
1 Notion de radioactivité

En 1896, Henri Becquerel découvre que certaines substances émettent spontanément
des rayonnements capables de traverser la matière. Pierre et Marie Curie étudieront
notamment un de ces éléments qui prendra le nom de radium.

La radioactivité est d'origine naturelle. L'intégralité des éléments présents sur Terre, y
compris les noyaux radioactifs, ont été formés :

� dans la phase de nucléosynthèse aux premiers instants de l'univers, pour les élé-
ments légers (hydrogène et hélium),

� dans les étoiles, pour les éléments jusqu'au fer,
� lors de l'explosion des étoiles, marquant la �n de vie de celles-ci, pour les éléments
au-delà du fer.

La radioactivité est à l'origine de l'apparition de la vie sur Terre. C'est la chaleur qu'elle
génère qui maintient le noyau terrestre externe sous forme liquide, et qui a permis lors
des éruptions volcaniques la formation de l'atmosphère primitive (protection contre les
météorites, e�et de serre pour diminuer les écarts thermiques entre le jour et la nuit).
C'est aussi la radioactivité qui entretient la combustion au sein du soleil, par le biais
des réactions thermonucléaires où l'hydrogène est transformé en hélium.
Un échantillon radioactif peut émettre trois types de particules associées à un rayon-

nement électromagnétique :

1. Particules α : noyaux d'hélium 4 émis avec une vitesse de 20 000 Km/s, facilement
arrêtés avec une feuille de papier.

2. Particules β : se déclinent en deux sous particules, à savoir :
Les particules β−, des électrons émis a une vitesse de 280 000 km/s, arrêtés par

une feuille d'aluminium.
Les particules β+, des positrons émis a une vitesse de 280 000 km/s, facilement

arrêtés (dès qu'ils rencontrent de la matière : il y a annihilation !)

3. Rayonnement γ : une onde électromagnétique de λ = 10−4nm. Pour les arrêter il
faut quelques mètres de béton.

Les noyaux stables gardent "indé�niment" la même composition. En revanche, les
noyaux instables, entre autre radioactifs, se désintègrent (transforment) en émettant
spontanément des particules α ou β souvent accompagnées d'un rayonnement γ.
Sur 350 noyaux naturels, environ 60 sont instables, ainsi que presque tous les noyaux
arti�ciels.

2 Evolution temporelle de la radioactivité

Voici la section qui va particulièrement nous intéresser mathématiquement. Il s'agit,
étant donné un élément radioactif A

ZX d'étudier l'évolution du nombre d'atomes radio-
actifs restants (ne s'étant pas désintégrés) en fonction du temps t d'observation.
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Nous noterons N0 le nombre initial d'atomes radioactifs de l'élément A
ZX.

N(t) désigne le nombre d'atomes radioactifs du même élément à l'instant t.
Notre temps d'observation entre t = 0 et T est subdivisé en intervalles de temps régu-

liers ∆t =
T

n
, autrement dit, on observera le nombre d'atomes radioactifs restants de

A
ZX aux instants : 0, ∆t, 2∆t, . . . n∆t = T .
Pendant la durée ∆t, la variation ∆N(t) du nombre d'atomes radioactifs est égale à :

∆N(t) = N(t+ ∆t)−N(t)

Remarquons que pour tout instant t, ∆N(t) < 0.

L'activité moyenne A(t) exprimée en Becquerels (Bq) est le nombre moyen de désinté-
grations par seconde. Elle est proportionnelle

� au nombre d'atomes radioactifs restants à l'instant t
� et au temps d'observation ∆t.

Ainsi, on a :
−∆N(t) = A(t)N(t)∆t

On en déduit que :
∆N(t)

∆t
= −A(t)N(t)

Remarque importante : cette activité moyenne est indépendante de l'instant
t et dépend uniquement de la nature de l'élément radioactif. C'est une constante λ
proportionnelle au nombre de noyaux non désintégrés N(t). On parle d'activité "sans
mémoire".

Ainsi, pendant un intervalle de temps ∆t, on peut écrire :

∆N(t)

∆t
= −λN(t)

Faisant tendre ∆t vers 0, on obtient l'équation :

N ′(t) = −λN(t)

Cette équation faisant intervenir une fonction N et sa dérivée N ′ est une équation où
l'inconnue est une fonction ! On parle d'équation di�érentielle.

Quelques valeurs de λ exprimées en s−1 ou jour−1 ou an−1 :
� pour l'uranium : λ = 1, 5× 10−10 an−1

� pour le carbone 14 : λ = 1, 2× 10−4 an−1

� pour l'iode 131 : λ = 8, 5× 10−2 jour−1

Récapitulons : Pour λ donné, on cherche une fonction N dé�nie ici sur [0; +∞[ telle

que

{
N ′(t) = −λN(t)

N(0) = N0

(t ∈ [0; +∞[)
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2.1 Modélisation algorithmique

La probabilité qu'un atome d'iode 131 se désintègre par jour est égale 0,0085.
L'unité de temps étant le jour, écrivez un script qui sur 100 jours détermine jour par
jour, la quantité d'iode 131 restante. Tracez la courbe obtenue.
Pour les plus "geek" : simulez ceci avec un petit graphique qui illustre les désintégrations
successives.

2.2 Traitement avec la méthode d'Euler

Rappelons le principe de la méthode d'Euler : Soit f une fonction dé�nie sur un
intervalle I = [a; b] subdivisé en n intervalles [x0;x1], [x1;x2], . . . , [xn−1;xn] que l'on

supposera pour simpli�er de même longueur l =
b− a
n

.

On connaît de plus la valeur initiale f(x0) = f(a) et une relation du type f ′(x) =
g(x, f(x)) (relation entre f et sa dérivée f ′).

Pas 1 : On sait calculer f(x0) et f
′(x0). Donnez l'équation de la tangente T0 à la courbe

représentative de f au point A0(x0; f(x0)) : y =
Comme on ne peut pas calculer directement f(x1), on remplace cette valeur par y(x1)
calculée grâce à l'équation de T0. On obtient ainsi un nouveau point A1(x1; y1).

Pas 2 : On fait "comme si" A1(x1, y1) était un point de la courbe représentative de f
a�n d'utiliser le lien reliant f ′(x) à f(x). Ceci nous permet de calculer l'équation de la
tangente T1 à la courbe représentative de f en A1. On pose alors y2 = y(x2) calculé à
partir de l'équation de T1.

Pas suivants : on réitère le processus e�ectué précédemment. On obtient ainsi une
suite de points Ai(xi; yi) qui approximent la vraie courbe de f . La relation de récurrence
permettant d'obtenir les coordonnées de tous les points (xi; yi) est la suivante :{

xn+1 = xn + l

yn+1 = g(xn, yn)(xn+1 − xn) + yn

Ici, N véri�e N ′(t) = −0, 0085N(t) et N(0) = 2500.
En utilisant la méthode d'Euler, déterminez à l'aide d'un tableur ou d'un logiciel de
votre choix l'allure de la courbe représentative de N sur 100 jours. Comparez la avec
celle obtenue à la sous-section précédente.

2.3 Quelques questions

1. La fonction N dont nous avons obtenu l'idée de la courbe représentative est-elle la

seule (unicité) véri�ant notre équation di�érentielle :

{
N ′(t) = −λN(t)

N(0) = N0

(t ≥ 0)
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2. Quelles sont ses propriétés de régularité : est-elle continue, dérivable sur [0 : +∞[ ?

3. On a parlé tout à l'heure d'activité de désintégration sans mémoire. Comment
comprenez-vous cette phrase ?

4. Exprimez N(t+ s) en fonction de N(t) et de N(s).

3 Pour aller plus loin . . .

Il n'est pas rare qu'un atome radioactif, dit atome-père, se désintégrant donne nais-
sance à un "atome-�ls" lui-même radioactif. Le processus pouvant se répéter un certain
nombre de fois, jusqu'à l'obtention d'un isotope stable, nous avons toute une �liation
radiogénique, dont les constantes λ di�èrent. Les géologues qui souhaitent connaître
l'âge de certaines roches ainsi que leur origine pétrogénétique, ont souvent recours à
l'observation d'échantillons contenant divers éléments en �liation radiogénique (i.e is-
sus d'un même type d'atome radioactif). Modéliser ceci est très intéressant, et prête à
discussion. Nous le reverrons en exercice.

4 Vers la fonction exponentielle

Les sections précédentes nous ont permis de nous poser les problèmes suivants :
existe-t-il une certaine fonction N proportionnelle à sa dérivée N ′, véri�ant une certaine
condition initiale, et si oui, quelle peut être l'allure de sa courbe ? La condition initiale :
donnée de N(0) est-elle capitale ?

Intéressons-nous au problème suivant : trouver une fonction f dérivable sur R telle
que f ′ = f (f est égale à sa propre dérivée). Remarquons qu'ici, nous n'avons pas
spéci�é de condition initiale.

1. Soit λ un réel. Posons g = λf . Prouvez que l'on a aussi g′ = g sur R.
2. Si f et g sont deux fonctions véri�ant f ′ = f et g′ = g sur R, que véri�e f + g ?

3. Conclure sur le nombre de solutions de l'équation di�érentielle f ′ = f .

4. On admet l'existence d'une fonction f dérivable sur R véri�ant f ′ = f . Ajoutons-y
la condition initiale f(0) = 1.
a) Soit φ dé�nie sur R par φ(x) = f(x)f(−x). Justi�er que φ est constante

égale à 1.
b) Démontrer que si g est une fonction véri�ant g′ = g, on a alors nécessairement

g = f .
c) Conclure.

On appelle fonction exponentielle, et on note exp l'unique fonction f véri�ant l'équa-

tion di�érentielle :

{
f ′(x) = f(x)

f(0) = 1
(t ∈ R)
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