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Définissons pour tout entier naturel n la suite (u,) de terme général

up = n?.

Nous allons étudier le comportement asymptotique de (uy,), c'est-a-dire les
valeurs u, prises par (u,) lorsque n devient grand. Nous pouvons déja
commencer par calculer les premiers termes :

n|0(1{2|3|4]| 5] 10| 20 | 50 |100
u, [0 1]4]9]|16|25] 100 | 400 | 2500 | 10*

Il semble que plus n grandisse, plus les termes u, deviennent grands ; on
pourrait méme dire peuvent dépasser a un moment donné toute valeur
fixée a I'avance, aussi grande soit-elle . ..

On dira que la suite (u,) tend vers +co et on écrira : liT Up = +00|.
n——400
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Définition 1

Soit (up) une suite réelle. On dit que la suite (u,) a pour limite +o0o (resp.
—00) si pour tout réel strictement positif A, il existe un rang N a partir
duquel tous les uj, sont supérieurs a A (resp. inférieurs a —A).

Vous n'avez pas a maitriser cette définition par coeur en classe de
premiére, mais en revanche, subodorer qu’une suite tend vers 400 a |'aide
de sa représentation graphique ou d'une table de valeurs fait partie de vos
prérogatives.

Et bonne nouvelle pour les fans de programmation, déterminer a I'aide du
logiciel Python un rang a partir duquel les termes d'une suite croissante
(resp. décroissante) dépassent (resp. passent sous) un seuil donné est au
programme !
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Donnons immédiatement une application : on admettra le théoreme qui
nous assure que toute suite croissante et non majorée, tend vers +oo.

Soit (up) la suite définie pour tout entier naturel n par up =1 et
Uni1 = Up + n°.

© La suite (up,) est-elle définie par récurrence ou de maniére explicite ?
@ Justifiez que la suite (up) est croissante.

© On admettra que la suite (up) n'est pas majorée. Nous verrons plus
tard comment démontrer ce résultat par I'absurde.
Ecrivez un script en Python qui détermine le plus petit entier naturel
N a partir duquel u, > 5000.
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Limite infinie

Solution de |'exemple 2

© La suite (u,) est définie par récurrence : on a up donné et une relation
de la forme upy1 = f(n, u,) valable pour tout entier naturel n.

@ |l est clair que pour tout entier naturel n: upp1 — up = n?> > 0. Donc
(up) est croissante.

© On admet donc que la suite (up) tend vers 400, autrement dit,
dépasse n'importe quel nombre (5000 ici) a partir d'un certain rang N.
Analyse : Nous avons besoin d'une variable n qui partant de n =10
va s'incrémenter de 1 tant que u, < 5000 et aussi d'une variable u a
laquelle on affecte la valeur up,.

On affiche alors la premiere valeur de n pour laquelle u > 5000.

Et nous sommes certains que tous les termes suivants vont dépasser
strictement 5000 par croissance de la suite (up).

Nous voila fin préts a coder !
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Limite infinie

Solution de I'exemple 2

@ Un code classique :

Author : Le Bastard Yannick
Programme test qui renvoie le rang minimal

n, u=20, 1 #initialisation de n et de u0
while u < 5000 : #boucle conditionnelle
U= u + nkx2 #relation de recurrence
n=n+1 #increment de n
print("N =", n) #affichage de N

On trouve N = 26.
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Limite infinie

Donnons une illustration graphique de la situation précédente. On

représente pour une fois le nuage de points M,(n; u,) méme si notre suite
est définie par récurrence.

e Loge:

Figure: Seuil N de dépassement
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Suites sans limite

Parfois, les termes d'une suite (up,) semblent s’accumuler autour de
certaines valeurs précises, mais pas nécessairement d'une en particulier.

Considérons la suite u de terme général u, = (—1)".

. —1 si n est impair
De maniere évidente : u, = ) )
1 si n est pair

Tous les termes d'indice pair de u sont égaux a 1 et tous les termes
d'indice impair de u sont égaux a —1. On peut écrire que pour tout entier
naturel n, upp, =1 et upprg = —1.

Dans un certain sens, une infinité de termes de la suite u s’accumulent
"autour de” 1 et de —1, en fait exactement en 1 et —1 dans le cas présent.
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Suites sans limite

Considérons la suite u de terme général u, = sin n. La fonction sinus (que
vous découvrirez cette année) est définie sur R, 27-périodique et prend
pour valeurs tous les réels de [—1;1].

Qu'en-est-il si nous restreignons I'ensemble de définition de la fonction

sinus a N 7 Il semble que les termes u, puissent s'approcher de n'importe
quelle valeur y € [-1;1].
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Figure: Nuage de points
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Intéressons-nous a la suite u définie sur N* par u, =2 + % Nous allons
étudier le comportement asymptotique de u, c'est-a-dire les valeurs uj,
prises par u lorsque n devient grand. Nous pouvons déja commencer par
calculer les premiers termes 3 103 pres :

n|1] 2 3 g 5 6 7 8 9
un | 312,252,111 | 2,062 | 2,04 | 2,028 | 2,02 | 2,016 | 2,012

Il semble que plus n grandisse, plus les termes u, se rapprochent de £ = 2
(en décroissant strictement).

Il en va de méme pour la suite v définie sur N* par v, =2 + # dont les
termes v,, se rapprochent de £ = 2 quand n devient grand, mais en
oscillant de plus en plus faiblement autour de 2.

nl1] 2 3 4 [ 5 6 7 8 9
un | 1]2,5]1,667 | 2,25 1,8 2,167 1,86 2,13 | 1,89
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On peut formaliser I'intuition précédente en approchant d’aussi prés que
I'on veut la valeur ¢ par des termes u, de la suite u, pourvu que n soit
suffisamment grand.

Définition 2

Soit u une suite réelle. On dit que le réel £ est limite de la suite u si pour
tout intervalle ouvert ]a; b[ contenant / il existe un rang N a partir duquel
tous les u, appartiennent a ]a; b|.

Sans perte de généralité (réfléchissez bien pourquoi), on peut supposer que
I'intervalle ]a; b[ est de la forme |¢ — €; ¢ + €[ (¢ > 0) i.e centré en /.

La définition précédente dit que si I'on se donne un petit intervalle ouvert
centré en ¢, tous les termes de la suite, sauf un nombre fini d’entre eux,
sont compris dans cet intervalle.
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Limite finie

Exemple 4

Soit (up) la suite définie pour tout entier naturel n par u, = ggﬂ

© Programmez cette suite sur votre calculatrice et faites une conjecture
sur sa monotonie et sa limite éventuelle /.

@ Démontrez que pour tout entier naturel n: u, > %

© Démontrez que pour tout entier naturel n :
Upt1 — Up = m et en déduire le sens de variation de (up).

@ Trouvez le plus petit entier naturel N 3 partir duquel u, < ¢+ 1073.
Vous pourrez écrire un programme Python ou pour les plus
courageux, résoudre une inéquation.
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Limite finie

Exemple 4 (correcti

© Il semble que la suite (u,) soit décroissante et ait pour limite £ = 0, 4.

Suites Graphique Tableau Suites Graphigue Tableau
Auto & Axes Nawiguer Caleul Régler 1'intervalle
n Un
& 1 1.5
2 1
4 5 0.6538462
10 0.5294118
2 50 0.4262848
.
180 0.4131737
I +' B s B o 10 o 10 o lat
* 500 0. 4026389
n=4 u(n)=0.7142857143 eaa) 0. OTENET

Figure: Nuage de points

@ Question technique faisant appel a des méthodes vues en seconde :
pour prouver que A > B, on peut démontrer que A — B > 0. Surtout
si A et B sont des fractions. On devra alors réduire au méme
dénominateur leur différence A — B.
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Limite finie

Exemple 4 (correction)

Pour tout entier naturel n :
2n+7 2 _ 5(2n+7)—2(5n+1) 33 >0
) :

2 _
Un =5 =5p31 — 5 = 5(5n+1) = 5(6nt1
Donc u, > % =0,4.

© Pour tout entier naturel n :
o 2AnL)4T 2047 _ 2049 _ 2047 oqis -
Untl = Un = 5(n3T)31 — 5nf1 — 5n46 Byl SOt
Uny1 — Up (5"+1)(fé':f%)(gilg)(s“@ et aprés simplifications :

- =31
Un+1 = Un = Bpi1)(5n+6)"

On en déduit que la suite (up) est strictement décroissante.

Remarque : Au cours de la question 1, nous avons-prouvé que

0<uy— % = 5(5n+1) En quoi est-ce intéressant (intuitivement) ?
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Limite finie

Exemple 4 (correction)

© Le programme n’est qu'une variante de |'exemple 2.

def f(n):
return (2%n+7)/(5%n+1)

eps = 0.05
n, u=20, f(n)
while u >= 0.4 + eps

n=n+1
u= f(n)
print("N =", n)

On trouve N = 1320
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Limite finie

La notion de "bande de sécurité” centrée en £ dans laquelle tous les
termes de la suite (up) sont compris a partir d'un certain rang est treés
visuelle pour les suites non monotones. Par exemple, on peut prouver que
la suite de terme général u, = % est de limite nulle.

On s'est donné ici pour bande de sécurité I'intervalle [-0,1;0, 1].

——

Figure: bande de sécurité
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Synthese

Définitions a mettre en situation

@ On dit qu'une suite réelle (u,) a pour limite +oo si pour tout réel
A > 0 (notre plafond), on peut trouver un entier naturel N (qui
dépend donc de A) a partir duquel tous les termes u, dépassent A :
pour tout n > N : u, > A.

@ On dit qu'une suite réelle (u,) a pour limite —oo si pour tout réel
A > 0, on peut trouver un entier naturel N (qui dépend donc de A) a
partir duquel tous les termes u, sont inférieurs a —A : pour tout
n>N : u, <-A.

© On dit qu'une suite réelle (u,) a pour limite £ € R si pour tout
intervalle ouvert ]a : b[ contenant £ (notre bande de sécurité), on peut
trouver un entier naturel N a partir duquel tous les termes u,
appartiennent a Ja: b[ : pour tout n > N : u, €]a; b|.

© Certaines suites n'ont pas de limite (ni finie, ni infinie).
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