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1. Rappels

La logique propositionnelle est l’étude des formules abstraites que nous
pouvons écrire à partir d’un certain nombre de variables propositionnelles,
représentées par des lettres. Nous nous contenterons d’une définition assez
vague, l’objet n’étant pas l’étude de la logique formelle, mais une bonne
structuration de la pensée et de la démarche scientifique.

Constantes, variables et propositions

1 Une constante est un signe ayant une valeur précise et immuable ;
par exemple 1, 2, π, une personne en particulier.

2 Une variable est un signe pouvant prendre différentes valeurs dans un
certain ensemble ou n’ayant pas de valeur prédéfinie ; par exemple : x
solution de x2 = 5, une personne prise au hasard dans le lycée.

3 Une proposition est une phrase P pour laquelle on peut décider si
son contenu est réalisé ou non ; par exemple ”3 est un entier” est une
proposition, mais ”Donne-moi l’heure” n’en n’est pas une.
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1. Rappels

Connecteurs logiques et tables de vérité

Les connecteurs logiques sont des mots ou symboles permettant, à partir
de propositions existantes, de définir de nouvelles propositions. Nous
distinguons trois connecteurs logiques fondamentaux à partir desquels nous
pouvons définir d’autres connecteurs plus complexes.

1 La négation, notée symboliquement ¬ : la proposition ¬P est vraie
si la proposition P est fausse, et la proposition P est vraie si la
proposition ¬P est fausse. On résume ceci dans une table de vérité :

P ¬P
V F

F V

Table: Table de vérité du connecteur ¬
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1. Rappels

Connecteurs logiques et tables de vérité

Le second et troisièmes connecteurs logiques sont :

2 la conjonction ”et”, notée ∧,
3 la disjonction inclusive ”ou”, notée ∨

Leurs tables de vérité sont données ci-dessous :

P Q P ∧Q
V V V

V F F

F V F

F F F

P Q P ∨Q
V V V

V F V

F V V

F F F

Table: Tables de vérité des connecteurs ∧ et ∨

Principe de non contradiction : Aucune proposition n’est à la fois vraie
et fausse.
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1. Rappels

Propriétés usuelles

Soient P et Q deux propositions. Alors :

1 ¬(¬P) et P sont identiques.

2 ¬(P ∨Q) et ¬P ∧ ¬Q sont identiques.

3 ¬(P ∧Q) et ¬P ∨ ¬Q sont identiques.

4 ¬P ∨Q et P ∧ ¬Q sont identiques.

5 P ∨ ¬Q et ¬P ∧Q sont identiques.

Nous noterons P ≡ Q pour dire que P et Q sont identiques.
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1. Rappels

Définissons les propositions P : ”J’ai joué” et Q : ”J’ai gagné”. Avoir
tenté sa chance, c’est bien avoir joué . . . Seulement, le fait d’avoir joué
n’implique pas nécessairement de gagner.

On peut donc nier le fait que ”jouer implique gagner” par : ”j’ai joué
et j’ai perdu”, soit : P ∧ ¬Q. Or ¬(P ∧ ¬Q) ≡ ¬P ∨Q, d’où la :

Définition de l’implication

Soient P et Q deux propositions. La proposition P implique Q, que l’on
note par P =⇒ Q est exactement la proposition ¬P ∨Q .

P Q P =⇒ Q ¬(P =⇒ Q)

V V V F

V F F V

F V V F

F F V F
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1. Rappels

Remarques importantes

1 Si P est fausse, la proposition P =⇒ Q est toujours vraie.

2 En particulier, la flèche =⇒ n’est pas synonyme de ”donc”, qui
sous-entend que ce qui précède est vrai.

3 Pour prouver que P =⇒ Q est vraie, on supposera donc P
vraie, puis on aboutira à la conclusion que Q est vraie.

Résumé

Retenez donc bien que l’implication P =⇒ Q est une proposition, alors
que la phrase ”P est vraie, donc Q est vraie” est un RAISONNEMENT,
i.e un enchevêtrement complexe de propositions :
((P est vraie) ET (P =⇒ Q) est vraie), DONC Q est vraie.
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2. Raisonnement direct et par équivalence

Après tous ces rappels, nous voilà prêts à détailler notre premier
raisonnement usuel, expliqué juste avant !

Principe du raisonnement direct

Notre but est donc de prouver que si une certaine proposition P est vraie,
alors une autre proposition Q est vraie aussi.

Mise en œuvre

Nous supposons P vraie, et par une suite d’arguments logiques, nous
arrivons à la conclusion que Q est également vraie.

La proposition Q =⇒ P est la réciproque de P =⇒ Q.
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2. Raisonnement direct et par équivalence

Exemple 1

Soient P : x ≥ 1 et Q : x2 ≥ 1.

Rappelons que la fonction carrée R → R, x 7→ x2 est strictement
décroissante sur ]−∞; 0] et strictement croissante sur [0;+∞[.

1 Est-ce que P vraie implique Q vraie ?

2 La réciproque est-elle vraie ?
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2. Raisonnement direct et par équivalence

Exemple 1 : solution

1 Supposons donc P vraie : on se donne un réel x quelconque tel que
x ≥ 1. En particulier, x ≥ 0.

Or x 7→ x2 est croissante sur [0;+∞[, donc x2 ≥ 12 i.e x2 ≥ 1.

Nous en déduisons que Q est vraie.

2 La réciproque est FAUSSE : Par exemple, en choisissant x = −2, on
a bien x2 = 4 ≥ 1 mais x < 1.

Remarque : si k > 0, x2 ≥ k ⇐⇒ x ∈]−∞;
√
k] ∪ [

√
k ; +∞[.
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2. Raisonnement direct et par équivalence

Exemple 2

Prouvez directement que pour tout réel x ∈ [3; 8], on a :

−2√
x + 1

∈
[
−1;−2

3

]
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2. Raisonnement direct et par équivalence

Exemple 2 : solution

Soit x ∈ [3; 8] i.e 3 ≤ x ≤ 8. Alors 4 ≤ x + 1 ≤ 9.

Par croissance de la fonction racine carrée sur [0;+∞[ (donc sur [4; 9]),
nous avons : 2 ≤

√
x + 1 ≤ 3.

Par décroissance de la fonction inverse sur ]0;+∞[ (donc sur [2; 3]), on en

déduit que :
1

2
≥ 1√

x + 1
≥ 1

3
.

Nous multiplions par le réel −2 < 0 chaque membre de l’inégalité, d’où :

−1 ≤ −2√
x + 1

≤ −2

3

i.e
−2√
x + 1

∈
[
−1;−2

3

]
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2. Raisonnement direct et par équivalence

Principe du raisonnement par équivalence

Deux propositions P et Q sont dites équivalentes si P =⇒ Q et si
Q =⇒ P. On note P ⇐⇒ Q.

Mise en œuvre

Deux procédés sont possibles :

1 On suppose P vraie et on prouve que Q vraie.
Réciproquement, on suppose Q vraie et on prouve que P vraie.

2 On raisonne directement par équivalence en changeant P en Q :
P ⇐⇒ · · · ⇐⇒ Q.
ATTENTION, une équivalence vous engage dans les deux sens.

Le raisonnement par équivalence est souvent utilisé dans la résolution
d’équations / d’inéquations.
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2. Raisonnement direct et par équivalence

Exemple et contre-exemple 1

1 Pour tous x , y ∈ R : x2 + y2 = 0 ⇐⇒ x = y = 0

2 Soient a, b, c , d ∈ R. A-t-on a = b et c = d ⇐⇒ a+ c ≤ b + d ?
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2. Raisonnement direct et par équivalence

Exemple et contre-exemple 1 : solution

1 ( =⇒ ) : soient x , y ∈ R. Supposons que x2 + y2 = 0 . Alors :
0 ≤ x2 = −y2 ≤ 0, d’où x2 = y2 = 0 et partant, x = y = 0.
(⇐=) Réciproquement, si x = y = 0, on a clairement x2 + y2 = 0.

2 Soient a, b, c , d ∈ R. A-t-on a = b et c = d ⇐⇒ a+ c ≤ b + d ?
Nous avons juste l’implication évidente
a = b et c = d =⇒ a+ c ≤ b + d . La réciproque est fausse.
Par exemple 1 + 3 = 2 + 2 , mais 1 ̸= 2 et 2 ̸= 3.
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2. Raisonnement direct et par équivalence

Exemple 2

Soit f la fonction dérivable, définie sur l’intervalle ]0 ; +∞[ par :

f (x) = ex +
1

x
et g la fonction définie (et dérivable) sur [0 ; +∞[ par

g(x) = x2ex − 1. On admet (utilisation du TVI strictement monotone)
qu’il existe un unique réel a appartenant à ]0 ; +∞[ tel que g(a) = 0 et
que g est strictement croissante sur [0 ; +∞[.

1 Démontrez que pour tout réel strictement positif x , f ′(x) =
g(x)

x2
.

2 Déterminer le signe de g(x) sur [0 ; +∞[.

3 En déduire le sens de variation de la fonction f sur ]0 ; +∞[.

4 Démontrez que la fonction f admet pour minimum le nombre réel

m =
1

a2
+

1

a
.
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2. Raisonnement direct et par équivalence

Exemple 2 : solution

1 Calcul trivial !

2 Par stricte croissance de g et du fait que g(a) = 0, on en déduit que
g(x) < 0 sur [0; a[ et g(x) > 0 sur [a; +∞[.

3 Par (1), f ′ et g ont le même signe sur ]0 ; +∞[. On en déduit que
f ′(x) < 0 sur [0; a[ et f ′(x) > 0 sur [a; +∞[ et f ′(a) = 0. Donc f
strictement décroissante sur [0; a] et strictement croissante sur
[a; +∞[.

4 Par (3), f admet un unique minimum m au point d’abscisse a :

m = ea +
1

a
.

Comme a > 0 : g(a) = 0 ⇐⇒ ea =
1

a2
. D’où m =

1

a2
+

1

a
.

C’est là qu’on a utilisé une équivalence !
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3. Raisonnement par récurrence

Principe du raisonnement par récurrence

Notre but est de prouver qu’une certaine proposition Pn dépendant de
l’entier naturel n est vraie pour tous les entiers n.

Mise en œuvre (récurrence simple)

1 Nous énonçons précisément la proposition Pn

2 Initialisation : nous prouvons que P0 est vraie.

3 Hérédité : Nous nous donnons un entier naturel n quelconque et
supposons que Pn est vraie. Nous prouvons alors, par une suite
d’arguments logiques que Pn+1 est également vraie.

4 Conclusion : La proposition Pn est vraie pour tous les entiers
naturels n.
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3. Raisonnement par récurrence

Premières remarques

1 L’initialisation est aussi importante que l’hérédité ! Si on vous donne
le droit de passer d’un barreau d’une échelle à un autre, mais pas le
droit de poser le pied sur le premier barreau, vous ne pourrez jamais
la gravir !

2 L’initialisation ne s’effectue pas toujours à n = 0 mais à partir d’un
certain rang n0 ≥ 1.

3 Enfin, erreur fatale : Ne partez pas du résultat à prouver !
La phrase : ”Supposons que pour tout entier naturel n, Pn est vraie”,
est une hérésie !!!
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3. Raisonnement par récurrence

Exemple 1

Prouver que pour tout entier naturel n non nul :

n∑
k=1

k3 =

(
n(n + 1)

2

)2
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3. Raisonnement par récurrence

Exemple 1 : solution

1 Posons pour tout n ∈ N∗, Pn :
n∑

k=1

k3 =

(
n(n + 1)

2

)2

2 Initialisation :

(
1(1 + 1)

2

)2

= 1 = 13, donc P1 est vraie.

3 Hérédité : Soit n ∈ N∗ quelconque. Supposons que Pn soit vraie.
n+1∑
k=1

k3 =
n∑

k=1

k3 + (n + 1)3
Pn=

(
n(n + 1)

2

)2

+ (n + 1)3. D’où :

n+1∑
k=1

k3 = (n + 1)2
(
n2

4
+ (n + 1)

)
= (n + 1)2

n2 + 4n + 4

4
=(

(n + 1)(n + 2)

2

)2

. Donc Pn+1 est vraie, ce qui achève la récurrence.
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3. Raisonnement par récurrence

Exemple 2

Soit (un) la suite définie par u0 = 0, u1 ∈]0; 1[, et pour tout entier naturel
n par :

un+2 =
√
un+1 +

√
un

Prouver que (un) est croissante.
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3. Raisonnement par récurrence

Exemple 2 : Analyse de la question

Cette suite est une suite récurrente d’ordre 2 : pour connâıtre la valeur
d’un terme d’indice n ≥ 2, nous devons connâıtre les deux termes
précédents.

Un outil pour les aborder est la récurrence double :

1 Nous définissons Pn

2 Nous prouvons que P0 et P1 sont vraies

3 Nous nous fixons un entier naturel n quelconque et nous supposons
Pn vraie et Pn+1 vraie, puis nous prouvons que Pn+2 vraie

4 Alors Pn est vraie pour tout n ∈ N.

Mais nous pouvons nous ramener à une récurrence simple !
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3. Raisonnement par récurrence

Exemple 2 : une solution

Il est clair intuitivement que pour tout n ∈ N, un ≥ 0. Pour prendre en
compte ce fait et la récurrence d’ordre 2, et afin de prouver la croissance
de (un), nous poserons plutôt Pn : 0 ≤ un ≤ un+1 ≤ un+2.

1 Sur [0; 1] :
√
x ≥ x . Donc u2 =

√
u1 ≥ u1 ≥ u0 et P0 vraie.

2 Soit n ∈ N quelconque. Supposons Pn vraie : 0 ≤ un ≤ un+1 ≤ un+2.
Par croissance de x 7→

√
x sur R+, nous avons :

0 ≤ √
un ≤ √

un+1 ≤
√
un+2.

Mais alors un+3 =
√
un+1 +

√
un+2

Pn

≥ √
un +

√
un+1 = un+2.

Ainsi, 0 ≤ un+1 ≤ un+2 ≤ un+3, ce qui achève la récurrence.
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3. Raisonnement par récurrence

Exemple 3

Soit (un) la suite définie par u0 =
1

2
et pour tout entier naturel n par

un+1 =

√
1 + un

2
.

Prouver par récurrence que pour tout entier naturel n :

0 < un < un+1 < 1
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3. Raisonnement par récurrence

Exemple 3 : solution

Posons pour tout entier naturel n, Pn : 0 < un < un+1 < 1.

1 Initialisation : u1 =
√

3
4 =

√
3
2 . Nous avons bien 0 < u0 < u1 < 1,

donc P0 est vraie.

2 Hérédité : Fixons n ∈ N quelconque et supposons Pn vraie : pour
cet entier n, 0 < un < un+1 < 1. De 0 < un < un+1 < 1, nous tirons

que
1

2
<

1 + un
2

<
1 + un+1

2
< 1.

Par stricte croissance de la fonction racine carrée sur [0;+∞[, nous

en déduisons que :

√
1

2
<

√
1 + un

2
<

√
1 + un+1

2
< 1.

D’où : 0 < un+1 < un+2 < 1. Ainsi Pn+1 est vraie.
Ce qui achève la récurrence.
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4. Raisonnement par l’absurde

Principe du raisonnement par l’absurde

Nous souhaitons montrer qu’une certaine proposition P est vraie.

Supposons le contraire : P fausse. Puis, par une succession d’arguments
logiques, nous arrivons à une contradiction. Par exemple que P soit vraie.

Dans le cas d’une implication :
le raisonnement par l’absurde consiste à nier P =⇒ Q, soit considérer sa
négation : P ∧ ¬Q.

Ainsi, supposant P vraie et Q fausse, nous arrivons à une
contradiction.
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4. Raisonnement par l’absurde

Exemple 1

1 Soit n un entier naturel. Prouvez par l’absurde que si n2 est pair,
alors n est également pair.

2 On rappelle que l’ensemble Q des rationnels est l’ensemble des

nombres qui s’écrivent sous la forme
p

q
, où p ∈ Z et q ∈ N∗.

Prouvez par l’absurde que x =
√
2 n’est pas rationnel.

Indication : Vous pourrez vous servir du fait que toute fraction
possède un représentant irréductible.
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4. Raisonnement par l’absurde

Exemple 1 : solution

1 Soit n ∈ N. Supposons par l’absurde que n2 soit pair et n impair.
Or n impair signifie qu’il existe un entier naturel p tel que n = 2p+ 1.
En élevant au carré : n2 = 4p2 + 4p + 1 = 2(2p2 + 2p) + 1, donc n2

impair. Or nous avons supposé n2 pair. Contradiction !

2 Posons x =
√
2 et supposons par l’absurde que x soit rationnel.

Comme x > 0, il existe deux entiers naturels p et q strictement

positifs tels que
√
2 =

p

q
, fraction que l’on supposera irréductible.

En élevant chaque membre au carré nous obtenons que
p2

q2
= 2, d’où

p2 = 2q2. Ainsi p2 est pair, donc d’après (1) p est pair. Mais alors il
existe p′ ∈ N∗ tel que p = 2p′, et partant p2 = 4p′2 = 2q2. D’où
q2 = 2p′2 i.e q2 pair. Mais alors q est pair : 2 divise donc p et q, ce
qui contredit le fait que la fraction p/q soit irréductible.
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4. Raisonnement par l’absurde

Exemple 2

Soient a et n des entiers supérieurs ou égaux à 2. On suppose que
M = an − 1 est un nombre premier.

Prouver que a = 2 et que n est premier.

1 Nous rappelons qu’un entier naturel n est premier si n ≥ 2 et si n n’a
d’autres diviseurs positifs que 1 et lui-même.

2 Ainsi, tout entier naturel n ≥ 2 non premier s’écrit n = pq, où p et q
sont des entiers naturels supérieurs ou égaux à 2.
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4. Raisonnement par l’absurde

Exemple 2 : solution

1 Remarquons que M ≥ 22 − 1 = 3, donc M est un nombre premier
impair. Il s’ensuit que a est pair. En effet, si a était impair, alors an le
serait aussi et donc M serait pair. Absurde !
Ainsi, il existe b ∈ N∗ (car a ≥ 2) tel que a = 2b.
Mais alors M = (2b)n − 1 = (2b − 1)((2b)n−1 + (2b)n−2 + · · ·+ 1).
Supposons que b ̸= 1. Alors 2b − 1 ≥ 2 et comme n ≥ 2,
(2b)n−1+(2b)n−2+ · · ·+1 ≥ 2. Donc M n’est pas premier. Absurde.
Nous en déduisons que a = 2.

2 Supposons que n ne soit pas premier. Il existe (p, q) ∈ N∗, tous deux
supérieurs ou égaux à 2 tels que n = pq.
D’où M = 2pq −1 = (2p)q −1 = (2p −1)(2p(q−1)+2p(q−2)+ · · ·+1).
Comme p, q ≥ 2, 2p − 1 ≥ 2 et 2p(q−1) +2p(q−2) + · · ·+1 ≥ 2. Donc
n n’est pas premier. Absurde ! Nous en déduisons que n est premier.
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5. Raisonnement par contraposée

Principe du raisonnement par contraposition

Notre but est encore de prouver que si une certaine proposition P est
vraie, alors une autre proposition Q est vraie aussi.

Pour ceci, nous remarquons que les propositions P =⇒ Q et
¬Q =⇒ ¬P ont même table de vérité, autrement dit sont équivalentes.

La proposition ¬Q =⇒ ¬P s’appelle la contraposée de P =⇒ Q. Ne
pas confondre avec la proposition Q =⇒ P qui est la réciproque de
P =⇒ Q.

Mise en œuvre

Nous supposons Q fausse et prouvons que P est fausse également.
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5. Raisonnement par contraposée

Exemple

Nous pouvons traiter l’exemple précédent par contraposée. Rappelons son
énoncé :

Soient a et n des entiers supérieurs ou égaux à 2. On suppose que
M = an − 1 est un nombre premier.

Prouver que a = 2 et que n est premier.
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5. Raisonnement par contraposée

Exemple : solution

1 Prouvons par contraposée que si M = an − 1 est premier, alors a = 2.
Supposons a ̸= 2 (ainsi a ≥ 3).
Cas 1 : si a est impair, alors M = an − 1 est pair, et comme
M ≥ 22 − 1 > 2, M n’est pas premier.
Cas 2 : si a est pair, alors il existe b ≥ 2 (car a > 2) tel que a = 2b.
Mais alors M = (2b)n − 1 = (2b − 1)((2b)n−1 + (2b)n−2 + · · ·+ 1).
D’où 2b − 1 ≥ 2 et comme n ≥ 2, (2b)n−1 + (2b)n−2 + · · ·+ 1 ≥ 2.
Donc M n’est pas premier.

2 Prouvons par contraposée que si M = an − 1 est premier, alors n est
premier.
Supposons que n ne soit pas premier. Il existe p, q ≥ 2 tels que
n = pq. D’où M = 2pq − 1 = (2p − 1)(2p(q−1) + 2p(q−2) + · · ·+ 1).
Comme p, q ≥ 2, 2p − 1 ≥ 2 et 2p(q−1) + 2p(q−2) + · · ·+ 1 ≥ 2.
Donc M n’est pas premier.
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5. Raisonnement par contraposée

Remarque

Le raisonnement par contraposée (dit aussi raisonnement par
contraposition) ressemble beaucoup au raisonnement par l’absurde au
premier abord.
Et pourtant, ce ne sont pas les mêmes !

Lequel utiliseriez-vous pour prouver que si n est un entier, alors
√
n2 + 2

n’en est pas un ?
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6. Raisonnement par analyse-synthèse

Principe du raisonnement par analyse-synthèse

Nous utilisons souvent ce raisonnement lorsque nous cherchons à
déterminer l’ensemble des éléments d’un ensemble E satisfaisant une
certaine propriété P.

Mise en œuvre
1 Analyse : on se donne un élément x de E vérifiant la propriété P et

on essaie de voir à quoi peut ressembler x . On trouve un certain
sous-ensemble A de E .

2 Synthèse : On se donne un élément x quelconque de A et on vérifie
que x vérifie la propriété P.

Le raisonnement par analyse-synthèse est souvent utilisé pour démontrer
les propositions du type : ”il existe un unique x ∈ E tel que P(x)”.
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6. Raisonnement par analyse-synthèse

Exemple 1

Déterminer l’ensemble des fonctions f : R → R telles que pour tous réels
x , y on ait :

f (y − f (x)) = x − y + 1
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6. Raisonnement par analyse-synthèse

Exemple 1 : solution

Désignons par A l’ensemble des fonctions f vérifiant la propriété
annoncée.

1 Analyse : Pour tout réel x , si l’on choisit y = f (x), nous obtenons
que f (0) = x − f (x) + 1, et donc f (x) = x − f (0) + 1.
Ainsi f est de la forme f (x) = x + k , où k est une certaine constante
réelle. En particulier, f (0) = k.

2 Synthèse : Donnons-nous une fonction f de la forme déterminée
précédemment. Alors : f (y − x − k) = x − y + 1.
Choisissant y = x + k, nous obtenons :

k = f (0) = x − x − k + 1 = −k + 1, d’où k =
1

2
et f est la fonction

définie sur R par f (x) = x +
1

2
.
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6. Raisonnement par analyse-synthèse

Exemple 2

On appelle suite de Fibonacci la suite (Fn)n∈N définie par :
F0 = 0, F1 = 1 et pour tout n ∈ N : Fn+2 = Fn+1 + Fn.

Soit a ∈ R et b ∈ R∗. On suppose que le trinôme X 2 − aX − b possède
deux racines réelles et distinctes r et r ′. On note E l’ensemble des suites
(un)n∈N pour lesquelles pour tout n ∈ N : un+2 = aun+1 + bun.

1 Soit x ∈ R∗. A quelle condition nécessaire et suffisante la suite
u = (xn)n∈N est-elle élément de E ?

2 Trouver quatre réels r , r ′, λ, λ′ pour lesquels pour tout n ∈ N :
Fn = λrn + λ′r ′n et en déduire lim

n→+∞
Fn.
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6. Raisonnement par analyse-synthèse

Exemple 2 : solution

1 Commençons par remarquer que 0 n’est pas racine de X 2 − aX − b,
sinon on aurait b = 0, ce qui est exclus par hypothèse.

u ∈ E ⇐⇒ (∀n ∈ N) xn+2 = axn+1 + bxn

⇐⇒ x2 = ax + b (car x ̸= 0)

⇐⇒ x racine de X 2 − aX − b

⇐⇒ x = r ou x = r ′ (par hypothèse)

2 Commençons par quelques remarques préliminaires :

D’après la question 1, on sait que (rn)n∈N et (r ′n)n∈N appartiennent à
E . On prouve facilement que toute combinaison linéaire de ces deux
suites est aussi un élément de E .
Une suite u appartenant à E est entièrement déterminée par la
connaissance de ses deux premiers termes u0 et u1.
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6. Raisonnement par analyse-synthèse

Exemple 2 : solution

Nous allons à présent raisonner par analyse-synthèse.

Analyse : Soit u = (un)n∈N une suite de E . Supposons qu’il existe des
réels λ, λ′ tels que pour tout entier naturel n, un = λrn + λ′r ′n. Mais alors
(en remplaçant n par 0 puis par 1), on obtient le système :{
λ+ λ′ = u0

λr + λ′r ′ = u1
qui a pour solution


λ =

r ′u0 − u1
r ′ − r

λ′ =
u1 − ru0
r ′ − r

Donc si le

couple (λ, λ′) existe, il est unique et donné par la formule précédente.
Synthèse : Soit (un)n∈N ∈ E et (vn)n∈N définie sur N par

vn =
r ′u0 − u1
r ′ − r

rn +
u1 − ru0
r ′ − r

r ′n.

En vertu de notre remarque préliminaire, on sait que (vn)n∈N ∈ E et un
calcul simple nous apprend que v0 = u0 et v1 = u1. Toujours avec notre
remarque préliminaire, on en déduit que pour tout n ∈ N, vn = un.
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6. Raisonnement par analyse-synthèse

Exemple 2 : solution

On applique le résultat précédent à u = F.
Pour tout entier naturel n, Fn+2 = Fn+1 + Fn ⇐⇒ Fn+2 − Fn+1 − Fn = 0.
Ce qui nous amène à étudier le polynôme X 2 − X − 1. Ce dernier possède

deux racines réelles distinctes : r =
1−

√
5

2
et r ′ =

1 +
√
5

2
. Ainsi, par ce

qui précède : pour tout entier naturel n, Fn =
r ′F0 − F1
r ′ − r

rn +
F1 − rF0
r ′ − r

r ′n.

On trouve que
r ′F0 − F1
r ′ − r

= − 1√
5
et que

F1 − rF0
r ′ − r

=
1√
5
, d’où :

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)

On en déduit que : lim
n→+∞

Fn = +∞ .
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