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1. Qu’est-ce que la modélisation 7

Modéliser, c'est comprendre et prévoir.
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1 est-ce que la modélisation 7

Modéliser, c'est comprendre et prévoir.

Modéliser, c'est décrire le réel (en le simplifiant) et le transcrire
mathématiquement.
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1 est-ce que la modélisation 7

Modéliser, c'est comprendre et prévoir.

Modéliser, c'est décrire le réel (en le simplifiant) et le transcrire
mathématiquement.

Modéliser, c'est accepter de confronter son modele a la réalité, quitte a en
changer.
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1. Qu’est-ce que la modélisation 7

Nous faisons tous des modélisations complexes sans le savoir !

© Estimer le temps d'attente a une caisse de supermarché
@ Jauger du prix d'un objet dans une brocante
© Estimer le temps d'un trajet en fonction de la circulation

@ Estimer sa note a la sortie du DS de maths
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1 est-ce que la modélisation 7

Mais des situations de la vie courante demandent aussi des modélisations
qui peuvent s'avérer délicates :

© Déterminer I'importance et quand sera atteint le pic d'une épidémie
@ Estimer 'augmentation de I'inflation

© Prévoir la météo des trois prochains jours

© Prévoir une éruption volcanique

@ Estimer un rendement céréalier
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2. Un premier exemple

Wayne et ses amis souhaitent se rendre a un concert de rock fort . ..

S

Yannick Le Bastard (LEGTA de I'Hérault)
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2. Un premier exemple

Pour cela, ils partent de chez Wayne jusqu'a la salle de concert située a 5
km selon le trajet donné ci-dessous. Pourriez-vous raconter ce trajet ?

¥
distance (km)
s+

451

05+

) temps (min)
st
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3. Décroissance radioactive

En 1896, Henri Becquerel découvre que certaines substances émettent
spontanément des rayonnements capables de traverser la matiére. Pierre
et Marie Curie étudieront notamment un de ces éléments qui prendra le

nom de radium.
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3. Décroissance radioactive

En 1896, Henri Becquerel découvre que certaines substances émettent
spontanément des rayonnements capables de traverser la matiére. Pierre
et Marie Curie étudieront notamment un de ces éléments qui prendra le

nom de radium.

U HOYAD LOURD RADIRMACTIF

rayonnamant @ . IIll'
P ~N

red ot
& -

=
7 peyau
=" d'hilium 4

March 31, 2024

Yannick Le Bastard (LEGTA de I'Hérault) Modélisation mathématique : épisode 1



3. Décroissance radioactive

Un atome radioactif peut émettre trois types de particules associées a un
rayonnement électromagnétique :

@ Particules o : noyaux d'hélium 4 émis avec une vitesse de 20 000
Km/s, facilement arrétés avec une feuille de papier.

@ Particules 8 : se déclinent en deux sous particules, a savoir :
a) Les particules 57, des électrons émis a une vitesse de 280 000
km/s, arrétés par une feuille d"aluminium.
b) Les particules 3, des positrons émis a une vitesse de 280 000
km/s, facilement arrétés (dés qu'ils rencontrent de la matiere : il y a
annihilation !)

© Rayonnement ~ : une onde électromagnétique de A = 10~*nm. Pour
les arréter il faut quelques métres de béton.
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3. Décroissance radioactive

Evolution du nombre d’atomes radioactifs 4X

Notons No le nombre initial d’atomes radioactifs de I'élément 2X et N(t)
le nombre d’atomes radioactifs du méme élément a |'instant t.

Pendant la durée At, la variation AN(t) du nombre d'atomes radioactifs
est égale a :
AN(t) = N(t + At) — N(t)

Remarquons que pour tout instant t, AN(t) < 0.
L’activité moyenne A(t) exprimée en Becquerels (Bq) est le nombre

AN(t)
At

moyen de désintégrations par unité de temps : A(t) = —
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3. Décroissance radioactive

Evolution du nombre d’atomes radioactifs 4X

La loi de Rutherford et Soddy (1902) nous dit que I'activité moyenne est
proportionnelle au nombre d'atomes radioactifs restants a l'instant t :
A(t) = AN(t), avec X constante radioactive qui dépend uniquement du
nucléide radioactif considéré et s'exprime en ut™! (ut est I'unité de temps).
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3. Décroissance radioactive

Evolution du nombre d’atomes radioactifs 4X

La loi de Rutherford et Soddy (1902) nous dit que I'activité moyenne est
proportionnelle au nombre d'atomes radioactifs restants a l'instant t :
A(t) = AN(t), avec X constante radioactive qui dépend uniquement du
nucléide radioactif considéré et s'exprime en ut™! (ut est I'unité de temps).

Ainsi, nous avons :
AN(t)

At

= AN(E) (+)
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3. Décroissance radioactive

Evolution du nombre d’atomes radioactifs 4X

La loi de Rutherford et Soddy (1902) nous dit que I'activité moyenne est
proportionnelle au nombre d'atomes radioactifs restants a l'instant t :
A(t) = AN(t), avec X constante radioactive qui dépend uniquement du
nucléide radioactif considéré et s'exprime en ut™! (ut est I'unité de temps).

Ainsi, nous avons :
AN(t)

At

= AN(E) (+)

Faisant tendre At vers 0 dans (*), nous obtenons I'équation différentielle :

N'(t) = —AN(t)
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3. Décroissance radioactive

i Torear H N

AN
La pente de la corde Ait) reliant (t, N(t)) et (t + At, N(t + At)) tend
vers la pente N'(t) de la tangente en (t, N(t)) quand At tend vers 0.
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3. Décroissance radioactive

M, (x))

xtend versa

\ flxl-fla

La corde (AM) a pow pente

A, @)

Eh oui, c’est la définition du nombre dérivé : la pente d'une tangente mais
aussi un taux de variation instantané !
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3. Décroissance radioactive

Nous notons aussi usuellement :

dN(t)
dt

= —AN(t)

Résolution de I'EDO obtenue

Nous reconnaissons une équation différentielle linéaire d'ordre 1 de la
forme y’ = ay dont les solutions sont les fonctions définies sur R par
f(x) = Ce®.
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3. Décroissance radioactive

Nous notons aussi usuellement :

dN(t)
dt

= —AN(t)

Résolution de I'EDO obtenue

Nous reconnaissons une équation différentielle linéaire d'ordre 1 de la
forme y’ = ay dont les solutions sont les fonctions définies sur R par
f(x) = Ce®.

Comme N(0) = Np, nous obtenons immédiatement que pour tout réel
t>0:

N(t) = Nge
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3. Décroissance radioactive

La détermination de ces paramétres A fait partie de ce qu'on appelle les
problemes inverses, qui sont trés délicats. lls font appel a la théorie de
I'estimation et aux statistiques bayésiennes. Nous n'aborderons pas ce
point dans notre exposé.
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3. Décroissance radioactive

La détermination de ces paramétres A fait partie de ce qu'on appelle les
problemes inverses, qui sont trés délicats. lls font appel a la théorie de
I'estimation et aux statistiques bayésiennes. Nous n'aborderons pas ce
point dans notre exposé.

Voici quelques valeurs de \ exprimées en s~! ou jour™! ou an~!:

e pour I'uranium : A =1,5x 10710 an~1

@ pour le carbone 14 : A =1,2 x 107% an™!

@ pour l'iode 131 : A =8,5 x 1072 jour™?
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3. Décroissance radioactive

© Nous avons commencé par écrire la variation du nombre d'atomes
radioactifs présents entre deux instants trés proches t et t + At :
AN(t) = N(t + At) — N(t).
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3. Décroissance radioactive

© Nous avons commencé par écrire la variation du nombre d'atomes
radioactifs présents entre deux instants trés proches t et t + At :
AN(t) = N(t + At) — N(t).

@ Cette variation est proportionnelle au nombre d'atomes radioactifs
restants a l'instant t et a la durée At indépendamment de t :
AN(t) = —AN(t)At pour un certain réel A > 0.

Yannick Le Bastard (LEGTA de I'Hérault) Modélisation mathématique : épisode 1 March 31, 2024



3. Décroissance radioactive

© Nous avons commencé par écrire la variation du nombre d'atomes
radioactifs présents entre deux instants trés proches t et t + At :
AN(t) = N(t + At) — N(t).

@ Cette variation est proportionnelle au nombre d'atomes radioactifs
restants a l'instant t et a la durée At indépendamment de t :
AN(t) = —AN(t)At pour un certain réel A > 0.

© Divisant par At que |'on fait tendre vers 0 (et en admettant N
dérivable sur R™), nous obtenons la variation instantanée du nombre
d’atomes radioactifs restants a I'instant t : N'(t) = —AN(t).
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3. Décroissance radioactive

Nous appelons demi-vie de I'élément radioactif Z la période de temps t; />
durant laquelle la moitié des atomes radioactifs se désintegrent. Ceci est
indépendant de I'instant initial t d'observation : il s'agit d'une loi sans
mémoire.
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3. Décroissance radioactive

Nous appelons demi-vie de I'élément radioactif Z la période de temps t; />
durant laquelle la moitié des atomes radioactifs se désintegrent. Ceci est
indépendant de I'instant initial t d'observation : il s'agit d'une loi sans
mémoire.
La pente de la tangente a Cy a t = 0 est exactement 1/\.

N, S =

N(t) = Ne™!

Nombre d’atomes

Temps
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3. Décroissance radioactive

Notre but étant juste la modélisation de certains phénomeénes, nous nous
contenterons de dire que la radioactivité a de nombreuses applications :
datation d'objets anciens grace au carbone 14, détermination de |'origine
sédimentaire ou mantellique de granites grace au couple rubidium /
strontium, utilisation d’isotopes radioactifs a faible demi-vie dans le
domaine médical, etc.
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3. Décroissance radioactive

Nous pouvons également utiliser I'approche probabiliste pour modéliser la
décroissance radioactive, la constante \ représentant la probabilité de
désintégration d’un atome radioactif par unité de temps. Un script Python
donne la courbe suivante :

Nombre d'atomes d'iode 131 restants en fonction du temps

2400 4

2200 4

2000 A

1800

1600

1400 4

nombre d'atemes d'iode 131 restants

1200

1000

[} 20 40 60 80 100
nombre de jours
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4. Vers un modeéle de réflexion

De nombreuses autres équations différentielles peuvent étre établies de la
méme maniére, en raisonnant comme nous |'avons fait précédemment :

© Le modéle de croissance Malthusien en dynamique des populations :
N'(t) = rN(t), ou r € R désigne le taux de croissance de la
population.
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4. Vers un modeéle de réflexion

De nombreuses autres équations différentielles peuvent étre établies de la
méme maniére, en raisonnant comme nous |'avons fait précédemment :

© Le modéle de croissance Malthusien en dynamique des populations :
N'(t) = rN(t), ou r € R désigne le taux de croissance de la
population.

@ Le modele de croissance logistique en dynamique des populations :
N(t . .
N'(t)y=r1- }(<) N(t), ou r € R désigne le taux de croissance

de la population et K la capacité d'accueil du milieu.
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4. Vers un modeéle de réflexion

De nombreuses autres équations différentielles peuvent étre établies de la
méme maniére, en raisonnant comme nous |'avons fait précédemment :

© Le modéle de croissance Malthusien en dynamique des populations :
N'(t) = rN(t), ou r € R désigne le taux de croissance de la
population.

@ Le modele de croissance logistique en dynamique des populations :
N(t . .
N'(t)y=r1- }(<) N(t), ou r € R désigne le taux de croissance

de la population et K la capacité d'accueil du milieu.

© Des problemes concrets de mélanges ou de cuves qui se vident.
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4. Vers un modeéle de réflexion

De nombreuses autres équations différentielles peuvent étre établies de la
méme maniére, en raisonnant comme nous |'avons fait précédemment :

© Le modéle de croissance Malthusien en dynamique des populations :
N'(t) = rN(t), ou r € R désigne le taux de croissance de la
population.

@ Le modele de croissance logistique en dynamique des populations :

N(t
N(t)=r(1- }(<) N(t), ou r € R désigne le taux de croissance

de la population et K la capacité d'accueil du milieu.

© Des problemes concrets de mélanges ou de cuves qui se vident.

Cette démarche nous servira notamment en épidémiologie pour modéliser
des systemes d'équations différentielles.
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4. Vers un modeéle de réflexion

Exemple 1 : Le modeéle de Malthus (1798)

Considérons une population que nous supposerons comme un systeme
fermé : pas de mouvement de population entrant ni sortant. Soit Ny son
effectif initial et N(t) son effectif a I'instant t.

Notons également a (resp. b) le nombre de naissances (resp. de morts)
par unité de temps.
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4. Vers un modeéle de réflexion

Exemple 1 : Le modeéle de Malthus (1798)

Considérons une population que nous supposerons comme un systeme
fermé : pas de mouvement de population entrant ni sortant. Soit Ny son
effectif initial et N(t) son effectif a I'instant t.

Notons également a (resp. b) le nombre de naissances (resp. de morts)
par unité de temps.

Le modeéle de Malthus suppose :

© qu’'a chaque instant t, a et b sont proportionnels a la taille de la
population : il existe & > 0 et 8 > 0 indépendants de t tels que
a=aN(t) et b= BN(t). a > 0et > 0 sont respectivement le taux
de natalité et le taux de mortalité intrinseques de la population.

Yannick Le Bastard (LEGTA de I'Hérault) Modélisation mathématique : épisode 1 March 31, 2024



4. Vers un modeéle de réflexion

Exemple 1 : Le modeéle de Malthus (1798)

Considérons une population que nous supposerons comme un systeme
fermé : pas de mouvement de population entrant ni sortant. Soit Ny son
effectif initial et N(t) son effectif a I'instant t.

Notons également a (resp. b) le nombre de naissances (resp. de morts)
par unité de temps.

Le modeéle de Malthus suppose :

© qu’'a chaque instant t, a et b sont proportionnels a la taille de la
population : il existe & > 0 et 8 > 0 indépendants de t tels que
a=aN(t) et b= BN(t). a > 0et > 0 sont respectivement le taux
de natalité et le taux de mortalité intrinseques de la population.

© et que pour tout réel t > 0, a — b est constant entre deux instants
infiniment proches t et t + At !
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4. Vers un modeéle de réflexion

Exemple 1 : Le modele de Malthus (1798)

L'accroissement relatif de la population entre les instants t et t + At est
AN(t) = N(t + At) — N(t) = aN(t)At — SN(t)At. On a donc :

AN(t) = (a — B)N(t)At
Divisant par At que I'on fait tendre vers 0, on obtient :
N'(t) = (a — B)N(t)

Posant r = o — 3, qui représente le taux de croissance intrinseque de la
population, nous obtenons finalement :

Comme N(0) = Np, la solution de cette EDO est : N(t) = Npe™.
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4. Vers un modeéle de réflexion

Croissance de la population en fonction du signe de r.
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4. Vers un modeéle de réflexion

@ Nous avons commencé par écrire la variation du nombre d'individus
entre deux instants trés proches t et t + At :
AN(t) = N(t + At) — N(t).

Yannick Le Bastard (LEGTA de I'Hérault) Modélisation mathématique : épisode 1 March 31, 2024



4. Vers un modeéle de réflexion

@ Nous avons commencé par écrire la variation du nombre d'individus
entre deux instants trés proches t et t + At :
AN(t) = N(t + At) — N(t).

@ Cette variation est proportionnelle a I'effectif de la population a
I'instant t et a la durée At indépendamment de t : AN(t) = rAt
pour un certain réel r > 0 (taux de croissance intrinséque de la
population exprimé en ut™1).
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4. Vers un modeéle de réflexion

@ Nous avons commencé par écrire la variation du nombre d'individus
entre deux instants trés proches t et t + At :
AN(t) = N(t + At) — N(t).

@ Cette variation est proportionnelle a I'effectif de la population a
I'instant t et a la durée At indépendamment de t : AN(t) = rAt
pour un certain réel r > 0 (taux de croissance intrinséque de la
population exprimé en ut™1).

© Divisant par At que I'on fait tendre vers 0 (et en admettant N
dérivable sur R™), nous obtenons la variation instantanée du nombre
d'individus de la population a I'instant ¢ : N'(t) = rN(t).
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Vers un modeéle de réflexion

Exemple 2 : Le modéle de Verhiilst (1845)

Le modele de Malthus devient vite irréaliste a long terme : une population
grandissant exponentiellement dans un milieu clos va se retrouver a un
moment ou un autre a court de ressources, et sa croissance va
inexorablement ralentir.

Ce modele, dit aussi modele logistique prend en compte ce frein a la
croissance via les hypothéses suivantes :

@ Le taux de natalité intrinseque « est toujours supposé constant.

@ Le taux de mortalité intrinseque est supposé augmenter avec la taille
de la population de maniere affine : /3 devient 5(N) = So + S1N.
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Vers un modeéle de réflexion

Exemple 2 : Le modéle de Verhiilst (1845)
N'(t) = (o — B)N(t) se réécrit :

N'(t) = aN(t) — (Bo + BiN(t))N(t)

soit
B
a— Bo

N/(8) = (o — Bo)N(E) [1
a— B
B

1

N(t)]

Posons r :=a — Gy et K = . On a alors :
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Vers un modeéle de réflexion

Exemple 2 : Le modéle de Verhiilst (1845)

Le coefficient r = o — By s'appelle le taux intrinséque de croissance de la
population.

@ Ce taux est intrinseque dans le sens ou il correspond au taux de
croissance de la population en I'absence de compétition (cf modele de
Malthus).
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Vers un modeéle de réflexion

Exemple 2 : Le modéle de Verhiilst (1845)

Le coefficient r = o — By s'appelle le taux intrinséque de croissance de la
population.

@ Ce taux est intrinseque dans le sens ou il correspond au taux de

croissance de la population en I'absence de compétition (cf modele de
Malthus).

@ Le coefficient K s'interprete comme la capacité d’accueil du milieu
(exprimée en nombre d'individus). On peut le comprendre car :

P taux intrinséque de croissance (en ut~!)

B1  coefficient de mortalité (en ut™! x effectif ~1)
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Vers un modeéle de réflexion

Exemple 2 : Le modéle de Verhiilst (1845)

On prouve (trés bon exercice de terminale) que la solution de

N'(t) = rN(t) ( = %) , t>0 et
N(0) = No
(k) | M) = (KKyoNo)e_n pour £ > 0
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Vers un modeéle de réflexion

Exemple 2 : Le modéle de Verhiilst (1845)

On prouve (trés bon exercice de terminale) que la solution de

N'(t) = rN(t) ( = %) , t>0 et
N(0) = No
(k) | M) = (KKyoNo)e_n pour £ > 0

O |l est aisé de vérifier que N est strictement croissante si r > 0.

. . . . K
@ Le seul point d’inflexion éventuel de N a pour abscisse >
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Vers un modeéle de réflexion
Exemple 2 : Le modeéle de Verhiilst (1845)

3

La croissance diminue

Point d'inflexion |
PP e ko Y L e A e A

La croissance augmente

o 05 1 15 2 25 3 35 4 45 5 55 6

Modeéle de croissance logistique avec K =3, Np =1et r >0
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4. Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Considérons une cuve pleine de 450 litres contenant initialement 30 kg de

sel. On y fait couler de I'eau contenant 1/9 kg de sel par litre, a raison de
9 L/min. Le mélange, maintenu homogene par brassage, s'écoule a raison
de 13,5 L/min. Quelle quantité de sel restera-t-il au bout d'une heure ?

Eau salée (1/9 kg/L) entrante au débit de SL/min

Vo= 450 L et q(0) = 30 Kg

Eau salée sortante au débit de 13,5Limin
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Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Appelons V/(t) (resp. g(t)) le volume d’eau (resp. la quantité de sel) dans
la cuve t minutes apres l'instant initial.

Le volume de la cuve diminue de 4,5 L d’eau salée par minute, ainsi
comme la cuve a un volume initial de 450 L, V/(t) = 450 — 4, 5¢.
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Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Appelons V/(t) (resp. g(t)) le volume d’eau (resp. la quantité de sel) dans
la cuve t minutes apres l'instant initial.

Le volume de la cuve diminue de 4,5 L d’eau salée par minute, ainsi
comme la cuve a un volume initial de 450 L, V/(t) = 450 — 4, 5¢.

Considérons deux instants infiniment proches t et t + At. Entre t et
t+ At :
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Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Appelons V/(t) (resp. g(t)) le volume d’eau (resp. la quantité de sel) dans
la cuve t minutes apres l'instant initial.

Le volume de la cuve diminue de 4,5 L d’eau salée par minute, ainsi
comme la cuve a un volume initial de 450 L, V/(t) = 450 — 4, 5¢.

Considérons deux instants infiniment proches t et t + At. Entre t et
t+ At :
@ La cuve regoit une quantité de 9 x 1/9 x At = At g de sel

@ En supposant la concentration de sel qui s'échappe de la cuve,

q(t)
V(t)

constante sur [t; t + At], la cuve perd 13,5 x At g de sel.
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Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Ainsi, Aq(t) = q(t + At) — q(t) = (1 - 13’5—"(”) At

450 — 4, 5¢
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Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Ainsi, Ag(t) = q(t + At) — q(t) = (1 _ 4;,Eq4(’t5))t) At

Divisant par At que I'on fait tendre vers 0, il vient :

q(6)=1- 138(? t
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Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Ainsi, Aq(t) = q(t + At) — q(t) = (1 - 135—"(t)> At

450 — 4, 5¢

Divisant par At que I'on fait tendre vers 0, il vient :

q(6)=1- 138(? t

C'est une équation de la forme y’ = a(t)y + b dont la résolution n’est pas
au programme de Terminale. C'eiit été le cas si le coefficient a(t) avait été
constant. Mais pas de panique : la méthode d’Euler vient a la rescousse !

v
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Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

La fonction g est définie sur [0; 100], mais comme nous souhaitons calculer
q(60), nous allons partager I'intervalle de temps / = [0; 60] en 1000

= 0,06 (le pas de la méthode).

sous-intervalles. Posons alors h = ——
1000

On définit la suite (gn)n>0 par :
qo = 30

3qn
= e >
Gn+1 = qn+ 0,06 <1 100—0,06n> pour tout n > 0
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Vers un modeéle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

La fonction g est définie sur [0; 100], mais comme nous souhaitons calculer
q(60), nous allons partager I'intervalle de temps / = [0; 60] en 1000

sous-intervalles. Posons alors h = = 0,06 (le pas de la méthode).

1000
On définit la suite (gn)n>0 par :
qo = 30

34n
Gni1 = Gn -+ 0,06 <1 q

—— >
100—0,06n> pour tout n >0

On trouve ggg ~ 18,7 g.

La valeur exacte est 18,72 g. Pas mal... Essayez avec un pas plus petit.

v
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Vers un modeéle de réflexion

Variation instantanée de la quantité = flux entrant - flux sortant
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Vers un modeéle de réflexion

A vous de jouer !

@ Un réservoir cubique de 2 m de c6té est rempli d'eau a hauteur de 90
cm. |l se vide par l'intermédiaire d'un trou circulaire de 22 mm de
diametre situé sur sa partie inférieure. La vitesse d'écoulement de
I'eau est de 2,54/ h(t) cm/s ou h(t) est la hauteur d'eau restant dans
le réservoir au bout de t secondes.

Combien de temps mettra-t-il a se vider ?

@ Un premier réservoir contient 0,5m3 d'eau pure dans laquelle sont
dissous 40 kg de sel. De I'eau pure coule dans ce réservoir a raison de
3 x 107*m3/s et le mélange, maintenu uniforme par brassage,
s'écoule en méme quantité. Le liquide tombe dans un second réservoir
contenant initialement 0,5m3 d’eau pure et s'écoule de ce dernier en
méme quantité. Quelle quantité de sel contiendra ce second réservoir
au bout d'une heure ?
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Epidémiologie : modeles SIS et SIR

Introduction

Les grandes épidémies ont toujours frappé I'"humanité : la peste noire a
décimé a de nombreuses reprises le monde occidental et oriental, le
paludisme transmis par les moustiques qui continue de faire des ravages en

Afrique, la tuberculose, la grippe ...

March 31, 2024
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Epidémiologie : modeles SIS et SIR

Introduction

Les grandes épidémies ont toujours frappé I'"humanité : la peste noire a
décimé a de nombreuses reprises le monde occidental et oriental, le
paludisme transmis par les moustiques qui continue de faire des ravages en
Afrique, la tuberculose, la grippe ...

L’homme a d{i apprendre a vivre avec ces maladies et prendre des mesures
prophylactiques pour s’en prévenir, les contréler et méme les guérir.
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Epidémiologie : modeles SIS et SIR

Introduction

Les grandes épidémies ont toujours frappé I'humanité : la peste noire a
décimé a de nombreuses reprises le monde occidental et oriental, le
paludisme transmis par les moustiques qui continue de faire des ravages en
Afrique, la tuberculose, la grippe ...

L’homme a dii apprendre a vivre avec ces maladies et prendre des mesures
prophylactiques pour s’en prévenir, les contréler et méme les guérir.

Bien avant Louis Pasteur, en 1760, le mathématicien Daniel Bernoulli
présente a I'académie des sciences de Paris un mémoire intitulé " Essai
d’une nouvelle analyse de la mortalité causée par la petite vérole et des
avantages de la prévenir”. 1l y est déja question de vaccination et de ses
bénéfices.
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Epidémiologie : modeles SIS et SIR

Modeles compartimentaux

Notre but n’étant pas de dispenser un cours d'épidémiologie, nous nous
contenterons dans ce qui suit de mettre en lumiére ce qui est appelé :
modeles compartimentaux.
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Epidémiologie : modeles SIS et SIR

Modeles compartimentaux

Notre but n’étant pas de dispenser un cours d'épidémiologie, nous nous
contenterons dans ce qui suit de mettre en lumiére ce qui est appelé :
modeles compartimentaux.

La population est partitionnée en plusieurs sous-ensembles disjoints :

© Le modele SIS posséde 2 compartiments : les individus susceptibles
d’'étre infectés et les individus infectés.

@ Le modele SIR posséde 3 compartiments : les individus susceptibles
d’étre infectés, les individus infectés et les individus guéris (recovered).

D’autres modeles plus élaborés existent comme le modele SEIR, mais nous
ne les aborderons pas dans cet exposé. lls seront détaillés sur le site :
https://www.lessentiersmathematiques.com
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

Considérons une population d’effectif constant N durant notre
observation. Une pathologie affecte des individus de cette population.

On la partitionne alors en deux groupes disjoints :
© Le groupe S des individus susceptibles d'étre infectés (mais qui ne le
sont pas),
© Le groupe | des individus infectés.

March 31, 2024
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

Considérons une population d’effectif constant N durant notre
observation. Une pathologie affecte des individus de cette population.
On la partitionne alors en deux groupes disjoints :

© Le groupe S des individus susceptibles d'étre infectés (mais qui ne le
sont pas),

© Le groupe | des individus infectés.
Ainsi, a tout instant t : S(t) + /(t) = N donc :
dSs(t) di(t)

gt T dr 0

ds(t)  di(t)
g~ ar |
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modéele SIS

Le modele SIS fait I' hypothese qu'entre deux instants t et t + At
infiniment proches :

© Le nombre d'individus susceptibles diminue d’un facteur (8

proportionnel a At et a la proportion d'individus sains dans la
population multipliée par le nombre d'individus infectés.

Yannick Le Bastard (LEGTA de I'Hérault)
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modéele SIS

Le modele SIS fait I' hypothese qu'entre deux instants t et t + At
infiniment proches :

© Le nombre d'individus susceptibles diminue d’un facteur (8
proportionnel a At et a la proportion d'individus sains dans la
population multipliée par le nombre d'individus infectés.

@ Les individus infectés guérissent avec un taux de guérison v > 0
proportionnel a At et a la proportion d'individus infectés dans la
population.

Remarque : 3 et v ont pour unité ut~!.
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modéele SIS

Nous traduisons ceci par : pour tout t > 0,

I(t+At) = I(t) = ﬁ%l(t)At —~l(t)At

Divisant par At que I'on fait tendre vers 0, il vient :

T8 _ 520 1) i)
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modéele SIS

Nous traduisons ceci par : pour tout t > 0,

I(t+At) = I(t) = ﬁ%l(t)At —~l(t)At

Divisant par At que I'on fait tendre vers 0, il vient :

5(¢)

T _ 550 ) i)

dt
En vertu de la relation (*) nous en déduisons aussitot que

5(¢)
N

ds(t) _
g

=B 1(t) +71(¢)
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

Pour éviter de se trainer le facteur N, on normalise souvent en considérant

pour S(t) et I(t) les proportions d'individus sains (resp. infectés) dans la
population plutét que leur effectif.
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

Pour éviter de se trainer le facteur N, on normalise souvent en considérant
pour S(t) et I(t) les proportions d'individus sains (resp. infectés) dans la
population plutét que leur effectif.

Nous obtenons alors le systeme d'EDO qui suit :

%(tt) — _BS(D)I(t) +I() (1)
%(:) = BS(1)I(t) — (1) (2)

Remarque : 3 et ~ ont-ils toujours pour unité ut=! ?
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modéle SIS

Susceptibles S

—BSI +~I

Flux d’individus entre les compartiments S et |
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modéele SIS

Comme presque toujours, il est question de réécriture . . .

Rappelons nos deux équations :

%&t) = —BS(t)I(t) +~I(t) = I(t)(—=BS(t) +7) (1)
di(t)

— = B8(0I(t) = I(1) = 1(£)(5(1) =) (2)
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modéele SIS

Comme presque toujours, il est question de réécriture . . .

Rappelons nos deux équations :

%&t) = —BS(t)I(t) +~I(t) = I(t)(—=BS(t) +7) (1)
di(t)

— = B8(0I(t) = I(1) = 1(£)(5(1) =) (2)

Auriez-vous une idée pour vous ramener a une situation connue ?

Car ce doit étre un réflexe : mafitriser un modéle et savoir s'y ramener !

o
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS
Il est encore possible de résoudre explicitement ce systeme.
En effet : S(t) =1 — I(t).

: dl(t) g
Reportant ceci dans (2) : ——= = [(t)(8S(t) — ), il vient :

dt
M _ 1)~ 7 Bi(1)), soit
20— 5-i0) (1- 52-10)
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS
Il est encore possible de résoudre explicitement ce systeme.
En effet : S(t) =1 — I(t).

: dl(t) g
Reportant ceci dans (2) : ——= = [(t)(8S(t) — ), il vient :

dt
M _ 1)~ 7 Bi(1)), soit
20— 5-i0) (1- 52-10)

Nous reconnaissons le modéle logistique avec r = 5 — v et K = u
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

Posons /(0) = Iy (nombre d'infectés initial), alors :

K/o K/o ert

T+ (K—l)e ™ (K—1lo) + e

I(t)

_ (K = /0) I Io(l = K)ert
- (K = /0) + lpe't

(1)

Q@ Sir=p0—v>0,alors lim [(t)= K : I'épidémie devient
t—+o00

endémique.

Yannick Le Bastard (LEGTA de I'Hérault) Modélisation mathématique : épisode 1 March 31, 2024



Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

Posons /(0) = Iy (nombre d'infectés initial), alors :

K/o K/o ert

T+ (K—l)e ™ (K—1lo) + e

I(t)

_ (K = /0) I Io(l = K)ert
- (K = /0) + lpe't

(1)

Q@ Sir=p0—v>0,alors lim [(t)= K : I'épidémie devient
t—+o00

endémique.

Q@ Sir=p3—-v<0, alors . (t) = 0 : I'épidémie s'éteint.

lim /
—+00
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

On utilise usuellement I'indicateur Ry =

= | ™

Ry>1 <— r>0et Ry <1 < r<0.
Il est appelé nombre de reproduction élémentaire.
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

On utilise usuellement I'indicateur Ry =

= | ™

Ry>1 <— r>0et Ry <1 < r<0.
Il est appelé nombre de reproduction élémentaire.

Ce modele s'applique a des pathologies récurrentes pour lesquelles
I'immunité n’est pas acquise définitivement : rhume saisonnier, grippe,
COVID !
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Epidémiologie : modeles SIS et SIR

Exemple 1 : Modele SIS

On utilise usuellement I'indicateur Ry =

= | ™

Ry>1 <— r>0et Ry <1 < r<0.
Il est appelé nombre de reproduction élémentaire.

Ce modele s'applique a des pathologies récurrentes pour lesquelles
I'immunité n’est pas acquise définitivement : rhume saisonnier, grippe,
COVID !

Ce n'est pas le cas pour certaines pathologies : tétanos, coqueluche, peste,
pour lesquelles une fois guéri(e)s, nous sommes immunisé(e)s a vie.
Ce fait motive le prochain modele.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR
Considérons une population d’effectif constant N durant notre
observation. Une pathologie affecte des individus de cette population.
On la partitionne alors en trois groupes disjoints :

© Le groupe S des individus susceptibles d'étre infectés (mais qui ne le

sont pas),
© Le groupe | des individus infectés.
© Le groupe R des individus remis (guéris).

March 31, 2024
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Considérons une population d’effectif constant N durant notre
observation. Une pathologie affecte des individus de cette population.
On la partitionne alors en trois groupes disjoints :

© Le groupe S des individus susceptibles d'étre infectés (mais qui ne le
sont pas),

© Le groupe | des individus infectés.
© Le groupe R des individus remis (guéris).
Nous travaillerons comme précédemment avec les proportions d'individus,
si bien qu'a tout instant t : S(t) + /(t) + R(t) = 1 donc :
dS(t) di(t) dR(t
(1) di(e) , dR() _

dt dt dt 0
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Le modele SIR fait I' hypothése qu’entre deux instants t et t + At
infiniment proches :

© Le nombre d'individus susceptibles diminue d'un facteur 3

proportionnel a At et a la proportion d’individus sains dans la
population multipliée par le nombre d'individus infectés.

Yannick Le Bastard (LEGTA de I'Hérault)
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Le modele SIR fait I' hypothése qu’entre deux instants t et t + At
infiniment proches :

© Le nombre d'individus susceptibles diminue d'un facteur 3
proportionnel a At et a la proportion d’individus sains dans la
population multipliée par le nombre d'individus infectés.

@ Les individus infectés guérissent avec un taux de guérison v > 0
proportionnel a At et a la proportion d'individus infectés dans la
population et donc sont définitivement remis.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Nous traduisons ceci par :

Q S(t+ At) — S(t) = —BS(t)I(t)At.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Nous traduisons ceci par :

Q S(t+ At) — S(t) = —BS(t)I(t)At.

Q I(t+ At) — I(t) = BS(t)I(t)At — ~I(t)At
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Nous traduisons ceci par :

Q S(t+ At) — S(t) = —BS(t)I(t)At.
Q I(t+ At) — I(t) = BS(t)I(t)At — ~I(t)At

Q R(t+ At)— R(t) =~I(t)At
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Nous traduisons ceci par :

Q S(t+ At) — S(t) = —BS(t)I(t)At.
Q I(t+ At) — I(t) = BS(t)I(t)At — ~I(t)At

Q R(t+ At)— R(t) =~I(t)At

Divisant par At que I'on fait tendre vers 0, il vient :

S'(t) = =pS(t)I(t) (1)
I'(t) = BS(0)I(t) = ~I(t) (2)
R'(t) =~I(t) (3)
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Susceptibles S

Flux d’individus entre les compartiments S, | et R
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Contrairement au cas précédent, le systeme d'EDO
S'(t) = =pS(6)I(r) (1)

(S) + S I'(t) =BS(t)I(t) —~vI(t) (2) n'a pas de solution explicite.
R'(t) =~I(t) (3)
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Contrairement au cas précédent, le systeme d'EDO
S'(t) = =pS(6)I(r) (1)

(S) + S I'(t) =BS(t)I(t) —~vI(t) (2) n'a pas de solution explicite.
R'(t) =~I(t) (3)

En revanche, du fait que 3,7 > 0,5(t),/(t) > 0, nous obtenons
directement que : S est décroissante et R est croissante.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Contrairement au cas précédent, le systeme d'EDO
S'(t) = =pS(6)I(r) (1)

(S) + S I'(t) =BS(t)I(t) —~vI(t) (2) n'a pas de solution explicite.
R'(t) =~I(t) (3)

En revanche, du fait que 3,7 > 0,5(t),/(t) > 0, nous obtenons
directement que : S est décroissante et R est croissante.

Le cas de la fonction / est plus complexe et régit la dynamique de
I'épidémie : nous pouvons écrire que

() = 7I(8) (gsu) - 1> — I(£)(RoS(t) — 1), ot Ry = g 2 déja été

défini avant.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Q Si RySo < 1, alors I'(0) < 0 et comme /(t) tend vers 0 quand t tend
vers |'infini (pourquoi ?), / va décroitre.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Q Si RySo < 1, alors I'(0) < 0 et comme /(t) tend vers 0 quand t tend
vers |'infini (pourquoi ?), / va décroitre.

@ Si RySo > 1, alors I'(0) > 0 et / va croitre. Mais S décroit, donc il
existe un certain instant T > 0 pour lequel RyS(T) = 1.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Q Si RySo < 1, alors I'(0) < 0 et comme /(t) tend vers 0 quand t tend
vers |'infini (pourquoi ?), / va décroitre.

@ Si RySo > 1, alors I'(0) > 0 et / va croitre. Mais S décroit, donc il
existe un certain instant T > 0 pour lequel RyS(T) = 1.

Mais alors I/(T) = 0 et / atteint un maximum /pax.
Pour t > T, I'(t) < 0 et | décroit.

L'épidémie a atteint son seuil critique a l'instant T.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

Q Si RySo < 1, alors I'(0) < 0 et comme /(t) tend vers 0 quand t tend
vers |'infini (pourquoi ?), / va décroitre.

@ Si RySo > 1, alors I'(0) > 0 et / va croitre. Mais S décroit, donc il
existe un certain instant T > 0 pour lequel RyS(T) = 1.

Mais alors I/(T) = 0 et / atteint un maximum /pax.
Pour t > T, I'(t) < 0 et | décroit.

L'épidémie a atteint son seuil critique a l'instant T.

Il est aisé de discrétiser le systeme précédent en regardant I'évolution jour
par jour, pour des parametres 3 et v donnés.
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Epidémiologie : modeles SIS et SIR

Exemple 2 : Modele SIR

~

?

50 100 150
time

Evolution des proportions des compartiments S (en bleu), | (en rouge) et
R (en vert)
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Conclusion

Il nous resterait beaucoup a dire sur |'interprétation des coefficients 3 et ~,
du fait de considérer une population d'effectif non constant, etc.

Des documents détaillant ces problématiques seront disponibles bient6t
dans 'onglet DIVERS de mon site :

https://www.lessentiersmathematiques.com
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https://www.lessentiersmathematiques.com

Conclusion

MERCI DE VOTRE ATTENTION

Yannick Le Bastard (LEGTA de I'Hérault) Modélisation mathématique : épisode 1 March 31, 2024



	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


