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Propriétés d'une suite numérique

Définitions
@ On dit que (up) est majorée s'il existe un réel M tel que pour tout
entier naturel n : u, < M (la suite est plafonnée).

@ On dit que (u,) est minorée s'il existe un réel m tel que pour tout
entier naturel n : u, > m (la suite a un plancher).

© On dit que (up) est bornée si (u,) est a la fois majorée et minorée.

© On dit que (up) est croissante (resp. décroissante) si pour tout
n €N, u, < upyq (resp. upr1 > up).

Théoreme

Soit (u,) une suite définie de maniére explicite pour tout entier naturel n
par u, = f(n). Alors (up) hérite des propriétés de f : si f est croissante
(resp. décroissante, resp. majorée, resp. minorée) sur [0; oo, alors (up,)
est aussi croissante (resp. décroissante, resp. majorée, resp. minorée).
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Propriétés d'une suite numérique

Remarque : (u,) est bornée s'il existe un réel M > 0 tel que pour tout
entier naturel n, on ait |u,| < M.

Soient (un), (vn) et (wp) les suites définies sur N respectivement par

up = ﬁ Va = n et w, = (—1)". Précisez dans chacun des cas si les
suites sont monotones, majorées, minorées, bornées.

@ (up) est strictement décroissante et bornée.

@ (vp) est strictement croissante, minorée mais pas majorée.

© (wp) est n'est ni croissante, ni décroissante mais bornée.

Mini défi : donnez un exemple de suite non monotone et non bornée.
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Propriétés d'une suite numérique

Le théoreme précédent est faux pour les les suites définies par

récurrence : u,.1 = f(u,)

f croissante # (up) croissante.
f décroissante - (up) décroissante.

On définit (up) par up = 16 et up1 = f(uy) et (vp) par vo = —2 et
Vat1 = g(vn) ol f est définie par f(x) = 3x + 3, donc_f croissante et g
est définie par g(x) = —3x + 3, donc g décroissante.

=
p ’/
B
j» ‘/
/

Figure: Or (u,) décroissante Figure: Et (v,) n'est m&me pas monotone !
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Comment donc étudier les variations d'une suite ?

A ce stade de I'année, nous disposons de peu de fonctions dont nous
connaissons le sens de variation et qui pourraient nous aider a étudier les
suites définies de maniére explicite : les fonctions de référence vues en
seconde.

Vous en découvrirez de nouvelles au cours de cette année de premiere.
Quant aux suites définies par récurrence, mis a part quelques cas
particuliers, leur étude est plus délicate. Elle nécessite notamment de
connaitre le raisonnement par récurrence étudié en terminale dans
I'option maths spécialité.

Observez-les exemples qui suivent, ils sont bien plus parlants qu'un long
discours.
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Méthodes d'étude des varivariations d'une suite

Rappelons qu'une suite (up) est :
© croissante si pour tout entier naturel n: upy1 > up.

@ décroissante si pour tout entier naturel n: upp1 < up.
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\Y/ des d'étude des varivariations d'une suite

Rappelons qu'une suite (up) est :

© croissante si pour tout entier naturel n: upy1 > up.

@ décroissante si pour tout entier naturel n: upp1 < up.
Cette notion a un sens a partir d'un certain rang : les premiers termes u,
d’'une suite peuvent varier de maniére erratique, mais a partir d'un certain

moment, disons pour n dépassant un certain entier naturel N, on aura
Upy1 2 Up OU Upy1 < Uy,

Deux méthodes

On ne traite que le cas des suites croissantes. Vous adapterez au cas des
suites décroissantes. Pour prouver qu'une suite (up,) est croissante :

© On prouve directement que pour tout entier naturel n: upr1 > up.

@ Si l'on sait que tous les termes de la suite (u,) sont strictement
positifs, on prouve que pour tout entier naturel n : “Z—:l > 1.

Yannick Le Bastard (LEGTA de I'Hérault) Suites numériques July 19, 2024



Méthodes d'étude des variations d’'une suite

Soit (up) la suite définie pour tout n € N par u, = 2". Alors (uj) est
strictement croissante.
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Méthodes d'étude des variations d’'une suite

Soit (up) la suite définie pour tout n € N par u, = 2". Alors (uj) est
strictement croissante.

Méthode 1 : Donnons-nous un entier naturel n quelconque. Cette
petite phrase n'a I'air de rien mais elle est vitale ! Alors :

Upp1 — Up =2"H1 20 =2 x 2 2N =20 > (.

On en déduit que la suite (u,) est strictement croissante.

Méthode 2 : Donnons-nous un entier naturel n quelconque. |l est clair
que pour tout n € N, u, > 0. Alors :
u 2mtl 2 om

ntl = =2>1

On en déduit que la suite (up) est strictement croissante.

Up 20 2n

Pour cette suite et plus généralement pour toutes les suites de la forme
a" (a > 0), les deux méthodes fonctionnent.
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Méthodes d'étude des variations d’'une suite

Soit (u,) la suite définie pour tout n € N par u, = $n+ 2. Alors (uj,) est
strictement croissante.
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Méthodes d'étude des variations d’'une suite

Soit (u,) la suite définie pour tout n € N par u, = $n+ 2. Alors (uj,) est
strictement croissante.

Méthode 1 : Donnons-nous un entier naturel n quelconque. Alors :
Upsl — Up = %(n +1)+2— (%n + 2). Ne pas oublier les parenthéses !
un+1—un:§n+%+2—%n—2:%>0.

On en déduit que la suite (u,) est strictement croissante.

Méthode 2 : Donnons-nous un entier naturel n quelconque. |l est clair
que pour tout n € N, u, > 0. Alors :

u”+1:%(n+1)+2:%n+%+2:(%n+2)+%:1+ 1 -
Un n+2 In+2 In+2 Tyo ot

On en déduit que la suite (up) est strictement croissante.
La méthode 1 est nettement plus simple !
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Attention, tout n'est pas si simple... en premiere !

Un exemple croustillant

Soit (vy) la suite définie pour tout n € N par v, = 2" —2n. Alors (v,) est
strictement croissante a partir d'un certain rang.

La seconde méthode est inadaptée : pourquoi ?

Essayons la premiere méthode : donnons-nous un entier naturel n
quelconque et évaluons le signe de v, 411 — vp.

Varl — Vo= (2" =2(n+1) = (2" = n)=2x2"—-2n—-2—-2"+n
Vpt1 — Vp = 2" — n — 2. Testons différentes valeurs de n :

Pourn=0: vpy1 —vp=vi —vyp=-3<0.
Pourn=1:vyy1—vp=wn—vi=-1<0.
Pourn=2: vpy1 —vp=vz— v =0.
Pourn=3: vpy1 —vp=w—v3=3>0.
Pourn=4: vp41 —vp=vs — vy =10 > 0.
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Attention, tout n'est pas si simple... en premiere !

Il semble que la suite (v,) soit strictement croissante a partir du rang
N =3.

Seulement, il est totalement abusif de généraliser. Ce n’est pas
I'observation de quelques termes qui prouve que pour tous les entiers
n>3: vpy1 — vy, > 0.

Mais nous avons gagné une information : celle du rang a partir duquel
(up) serait strictement croissante. Programmez sur votre calculatrice la
suite de terme général 2" — n — 2 et observez la table des valeurs.
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Attention, tout n'est pas si simple... en premiere !

Il semble que la suite (v,) soit strictement croissante a partir du rang
N =3.

Seulement, il est totalement abusif de généraliser. Ce n'est pas
I'observation de quelques termes qui prouve que pour tous les entiers
n>3: vpy1 — vy, > 0.

Mais nous avons gagné une information : celle du rang a partir duquel
(up) serait strictement croissante. Programmez sur votre calculatrice la
suite de terme général 2" — n — 2 et observez la table des valeurs.

Nous venons d'effectuer ce qu'on appelle "une conjecture”. Pour la
prouver, comme la suite w, = 2" — n — 2 est définie de maniere explicite, il
suffirait par exemple d'étudier la fonction f définie sur [0; 4+oo[ par

f(x) = 2¥ — x — 2 et justifier qu’elle prend des valeurs strictement
positives si x > 3. Mais qu'est que ce 2 pour x réel 777

On pourrait aussi utiliser un raisonnement par récurrence : il vous faudra
attendre la classe de terminale spécialité maths.
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hese

Pour étudier une une suite définie de maniere explicite u, = f(n) :

@ On peut étudier la fonction f associée (si elle est assez simple) pour
en déduire des renseignements sur la suite (u,) : majorée, minorée,
croissante ...

@ Si ce n'est pas possible, on peut essayer de retrouver toutes ces

T - : —1)"
propriétés "a la main”. Par exemple quid de <()> ?
W n>1

Pour étudier une suite définie par récurrence u,+1 = f(up) :
© On peut, si la suite est tres simple, I'exprimer de maniere explicite et
on est ramené au cas précédent.

@ Juste émettre des conjectures a I'aide d'un graphique ou d'un tableau
de valeurs et attendre la terminale ! )
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