 = 2

Nous savons de plus que an = an+2 + qn+2an+1. L’idée est de se servir de cette relation pour
remonter au fur et à mesure à a et b. La programmation est idéale pour ce travail !

def RemonteeEuclide(PGCD,Liste_q) :
Liste_a = [0,PGCD]
long=len(Liste_q)
Liste_q.reverse() #pour partir du dernier quotient au premier

5 for i in range(2,long+2) : #decalage car Liste_a de longueur 2
Liste_a.append(Liste_q[i-2]*Liste_a[i-1]+Liste_a[i-2])

print("a =",Liste_a[long-1 +2])
print("b =",Liste_a[long-2 +2])

14

10
RemonteeEuclide(4,[2,3,1,2])
#il s'affiche a = 100 et b = 44
RemonteeEuclide(6,[10,1,2,3,1,2])
#il s'affiche a = 2310 et b = 216

Vérification pour la seconde question : Calculons par l’algorithme d’Euclide le PGCD des
nombres 2310 et 216.
2310 = 216× 10 + 150
216 = 150× 1 + 66
150 = 66× 2 + 18
66 = 18× 3 + 12
18 = 12× 1 + 6
12 = 6× 2 + 0
Le PGCD des nombres 2310 et 216 est le dernier reste non nul du procédé, c’est-à-dire 6. La
liste des quotients obtenus est par ailleurs celle voulue.

Application 1-4-11 : équations diophantiennes ax+ by = c
Nous supposons ici que les coefficients a et b sont des entiers naturels.
Notons (E) : ax+ by = c . Soit d = a ∧ b.
Cas 1 : d ∤ c.
Alors (E) n’a pas de solution.
Cas 2 : d | c.
Soient alors (a′, b′, c′) tels que a = da′, b = db′ et c = dc′.
Divisant chaque membre de (E) par d, on obtient l’équation équivalente :
(E′) : a′x+ b′y = c′.
Mais on sait que a′ ∧ b′ = 1. D’après le théorème de Bachet-Bezout (ou l’algorithme d’Euclide
étendu), nous savons qu’il existe un couple (u0, v0) ∈ Z2 tel que a′u0 + b′v0 = 1. Multipliant
ceci par c′, nous obtenons :
a′(c′u0) + b′(c′v0) = c′. Le couple (x0, y0) = (c′u0, c

′v0) est donc une solution particulière de
(E’).{

a′x+ b′y = c′ (1)

a′x0 + b′y0 = c′ (2)

Soustrayant (2) de (1), nous obtenons : a′(x− x0) = b′(y0 − y) (3).
Ainsi, b′ | a′(x− x0) et comme a′ ∧ b′ = 1, le théorème de Gauss nous assure que b′ | x− x0,
donc il existe un entier k tel que x− x0 = kb′. Reportant dans (3), on obtient y = y0 − ka′.
L’ensemble des solutions de (E’) est donc inclus dans {(x0 + kb′, y0 − ka′), k ∈ Z}. La réci-
proque est évidente.

Conclusion : S(E) = {(x0 + kb′, y0 − ka′), k ∈ Z} .

Propriété 1-4-12 (retour sur les congruences) : Soient (a, b) ∈ Z2 et n ∈ N∗. Alors :

1. Si ac ≡ bc[n] et si c ∧ n = 1, alors : a ≡ b[n],

2. ac ≡ bc[n]⇔ a ≡ b
[

n
c∧n

]
,

3. Soit (n1, n2) ∈ N∗2. Alors :{
a ≡ b[n1]

a ≡ b[n2]
⇔ a ≡ b[n1 ∨ n2].

15

Démonstration :
1. En reformulant : {

n|(a− b)c

n ∧ c = 1

Donc d’après le théorème de Gauss, n|a− b.
2. Posons d = c ∧ n.

(⇒) Supposons que ac ≡ bc[n]. Il existe donc un entier k tel que ac− bc = kn. Divisant
par d, nous obtenons ac′ − bc′ = kn′, où c′ ∧ n′ = 1. Comme n′|(a − b)c′, le théorème
de Gauss nous assure que n′|a− b.
(⇐) n′ := n

d |a − b. En multipliant par c, on obtient que nc
d := nc′|c(a − b), et comme

n|nc′, nous obtenons que n|c(a− b).
3. (⇒) Par hypothèse, n1|a− b et n2|a− b. Donc n1 ∨ n2|a− b.

(⇐) Comme n1 ∨ n2|a− b, on a puisque n1|n1 ∨ n2 que n1|a− b. De même, n2|a− b.

Théorème 1-4-13 (Théorème chinois) : Soient (a, b) ∈ Z et (n1, n2) ∈ N∗. Supposons

que n1 ∧ n2 = 1. Alors le système

{
x ≡ a[n1]

x ≡ b[n2]
a une solution.

Démonstration : n1 ∧ n2 = 1, donc d’après le théorème de Bezout, il existe (u, v) ∈ Z2 tel que
un1 + vn2 = 1.
On en déduit que :

— aun1 + avn2 = a, d’où avn2 ≡ a[n1]
— bun1 + bvn2 = b, d’où bun1 ≡ b[n2]

Posons x0 = bun1+avn2. Par construction, x0 est solution du système. Le lecteur se convaincra
(puisque n1 et n2 sont premiers entre eux) que les solutions du système sont de la forme
x = x0 + kn1n2, (k ∈ Z). Ceci donne par ailleurs un procédé de construction d’une solution
particulière.

Corollaire 1-4-14 : Soient (a1, a2, . . . , ak) ∈ Zk et (n1, n2, . . . , nk) ∈ N∗. Supposons que les

ni soient deux à deux premiers entre eux. Alors le système


x ≡ a1[n1]

x ≡ a2[n2]
...
x ≡ ak[nk]

a une solution.

Démonstration : Donnons un algorithme de construction d’une solution particulière x0 et un
script l’illustrant.
Posons n = n1n2 . . . nk et n̂i =

n

ni
.

Pour tout entier i ∈ {1, 2, . . . , k}, ni ∧ n̂i = 1 par hypothèse. Donc d’après le théorème de
Bachet-Bezout, il existe (ui, vi) ∈ Z2 tel que uini + vin̂i = 1 i.e ei := vin̂i ≡ 1[ni]. De plus,
ei ≡ 0[nj] si j ̸= i par construction.

Mais alors x0 =
k∑

i=0

aiei est solution du système.

L’ensemble des solutions s’en déduit :

S = {x0 + kn, k ∈ Z}

Nous donnons maintenant un script identique à la démonstration qui utilisera l’algorithme
d’Euclide étendu vu précédemment.

16

#Entree : k entier, la liste des n_i et des a_i (1<=i<=k)
#Sortie : une solution particuliere du systeme

def Entree1(k) : # k : nombre d'entiers premiers entre eux 2 a 2 saisis
5 L = []

for i in range(k) :
print("n_",i+1,"= ? ")
n = int(input())
L.append(n)

10 return L #renvoie la liste des n_i

def Entree2(k) :
L = []
for i in range(k) :

15 print("a_",i+1,"= ? ")
n = int(input())
L.append(n)

return L #renvoie la liste des a_i

20 def EuclideEtendu(a,b) : #fonction indispensable ici
if a%b == 0 :

return [0,1]
else :

u,U = 1,0
25 v,V = 0,1

q,r = a//b,a%b
while r != 0 :

u,U = U,u-q*U
v,V = V,v-q*V

30 a,b = b,r
r = a%b
q = a//b

return [U,V]

35 def Solution(liste1,liste2) : #liste1 : les n_i, liste2 : les a_i
P = 1
for el in liste1 : #renvoie n = n_1...n_k

P *= el
L = [] #liste des s_i:=a_i*v_i*n/n_i

40 for i in range(k) :
m = int(P/liste1[i])
s = liste2[i]*EuclideEtendu(liste1[i],m)[1]*m
L.append(s)

return sum(L)
45

k = int(input("Nombre de congruences ? "))
print("Une solution particuliere est : ",Solution(Entree1(k),Entree2(k)))

Nous n’avons pas fait de test de vérification que les ni sont premiers entre eux deux à deux.
Nous laissons ceci à la sagacité du lecteur.

■ Vous pouvez faire ici l’ exercice 8.

17

2 Exercices

2.1 Énoncés des exercices

Exercice 0 : Théorie et pratique.

1. Démontrer le corollaire 1-1-4 et adapter le premier script du cours,

2. Démontrer le corollaire 1-1-5 et adapter le script précédent.

Exercice 1 : Déterminer un nombre entier n de trois chiffres tel que n soit multiple de 5 et
de 14 et que la somme des chiffres de n soit égale à 14 (resp. à 10).

Exercice 2 : Deux questions indépendantes.

1. Déterminer à l’aide d’un script Python tous les diviseurs d’un entier (relatif) N saisi
par l’utilisateur ainsi que la somme des diviseurs positifs de N .

2. Déterminer un entier n > 0 le plus petit possible, tel que le nombre N = 88 . . . 888
écrit avec n chiffres 8 dans le système décimal, soit multiple de 4264.

Exercice 3 : Écrire un script en Python qui demande à l’utilisateur de saisir une base
b ≥ 2 (b ≤ 10), deux entiers a et b écrits dans cette base (un test de bonne saisie sera effectué),
et qui renvoie la somme de ces entiers, écrits en base b.
Application : calculer 23

(5)
+ 32

(5)
, 234

(6)
+ 323

(6).
En utilisant la conversion entre bases vue dans le cours, calculer 23

(7)
+ 34

(5) en base 8.

Exercice 4 : Un nombre n s’écrit avec trois chiffres en base 9, puis avec les trois mêmes
chiffres, dans un ordre différent, en base 13. Quel est ce (ou ces) nombre(s) n ? Donnez son
écriture dans les bases 10, 9 et 13.

Exercice 5 : Prouver que pour tout entier naturel n :

1. 43n − 4n est divisible par 5

2. 24n+2 + 24n+1 − 1 est un multiple de 5

3. 4n + 15n− 1 est un multiple de 9

4. n2(n4 − 1) est divisible par 60. Peut-on faire mieux i.e trouver un diviseur commun
à tous les nombres n2(n4 − 1) qui soit plus grand que 60 ? Vous pouvez si vous le
souhaitez, vous aider de Python ou utiliser le petit théorème de Fermat énoncé plus
loin.

Exercice 6 : Trouver le plus grand entier n qui soit divisible par tous les entiers inférieurs
ou égaux à 3

√
n.

Exercice 7 : Écrire un script Python qui demande à l’utilisateur de saisir N entiers supé-
rieurs ou égaux à 2 et qui renvoie leur PGCD.

Exercice 8 : Théorie et . . .théorie !

1. Prouver qu’il existe n nombres consécutifs qui ne sont pas des puissances parfaites.
Indication : on pensera à la suite des nombres premiers et au fait que si p est un
nombre premier, alors x ≡ p[p2] implique que x ne peut être une puissance parfaite.

18

2. Généralisation du théorème chinois : Soient n1, n2, . . . , nk k entiers strictement positifs,

et a1, a2, . . . , ak des entiers quelconques. Alors le système (S)


x ≡ a1[n1]

x ≡ a2[n2]
...
x ≡ ak[nk]

a une

solution si et seulement si pour tous i et j, ai ≡ aj [ni ∧ nj].
Si tel est le cas, il existe un entier a tel que x ≡ a[n1 ∨ n2 ∨ · · · ∨ nk].

2.2 Solutions des exercices

Exercice 0 : Généralisation progressive.

1. Ici, (a, b) ∈ Z× N∗.
Si a ≥ 0, c’est le cas précédent.
Si a ∈ Z \ N, alors |a| = −a > 0. D’où a + b|a| = (b − 1)|a| > 0. Nous pouvons donc
effectuer la division euclidienne de a+b|a| par b comme dans le théorème. Il existe alors
un unique couple d’entiers naturels (q′, r′) tel que a + b|a| = bq′ + r′, où 0 ≤ r′ < b.
Ainsi, a = b(q′−|a|)+ r′. Le couple (q, r) = (q′−|a|, r′) répond à la question. L’unicité
est comme dans le théorème.
Ce qui amène au script alternatif :

#Entree : un entier relatif a et un entier naturel b (b non nul)
#Sortie : le quotient dans la division euclidienne de a par b
def division2(a,b) :

if a >= 0 :
5 c = a #on part de a

if c < b :
return 0

else :
q = 0 #le compteur de pas

10 while c >= 0 :
c -= b #on enleve b a chaque pas
q += 1 #increment du compteur

return q-1
else :

15 c = (b-1)*abs(a)
q = 0
while c >= 0 :

c -= b
q += 1

20 return q+a-1 #soit q-|a|+1

2. Si b > 0, c’est la cas précédent ; si b < 0, on effectue la division euclidienne de a par
−b : a = −bq + r, 0 ≤ r < −b = |b| i.e a = b(−q) + r.
Ce qui amène au script alternatif :

def division3(a,b) :
if b > 0 :

return division2(a,b)
else:

5 return -division2(a,-b)

Exercice 1 : Une réflexion préalable s’impose pour simplifier le script au maximum.

19

def nombreMystere(somme) :
Liste = []
#Le nb est multiple de 5 et de 14 (donc de 2) donc se termine par 0
L = [100*i+10*j for i in range(1,10) for j in range(10) if i+j==somme]

5 for el in L :
if el%14 == 0 :

Liste.append(el)
return Liste

10 print(nombreMystere(14))
#renvoie [770]
print(nombreMystere(10))
#renvoie [280, 910]

Exercice 2 : Pour la question 1, donnons directement un programme. Au lecteur de le
simplifier.

#Question 1
def Diviseurs(N) : #Sans listes definies par comprehension

Div = []
for d in range(1, N+1) :

5 if N%d == 0 :
Div.append(d)
Div.append(-d)

return Div

10 def SommeDiviseurs(Liste) :
return sum([Liste[i] for i in range(len(Liste)) if Liste[i]>0])

N = int(input("Saisir un entier N : "))
print("Diviseurs de N : ",Diviseurs(N))

15 print("Somme des diviseurs positifs de N :",SommeDiviseurs(Diviseurs(N)))

La question 2 demande juste une petite précision : le nombre N = 88 . . . 888 écrit avec n
chiffres 8 dans le système décimal s’écrit : N = 8× 10n−1 + 8× 10n−2 + · · ·+ 8× 10 + 8. Le
processus pour passer de N avec n 8 à N avec n + 1 8 est donc : N ←− 10N + 8. Sachant
ceci, nous pouvons programmer le script :

#Question 2
def NombreInconnu() :

N,n = 8,1
while N%4264 != 0 :

5 N = 10*N + 8
n += 1

return n

print(NombreInconnu())
10 #on trouve n=30

Nous traiterons cet exercice d’une manière théorique en se servant de la décomposition en
facteurs premiers. Remarquons que 4264 = 23 × 13× 41 = 8× 13× 41. Affaire à suivre . . .

Exercice 3 : Nous allons commencer par le test de bonne saisie d’un nombre dans une base
b ≥ 2 donnée. Un tel nombre ne peut avoir de chiffres supérieurs ou égaux à b dans son écriture.
Par exemple, saisir 16243 n’a pas de sens en base inférieure ou égale à 6.

20

def Saisie(b,n) :
mot = str(n)
condition = [0<=int(mot[i])<b for i in range(len(mot))]
return condition

Passons maintenant à l’addition :
def addition(b,n1,n2) : #on convertit d'abord n1 et n2 en listes

ch1 = str(n1) #en passant par un intermediaire str
L1 = [int(ch1[i]) for i in range(len(ch1))]
ch2 = str(n2)

5 L2 = [int(ch2[i]) for i in range(len(ch2))]
if len(L1)<len(L2) : #de sorte que L1 et L2 aient meme longueur

L1 = [0 for i in range(len(L2)-len(L1))]+L1
else :

L2 = [0 for i in range(len(L1)-len(L2))]+L2
10 i = len(L1)-1 #on part des unites de L1 et L2

Somme = [0 for i in range(len(L1))]
retenue = 0
for i in range(len(L1)-1,-1,-1) :

Somme[i] = L1[i]+L2[i] + retenue
15 if Somme[i] >= b : #Pour que Somme[i] soit bien defini

Somme[i] -= b
retenue = 1

else :
retenue = 0

20 if retenue == 0 : #La derniere des retenues eventuelles
return Somme #Somme renvoyee sous forme de liste

else :
return [1] + Somme

Exercice 4 : Commençons par écrire le nombre n recherché en base 9 : n = ABC
(9), avec

1 ≤ A ≤ 8 et 0 ≤ B,C ≤ 8. On cherche toutes les permutations σ différentes de l’identité
telles que n = σ(A)σ(B)σ(C)

(13)
.

Formellement, n = C + 9B + 81A = σ(C) + 13σ(B) + 169σ(A). Nous allons nous servir de la
fonction conversionBase10b(n,b) du cours.
def mystere() :

L = []
for A in range(1,9) : #A ne peut etre nul

for B in range(9) :
5 for C in range(9) :

n = 81*A+9*B+C
perm = {(A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A)}
for el in perm :

if n == 169*el[0]+13*el[1]+el[2] :
10 L.append(n)

return L

print("En base 10 : ", mystere())
L1 = [conversionBase10b(el,9) for el in mystere()]

15 L1bis = [str(el[0])+str(el[1])+str(el[2]) for el in L1]
print("En base 9 : ", [int(el) for el in L1bis])
L2 = [conversionBase10b(el,13) for el in mystere()]
L2bis = [str(el[0])+str(el[1])+str(el[2]) for el in L2]
print("En base 13 : ", [int(el) for el in L2bis])

21

Exercice 5 :
1. 4 ≡ −1[5], donc pour tout entier naturel n, (corollaire 1-3-6) on a :

43n − 4n ≡ (−1)3n − (−1)n = 0[5]. Donc 5 divise 43n − 4n pour tout entier naturel n.

2.


24 ≡ 1[5]⇒ 24n+2 ≡ 1n × 4 ≡ −1[5]
24n+1 ≡ 2[5]

−1 ≡ −1[5]
, donc 24n+2 + 24n+1 − 1 ≡ −1 + 2− 1 = 0[5]

3. 15 ≡ 6[9], donc 4n + 15n − 1 ≡ 4n + 6n − 1[9]. Utilisons Python pour évaluer le reste
de la division euclidienne des entiers 4n + 6n− 1 par 9. En vertu du corollaire 1-3-5, il
suffit de considérer n = 0, 1, . . . , 8.

def Modulo() :
return [(4**n+6*n-1)%9 for n in range(9)]

print(Modulo())

La liste de sortie est une liste uniquement composée de 0, ce qui achève la preuve.
4. An := n2(n4 − 1) = n2(n2 − 1)(n2 + 1) = n2(n− 1)(n+ 1)(n2 + 1).

Remarquons que l’écriture An = (n2−1)n2(n2+1) constituée de trois entiers consécutifs
nous assure que An est un multiple de 3. Comme, 60 = 3 × 4 × 5, et que 3, 4, 5 sont
premiers deux à deux (cf section nombres premiers), il reste à vérifier que An ≡ 0[4]
et An ≡ 0[5].
Comme An = n(n5 − n), An est multiple de n5 − n, donc d’après le petit théorème de
Fermat, An est divisible par 5.
De même, An = n(n4 − n), donc An est divisible par 4. Ce qui achève la preuve.

Exercice 6 : Nous pouvons reformuler cet énoncé, puisque nous travaillons uniquement avec
des entiers par :
Déterminer le plus grand entier naturel n divisible par tous les entiers naturels non nuls infé-
rieurs ou égaux à E(3

√
n), où E(x) désigne la partie entière du nombre réel x.

Le script Python qui suit nous donne l’idée du résultat à trouver : 420.

def recherche(N) :
from math import floor #partie entiere d'un reel
L = []
for n in range(1,N) :

5 D = [i for i in range(1,floor(n**(1/3))+1)] #E(racine cubique de n)
test = [n%el==0 for el in D]
if test == [True for i in range(len(test))]: #la condition demandee

L.append(n)
return L

10
N = int(input("Borne sup de recherche ? : "))
print(recherche(N))

#Avec N=1000, on trouve 420
15 #On teste N =10 000 : meme chose !

#N = 100 000 : idem !
#Il semblerait que la reponse soit 420

Nous souhaitons prouver que l’ensemble A := {n ∈ N∗ ; ∀d ∈ J1;E(3
√
n)K, d|n} est majoré

et que sa borne supérieure est 420.

22

Déjà, A ≠ ∅ car 1 ∈ A.
De plus, la partie "∀d ∈ J1;E(3

√
n)K, d|n" nous fait inévitablement penser au PPCM de ces

entiers d ; d’où l’idée d’introduire la suite un := PPCM(1, 2, . . . , n).

Ainsi :
A := {n ∈ N∗ ; uE(3√n)|n}

Cette dernière ré-écriture de l’ensemble A nous amène inévitablement à constater quelques
propriétés de la suite (un) :

1. u1 | u2 | u3 | . . . En particulier, u est croissante,

2. Si p est premier, alors up = pup−1,

3. Excepté u1 qui vaut 1, tous les uk sont pairs.

Il est prouvé (cf O.Bordellès - Thèmes d’arithmétique - Ellipses) que pour n ≥ 2, un ≥ 2n−2,
ce qui résout notre problème. En effet :

Remarque fondamentale : si l’on prouve qu’à partir d’un certain entier n, n /∈ A, alors ce
sera gagné ! Et c’est là où notre script initial intervient : il réduira les cas jusqu’à n = 420.
Mais lourde artillerie quand même ! Nous qui aimons la beauté . . .

Reprenant donc le cours de nos pensées, la condition "plus petit que E(3
√
n)" fait penser à

"racine cubique", donc "cube" ! D’où l’idée de partitionner N∗ en intervalles faisant intervenir

des cubes d’entiers : N∗ =
∞⊔
k=1

Ak, où Ak := Jk3; (k + 1)3 − 1K.

Il fallait donc continuer l’exploration. La suite vn := uE(3√n) semblait jouer un rôle particulier
et il était question de la comparer à la suite de terme générique wn := n.

Confrontant cette idée de partition de N∗ avec la suite (un), mais aussi au fait que 420 =
22×3×5×7 = u7, que u8 = 23×3×5×7 (bref utiliser la décomposition en facteurs premiers
des termes de (un)), nous résumons ceci dans le tableau suivant :

k Ak vn si n ∈ Ak dans Ak, vn divise . . .
1 J1; 7K 1 1, 2, 3, 4, 5, 6, 7
2 J8; 26K 2 8, 10, 12, 14, 16, 18, 20, 22, 24, 26
3 J27; 63K 6 = 2× 3 30, 36, 42, 48, 54, 60
4 J64; 124K 12 = 22 × 3 72, 84, 96, 108, 120
5 J125; 215K 60 = 22 × 3× 5 180
6 J216; 342K 60 = 22 × 3× 5 240, 300
7 J343; 511K 420 = 22 × 3× 5× 7 420
8 J512; 728K 840 = 23 × 3× 5× 7 aucun n de Ak

9 J729; 999K 2520 = 23 × 32 × 5× 7 aucun n de Ak

10 J1000; 1330K 2520 = 23 × 32 × 5× 7 aucun n de Ak

11 J1331; 1727K 27720 = 23 × 32 × 5× 7× 11 aucun n de Ak

Il est question de mettre en avant la notion de PPCM, très présente dans cet énoncé. En effet,
vn = 1 ∨ 2 ∨ · · · ∨ kn, où kn est l’unique entier naturel non nul tel que k3n ≤ n < (kn + 1)3.

Rappel : Soit (a, b) ∈ N∗2. Alors : (a ∧ b)(a ∨ b) = ab.

23

Ce dernier résultat admet une généralisation au cas de plusieurs entiers. Citons celui où ils
sont quatre :

Lemme : Soit (a, b, c, d) ∈ N∗4 tous distincts. Notons :

1. M = a ∨ b ∨ c ∨ d leur PPCM,

2. D1 = a ∧ b ∧ c ∧ d leur PGCD,

3. D2 = (a ∧ b)(a ∧ c)(a ∧ d)(b ∧ c)(b ∧ d)(c ∧ d) le produit des six PGCD de ces quatre
nombres pris deux à deux,

4. D3 = (a ∧ b ∧ c)(a ∧ b ∧ d)(a ∧ c ∧ d)(b ∧ c ∧ d) le produit des quatre PGCD des ces
quatre nombres pris trois à trois.

Alors : MD1D2 = PD3, soit M =
PD3

D1D2
.

La démonstration est laissée au lecteur. On pourra par exemple considérer la valuation p-
adique vp(x) dans la décomposition en facteurs premiers d’un entier x et se ramener, quitte à
les permuter au cas où vp(a) ≤ vp(b) ≤ vp(c) ≤ vp(d).

Soit n assez grand (nous préciserons par la suite). Posons a = kn − 3, b = kn − 2, c = kn − 1
et d = kn. Comme a et b sont deux entiers consécutifs, a ∧ b = 1. De même, b ∧ c = c ∧ d = 1.
D’où D1 = (a ∧ b) ∧ (c ∧ d) = 1 ∧ 1 = 1.
D2 = (a ∧ c)(a ∧ d)(b ∧ d) et D3 = 1 comme D1.
Ainsi, d’après le lemme,

M =
abcd

(a ∧ c)(a ∧ d)(b ∧ d)

Cas 1 : kn est impair. Ainsi, a = kn − 3 est pair (donc c aussi est pair).
De plus, b et d sont deux nombres impairs consécutifs, donc premiers entre eux.
Comme a et c sont deux nombres pairs consécutifs, a ∧ c = 2.

On en déduit que M =
abcd

2(a ∧ d)
. D’où :

a ∨ b ∨ c ∨ d =
(kn − 3)(kn − 2)(kn − 1)kn

2[(kn − 3) ∧ kn]

Le dénominateur de cette dernière fraction nous amène à étudier a ∧ (a+ 3) = (a+ 3) ∧ 3.
Facilement, si a ≡ 0[3], alors (a+ 3) ∧ 3 = 3, sinon (a+ 3) ∧ 3 = 1.
Remarque : Quoi qu’il en soit,

(kn − 3)(kn − 2)(kn − 1)kn
6

divise a ∨ b ∨ c ∨ d

.
Or a ∨ b ∨ c ∨ d divise vn. D’où vn ≥

(kn − 3)(kn − 2)(kn − 1)kn
6

.

Mais pour x assez grand (x > α, où α ≈ 12, 7027), on a (x− 3)(x− 2)(x− 1)x > 6× (x+ 1)3

(étude de fonction comme à la preuve 1). Remplaçant x par kn pour kn ≥ 13, nous obtenons

que vn ≥
(kn − 3)(kn − 2)(kn − 1)kn

6
> (kn + 1)3 > n.

Ce qui achève la preuve.
Cas 2 : kn pair. Se traite à l’identique.

24

Exercice 7 : Le mieux est de prendre un point de vue récursif.

def Euclide(a,b) :
while a%b != 0 :

a,b = b,a%b #servons-nous de l'affectation parallele
return b

5
def PGCDn(N,liste) : #La recursivite en action !

d = Euclide(liste[0],liste[1])
for el in liste[2:] :

d = Euclide(d,el)
10 return d

#Programme principal
n = int(input("Combien d'entiers a saisir ? "))
L = []

15 for i in range(1,n+1) :
print("a_",i,"= ? ")
a = int(input())
L.append(a)

20 print("Le PGCD de ces entiers est : ",PGCDn(n,L))

Exercice 8 : Laissé à la sagacité du lecteur / de la lectrice.

25

3 Compléments utiles

Définition : Soit x un nombre réel. On appelle partie entière de x, et l’on note E(x) ou [x]
le plus grand entier inférieur ou égal à x.
On appelle partie décimale de x le réel noté {x} et défini par {x} = x− [x].
Exemple : [3.45] = 3 ; [−3, 45] = −4
{3, 45} = 3, 45− 3 = 0, 45 ; {−3, 45} = −3, 45 + 4 = 0, 55

Propriétés : Nous nous limiterons aux plus classiques :

1. Pour tout réel x, [x] ≤ x < [x] + 1,

2. x est un entier si et seulement si [x] = x (ou {x} = 0)

3. (a) Si x ∈ Z, alors [−x] = −[x],
(b) Si x ∈ R \ Z, alors [−x] = −[x]− 1

4. Si (x, y) ∈ R2, alors : [x] + [y] ≤ [x+ y] ≤ [x] + [y] + 1

Scripts alternatifs : Sur les thèmes de divisibilité, de congruences, etc.

Division euclidienne entre deux entiers naturels :

#division euclidienne entre entiers naturels
#script alternatif avec des listes
def division(a,b) :

if a < b :
5 return [0,a]

else :
q,r = 0,a
while r >= 0 :

q += 1
10 r = a-b*q

return [q-1,a-b*(q-1)] #Attention au decalage

a = int(input("Saisir un entier naturel a : "))
b = int(input("Saisir un entier naturel non nul b : "))

15 print("a=",division(a,b)[0],"*",b,"+",division(a,b)[1])

26

4 Bibliographie

[1] Daniel Perrin - mathématiques d’école - Cassini (2005)
[2] Gilles Bailly-Maitre - Arithmétique et cryptologie - Ellipses (2021)
[3] Dany Jack Mercier - Codes correcteurs d’erreurs - CSIPP (2014)
[4] Daniel Duverney - Théorie des nombres - Dunod (1998)

27

	Généralités sur les entiers - Divisibilité
	Divisibilité
	Écriture dans une base quelconque
	Congruences
	PGCD-PPCM

	Exercices
	Énoncés des exercices
	Solutions des exercices

	Compléments utiles
	Bibliographie

