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1. Qu’est-ce que la modélisation ?

Modéliser, c’est comprendre et prévoir.

Modéliser, c’est décrire le réel (en le simplifiant) et le transcrire
mathématiquement.

Modéliser, c’est accepter de confronter son modèle à la réalité, quitte à en
changer.
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1. Qu’est-ce que la modélisation ?

Modéliser, c’est comprendre et prévoir.
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1. Qu’est-ce que la modélisation ?

Nous faisons tous des modélisations complexes sans le savoir !

1 Estimer le temps d’attente à une caisse de supermarché

2 Jauger du prix d’un objet dans une brocante

3 Estimer le temps d’un trajet en fonction de la circulation

4 Estimer sa note à la sortie du DS de maths
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1. Qu’est-ce que la modélisation ?

Mais des situations de la vie courante demandent aussi des modélisations
qui peuvent s’avérer délicates :

1 Déterminer l’importance et quand sera atteint le pic d’une épidémie

2 Estimer l’augmentation de l’inflation

3 Prévoir la météo des trois prochains jours

4 Prévoir une éruption volcanique

5 Estimer un rendement céréalier
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2. Un premier exemple

Wayne et ses amis souhaitent se rendre à un concert de rock fort . . .
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2. Un premier exemple

Pour cela, ils partent de chez Wayne jusqu’à la salle de concert située à 5
km selon le trajet donné ci-dessous. Pourriez-vous raconter ce trajet ?
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3. Décroissance radioactive

En 1896, Henri Becquerel découvre que certaines substances émettent
spontanément des rayonnements capables de traverser la matière. Pierre
et Marie Curie étudieront notamment un de ces éléments qui prendra le
nom de radium.
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spontanément des rayonnements capables de traverser la matière. Pierre
et Marie Curie étudieront notamment un de ces éléments qui prendra le
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3. Décroissance radioactive

Un atome radioactif peut émettre trois types de particules associées à un
rayonnement électromagnétique :

1 Particules α : noyaux d’hélium 4 émis avec une vitesse de 20 000
Km/s, facilement arrêtés avec une feuille de papier.

2 Particules β : se déclinent en deux sous particules, à savoir :
a) Les particules β−, des électrons émis a une vitesse de 280 000

km/s, arrêtés par une feuille d’aluminium.
b) Les particules β+, des positrons émis a une vitesse de 280 000

km/s, facilement arrêtés (dès qu’ils rencontrent de la matière : il y a
annihilation !)

3 Rayonnement γ : une onde électromagnétique de λ = 10−4nm. Pour
les arrêter il faut quelques mètres de béton.
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3. Décroissance radioactive

Évolution du nombre d’atomes radioactifs A
ZX

Notons N0 le nombre initial d’atomes radioactifs de l’élément A
ZX et N(t)

le nombre d’atomes radioactifs du même élément à l’instant t.

Pendant la durée ∆t, la variation ∆N(t) du nombre d’atomes radioactifs
est égale à :

∆N(t) = N(t +∆t)− N(t)

Remarquons que pour tout instant t, ∆N(t) < 0.

L’activité moyenne A(t) exprimée en Becquerels (Bq) est le nombre

moyen de désintégrations par unité de temps : A(t) = −∆N(t)

∆t
.
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3. Décroissance radioactive

Évolution du nombre d’atomes radioactifs A
ZX

La loi de Rutherford et Soddy (1902) nous dit que l’activité moyenne est
proportionnelle au nombre d’atomes radioactifs restants à l’instant t :
A(t) = λN(t), avec λ constante radioactive qui dépend uniquement du
nucléide radioactif considéré et s’exprime en ut−1 (ut est l’unité de temps).

Ainsi, nous avons :
∆N(t)

∆t
= −λN(t) (∗)

Faisant tendre ∆t vers 0 dans (*), nous obtenons l’équation différentielle :

N ′(t) = −λN(t)
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3. Décroissance radioactive

La pente de la corde
∆N(t)

∆t
reliant (t,N(t)) et (t +∆t,N(t +∆t)) tend

vers la pente N ′(t) de la tangente en (t,N(t)) quand ∆t tend vers 0.
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3. Décroissance radioactive

Eh oui, c’est la définition du nombre dérivé : la pente d’une tangente mais
aussi un taux de variation instantané !
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3. Décroissance radioactive

Nous notons aussi usuellement :

dN(t)

dt
= −λN(t)

Résolution de l’EDO obtenue

Nous reconnaissons une équation différentielle linéaire d’ordre 1 de la
forme y ′ = ay dont les solutions sont les fonctions définies sur R par
f (x) = Ceax .

Comme N(0) = N0, nous obtenons immédiatement que pour tout réel
t ≥ 0 :

N(t) = N0e
−λt
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3. Décroissance radioactive

Nous notons aussi usuellement :

dN(t)

dt
= −λN(t)

Résolution de l’EDO obtenue

Nous reconnaissons une équation différentielle linéaire d’ordre 1 de la
forme y ′ = ay dont les solutions sont les fonctions définies sur R par
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3. Décroissance radioactive

La détermination de ces paramètres λ fait partie de ce qu’on appelle les
problèmes inverses, qui sont très délicats. Ils font appel à la théorie de
l’estimation et aux statistiques bayésiennes. Nous n’aborderons pas ce
point dans notre exposé.

Voici quelques valeurs de λ exprimées en s−1 ou jour−1 ou an−1 :

pour l’uranium : λ = 1, 5× 10−10 an−1

pour le carbone 14 : λ = 1, 2× 10−4 an−1

pour l’iode 131 : λ = 8, 5× 10−2 jour−1
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3. Décroissance radioactive

Résumé
1 Nous avons commencé par écrire la variation du nombre d’atomes

radioactifs présents entre deux instants très proches t et t +∆t :
∆N(t) = N(t +∆t)− N(t).

2 Cette variation est proportionnelle au nombre d’atomes radioactifs
restants à l’instant t et à la durée ∆t indépendamment de t :
∆N(t) = −λN(t)∆t pour un certain réel λ > 0.

3 Divisant par ∆t que l’on fait tendre vers 0 (et en admettant N
dérivable sur R+), nous obtenons la variation instantanée du nombre
d’atomes radioactifs restants à l’instant t : N ′(t) = −λN(t).
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3. Décroissance radioactive

Nous appelons demi-vie de l’élément radioactif Z la période de temps t1/2
durant laquelle la moitié des atomes radioactifs se désintègrent. Ceci est
indépendant de l’instant initial t d’observation : il s’agit d’une loi sans
mémoire.

La pente de la tangente à CN à t = 0 est exactement 1/λ.
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3. Décroissance radioactive

Notre but étant juste la modélisation de certains phénomènes, nous nous
contenterons de dire que la radioactivité a de nombreuses applications :
datation d’objets anciens grâce au carbone 14, détermination de l’origine
sédimentaire ou mantellique de granites grâce au couple rubidium /
strontium, utilisation d’isotopes radioactifs à faible demi-vie dans le
domaine médical, etc.
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3. Décroissance radioactive

Nous pouvons également utiliser l’approche probabiliste pour modéliser la
décroissance radioactive, la constante λ représentant la probabilité de
désintégration d’un atome radioactif par unité de temps. Un script Python
donne la courbe suivante :
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4. Vers un modèle de réflexion

De nombreuses autres équations différentielles peuvent être établies de la
même manière, en raisonnant comme nous l’avons fait précédemment :

1 Le modèle de croissance Malthusien en dynamique des populations :
N ′(t) = rN(t), où r ∈ R désigne le taux de croissance de la
population.

2 Le modèle de croissance logistique en dynamique des populations :

N ′(t) = r

(
1− N(t)

K

)
N(t), où r ∈ R désigne le taux de croissance

de la population et K la capacité d’accueil du milieu.

3 Des problèmes concrets de mélanges ou de cuves qui se vident.

Cette démarche nous servira notamment en épidémiologie pour modéliser
des systèmes d’équations différentielles.
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3 Des problèmes concrets de mélanges ou de cuves qui se vident.
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1 Le modèle de croissance Malthusien en dynamique des populations :
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4. Vers un modèle de réflexion

Exemple 1 : Le modèle de Malthus (1798)

Considérons une population que nous supposerons comme un système
fermé : pas de mouvement de population entrant ni sortant. Soit N0 son
effectif initial et N(t) son effectif à l’instant t.

Notons également a (resp. b) le nombre de naissances (resp. de morts)
par unité de temps.

Le modèle de Malthus suppose :

1 qu’à chaque instant t, a et b sont proportionnels à la taille de la
population : il existe α > 0 et β > 0 indépendants de t tels que
a = αN(t) et b = βN(t). α > 0 et β > 0 sont respectivement le taux
de natalité et le taux de mortalité intrinsèques de la population.

2 et que pour tout réel t ≥ 0, a− b est constant entre deux instants
infiniment proches t et t +∆t !
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Exemple 1 : Le modèle de Malthus (1798)
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2 et que pour tout réel t ≥ 0, a− b est constant entre deux instants
infiniment proches t et t +∆t !
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population : il existe α > 0 et β > 0 indépendants de t tels que
a = αN(t) et b = βN(t). α > 0 et β > 0 sont respectivement le taux
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4. Vers un modèle de réflexion

Exemple 1 : Le modèle de Malthus (1798)

L’accroissement relatif de la population entre les instants t et t +∆t est
∆N(t) = N(t +∆t)− N(t) = αN(t)∆t − βN(t)∆t. On a donc :

∆N(t) = (α− β)N(t)∆t

Divisant par ∆t que l’on fait tendre vers 0, on obtient :

N ′(t) = (α− β)N(t)

Posant r = α− β, qui représente le taux de croissance intrinsèque de la
population, nous obtenons finalement :

N ′(t) = rN(t)

Comme N(0) = N0, la solution de cette EDO est : N(t) = N0e
rt .
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4. Vers un modèle de réflexion

Croissance de la population en fonction du signe de r .
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4. Vers un modèle de réflexion

Résumé
1 Nous avons commencé par écrire la variation du nombre d’individus

entre deux instants très proches t et t +∆t :
∆N(t) = N(t +∆t)− N(t).

2 Cette variation est proportionnelle à l’effectif de la population à
l’instant t et à la durée ∆t indépendamment de t : ∆N(t) = r∆t
pour un certain réel r > 0 (taux de croissance intrinsèque de la
population exprimé en ut−1).

3 Divisant par ∆t que l’on fait tendre vers 0 (et en admettant N
dérivable sur R+), nous obtenons la variation instantanée du nombre
d’individus de la population à l’instant t : N ′(t) = rN(t).
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2 Cette variation est proportionnelle à l’effectif de la population à
l’instant t et à la durée ∆t indépendamment de t : ∆N(t) = r∆t
pour un certain réel r > 0 (taux de croissance intrinsèque de la
population exprimé en ut−1).

3 Divisant par ∆t que l’on fait tendre vers 0 (et en admettant N
dérivable sur R+), nous obtenons la variation instantanée du nombre
d’individus de la population à l’instant t : N ′(t) = rN(t).
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Vers un modèle de réflexion

Exemple 2 : Le modèle de Verhülst (1845)

Le modèle de Malthus devient vite irréaliste à long terme : une population
grandissant exponentiellement dans un milieu clos va se retrouver à un
moment ou un autre à court de ressources, et sa croissance va
inexorablement ralentir.

Ce modèle, dit aussi modèle logistique prend en compte ce frein à la
croissance via les hypothèses suivantes :

1 Le taux de natalité intrinsèque α est toujours supposé constant.

2 Le taux de mortalité intrinsèque est supposé augmenter avec la taille
de la population de manière affine : β devient β(N) = β0 + β1N.
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Vers un modèle de réflexion

Exemple 2 : Le modèle de Verhülst (1845)

N ′(t) = (α− β)N(t) se réécrit :

N ′(t) = αN(t)− (β0 + β1N(t))N(t)

soit

N ′(t) = (α− β0)N(t)

[
1− β1

α− β0
N(t)

]
Posons r := α− β0 et K =

α− β0
β1

. On a alors :

N ′(t) = rN(t)

(
1− N(t)

K

)
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Vers un modèle de réflexion

Exemple 2 : Le modèle de Verhülst (1845)

Le coefficient r = α− β0 s’appelle le taux intrinsèque de croissance de la
population.

1 Ce taux est intrinsèque dans le sens où il correspond au taux de
croissance de la population en l’absence de compétition (cf modèle de
Malthus).

2 Le coefficient K s’interprète comme la capacité d’accueil du milieu
(exprimée en nombre d’individus). On peut le comprendre car :

K =
r

β1
=

taux intrinsèque de croissance (en ut−1)

coefficient de mortalité (en ut−1 × effectif −1)
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Vers un modèle de réflexion

Exemple 2 : Le modèle de Verhülst (1845)

On prouve (très bon exercice de terminale) que la solution deN ′(t) = rN(t)

(
1− N(t)

K

)
, t > 0

N(0) = N0

est :

(⋆) N(t) =
KN0

N0 + (K − N0)e−rt
pour t ≥ 0

1 Il est aisé de vérifier que N est strictement croissante si r > 0.

2 Le seul point d’inflexion éventuel de N a pour abscisse
K

2
.
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Vers un modèle de réflexion

Exemple 2 : Le modèle de Verhülst (1845)

Modèle de croissance logistique avec K = 3, N0 = 1 et r > 0
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4. Vers un modèle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Considérons une cuve pleine de 450 litres contenant initialement 30 kg de
sel. On y fait couler de l’eau contenant 1/9 kg de sel par litre, à raison de
9 L/min. Le mélange, maintenu homogène par brassage, s’écoule à raison
de 13,5 L/min. Quelle quantité de sel restera-t-il au bout d’une heure ?
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Vers un modèle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Appelons V (t) (resp. q(t)) le volume d’eau (resp. la quantité de sel) dans
la cuve t minutes après l’instant initial.

Le volume de la cuve diminue de 4,5 L d’eau salée par minute, ainsi
comme la cuve a un volume initial de 450 L, V (t) = 450− 4, 5t.

Considérons deux instants infiniment proches t et t +∆t. Entre t et
t +∆t :

1 La cuve reçoit une quantité de 9× 1/9×∆t = ∆t g de sel

2 En supposant la concentration de sel qui s’échappe de la cuve,

constante sur [t; t +∆t], la cuve perd 13, 5× q(t)

V (t)
∆t g de sel.
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Vers un modèle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

Ainsi, ∆q(t) = q(t +∆t)− q(t) =

(
1− 13, 5q(t)

450− 4, 5t

)
∆t.

Divisant par ∆t que l’on fait tendre vers 0, il vient :

q′(t) = 1− 3q(t)

100− t

C’est une équation de la forme y ′ = a(t)y + b dont la résolution n’est pas
au programme de Terminale. C’eût été le cas si le coefficient a(t) avait été
constant. Mais pas de panique : la méthode d’Euler vient à la rescousse !
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Vers un modèle de réflexion

Exemple 3 : Une cuve qui se vide et se remplit

La fonction q est définie sur [0; 100], mais comme nous souhaitons calculer
q(60), nous allons partager l’intervalle de temps I = [0; 60] en 1000

sous-intervalles. Posons alors h =
60

1000
= 0, 06 (le pas de la méthode).

On définit la suite (qn)n≥0 par :q0 = 30

qn+1 = qn + 0, 06

(
1− 3qn

100− 0, 06n

)
pour tout n ≥ 0

On trouve q60 ≈ 18, 7 g.

La valeur exacte est 18,72 g. Pas mal... Essayez avec un pas plus petit.
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Yannick Le Bastard (LEGTA de l’Hérault) Modélisation mathématique : épisode 1 March 31, 2024 34 / 56



Vers un modèle de réflexion

résumé

Variation instantanée de la quantité = flux entrant - flux sortant
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Vers un modèle de réflexion

A vous de jouer !

1 Un réservoir cubique de 2 m de côté est rempli d’eau à hauteur de 90
cm. Il se vide par l’intermédiaire d’un trou circulaire de 22 mm de
diamètre situé sur sa partie inférieure. La vitesse d’écoulement de
l’eau est de 2, 5

√
h(t) cm/s où h(t) est la hauteur d’eau restant dans

le réservoir au bout de t secondes.
Combien de temps mettra-t-il à se vider ?

2 Un premier réservoir contient 0, 5m3 d’eau pure dans laquelle sont
dissous 40 kg de sel. De l’eau pure coule dans ce réservoir à raison de
3× 10−4m3/s et le mélange, maintenu uniforme par brassage,
s’écoule en même quantité. Le liquide tombe dans un second réservoir
contenant initialement 0, 5m3 d’eau pure et s’écoule de ce dernier en
même quantité. Quelle quantité de sel contiendra ce second réservoir
au bout d’une heure ?
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Épidémiologie : modèles SIS et SIR

Introduction

Les grandes épidémies ont toujours frappé l’humanité : la peste noire a
décimé à de nombreuses reprises le monde occidental et oriental, le
paludisme transmis par les moustiques qui continue de faire des ravages en
Afrique, la tuberculose, la grippe . . .

L’homme a dû apprendre à vivre avec ces maladies et prendre des mesures
prophylactiques pour s’en prévenir, les contrôler et même les guérir.

Bien avant Louis Pasteur, en 1760, le mathématicien Daniel Bernoulli
présente à l’académie des sciences de Paris un mémoire intitulé ”Essai
d’une nouvelle analyse de la mortalité causée par la petite vérole et des
avantages de la prévenir”. Il y est déjà question de vaccination et de ses
bénéfices.
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d’une nouvelle analyse de la mortalité causée par la petite vérole et des
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bénéfices.
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Épidémiologie : modèles SIS et SIR

Modèles compartimentaux

Notre but n’étant pas de dispenser un cours d’épidémiologie, nous nous
contenterons dans ce qui suit de mettre en lumière ce qui est appelé :
modèles compartimentaux.

La population est partitionnée en plusieurs sous-ensembles disjoints :

1 Le modèle SIS possède 2 compartiments : les individus susceptibles
d’être infectés et les individus infectés.

2 Le modèle SIR possède 3 compartiments : les individus susceptibles
d’être infectés, les individus infectés et les individus guéris (recovered).

D’autres modèles plus élaborés existent comme le modèle SEIR, mais nous
ne les aborderons pas dans cet exposé. Ils seront détaillés sur le site :
https://www.lessentiersmathematiques.com
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D’autres modèles plus élaborés existent comme le modèle SEIR, mais nous
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

Considérons une population d’effectif constant N durant notre
observation. Une pathologie affecte des individus de cette population.
On la partitionne alors en deux groupes disjoints :

1 Le groupe S des individus susceptibles d’être infectés (mais qui ne le
sont pas),

2 Le groupe I des individus infectés.

Ainsi, à tout instant t : S(t) + I (t) = N donc :

dS(t)

dt
+

dI (t)

dt
= 0

D’où :
dS(t)

dt
= −dI (t)

dt
(∗)
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

Le modèle SIS fait l’ hypothèse qu’entre deux instants t et t +∆t
infiniment proches :

1 Le nombre d’individus susceptibles diminue d’un facteur β
proportionnel à ∆t et à la proportion d’individus sains dans la
population multipliée par le nombre d’individus infectés.

2 Les individus infectés guérissent avec un taux de guérison γ > 0
proportionnel à ∆t et à la proportion d’individus infectés dans la
population.

Remarque : β et γ ont pour unité ut−1.
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

Nous traduisons ceci par : pour tout t ≥ 0,

I (t +∆t)− I (t) = β
S(t)

N
I (t)∆t − γI (t)∆t

Divisant par ∆t que l’on fait tendre vers 0, il vient :

dI (t)

dt
= β

S(t)

N
I (t)− γI (t)

En vertu de la relation (*) nous en déduisons aussitôt que

dS(t)

dt
= −β

S(t)

N
I (t) + γI (t)
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

Pour éviter de se trâıner le facteur N, on normalise souvent en considérant
pour S(t) et I (t) les proportions d’individus sains (resp. infectés) dans la
population plutôt que leur effectif.

Nous obtenons alors le système d’EDO qui suit :
dS(t)

dt
= −βS(t)I (t) + γI (t) (1)

dI (t)

dt
= βS(t)I (t)− γI (t) (2)

Remarque : β et γ ont-ils toujours pour unité ut−1 ?
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pour S(t) et I (t) les proportions d’individus sains (resp. infectés) dans la
population plutôt que leur effectif.

Nous obtenons alors le système d’EDO qui suit :
dS(t)

dt
= −βS(t)I (t) + γI (t) (1)

dI (t)

dt
= βS(t)I (t)− γI (t) (2)

Remarque : β et γ ont-ils toujours pour unité ut−1 ?
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

Flux d’individus entre les compartiments S et I
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

Comme presque toujours, il est question de réécriture . . .

Rappelons nos deux équations :
dS(t)

dt
= −βS(t)I (t) + γI (t) = I (t)(−βS(t) + γ) (1)

dI (t)

dt
= βS(t)I (t)− γI (t) = I (t)(βS(t)− γ) (2)

Auriez-vous une idée pour vous ramener à une situation connue ?

Car ce doit être un réflexe : mâıtriser un modèle et savoir s’y ramener !
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

Il est encore possible de résoudre explicitement ce système.

En effet : S(t) = 1− I (t).

Reportant ceci dans (2) :
dI (t)

dt
= I (t)(βS(t)− γ), il vient :

dI (t)

dt
= I (t)(β − γ − βI (t)), soit :

dI (t)

dt
= (β − γ)I (t)

(
1− β

β − γ
I (t)

)

Nous reconnaissons le modèle logistique avec r = β − γ et K =
β − γ

β
.
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Il est encore possible de résoudre explicitement ce système.

En effet : S(t) = 1− I (t).

Reportant ceci dans (2) :
dI (t)

dt
= I (t)(βS(t)− γ), il vient :

dI (t)

dt
= I (t)(β − γ − βI (t)), soit :

dI (t)

dt
= (β − γ)I (t)

(
1− β

β − γ
I (t)

)
Nous reconnaissons le modèle logistique avec r = β − γ et K =

β − γ

β
.
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

Posons I (0) = I0 (nombre d’infectés initial), alors :

I (t) =
KI0

I0 + (K − I0)e−rt
=

KI0e
rt

(K − I0) + I0ert

D’où

S(t) =
(K − I0) + I0(1− K )ert

(K − I0) + I0ert

1 Si r = β − γ > 0, alors lim
t→+∞

I (t) = K : l’épidémie devient

endémique.

2 Si r = β − γ < 0, alors lim
t→+∞

I (t) = 0 : l’épidémie s’éteint.
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Épidémiologie : modèles SIS et SIR

Exemple 1 : Modèle SIS

On utilise usuellement l’indicateur R0 =
β

γ
.

R0 > 1 ⇐⇒ r > 0 et R0 < 1 ⇐⇒ r < 0.
Il est appelé nombre de reproduction élémentaire.

Ce modèle s’applique à des pathologies récurrentes pour lesquelles
l’immunité n’est pas acquise définitivement : rhume saisonnier, grippe,
COVID !

Ce n’est pas le cas pour certaines pathologies : tétanos, coqueluche, peste,
pour lesquelles une fois guéri(e)s, nous sommes immunisé(e)s à vie.
Ce fait motive le prochain modèle.
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On utilise usuellement l’indicateur R0 =
β

γ
.

R0 > 1 ⇐⇒ r > 0 et R0 < 1 ⇐⇒ r < 0.
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Épidémiologie : modèles SIS et SIR

Exemple 2 : Modèle SIR

Considérons une population d’effectif constant N durant notre
observation. Une pathologie affecte des individus de cette population.
On la partitionne alors en trois groupes disjoints :

1 Le groupe S des individus susceptibles d’être infectés (mais qui ne le
sont pas),

2 Le groupe I des individus infectés.

3 Le groupe R des individus remis (guéris).

Nous travaillerons comme précédemment avec les proportions d’individus,
si bien qu’à tout instant t : S(t) + I (t) + R(t) = 1 donc :

dS(t)

dt
+

dI (t)

dt
+

dR(t)

dt
= 0
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Épidémiologie : modèles SIS et SIR

Exemple 2 : Modèle SIR

Le modèle SIR fait l’ hypothèse qu’entre deux instants t et t +∆t
infiniment proches :

1 Le nombre d’individus susceptibles diminue d’un facteur β
proportionnel à ∆t et à la proportion d’individus sains dans la
population multipliée par le nombre d’individus infectés.

2 Les individus infectés guérissent avec un taux de guérison γ > 0
proportionnel à ∆t et à la proportion d’individus infectés dans la
population et donc sont définitivement remis.
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Le modèle SIR fait l’ hypothèse qu’entre deux instants t et t +∆t
infiniment proches :

1 Le nombre d’individus susceptibles diminue d’un facteur β
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Épidémiologie : modèles SIS et SIR

Exemple 2 : Modèle SIR

Nous traduisons ceci par :

1 S(t +∆t)− S(t) = −βS(t)I (t)∆t.

2 I (t +∆t)− I (t) = βS(t)I (t)∆t − γI (t)∆t

3 R(t +∆t)− R(t) = γI (t)∆t

Divisant par ∆t que l’on fait tendre vers 0, il vient :
S ′(t) = −βS(t)I (t) (1)

I ′(t) = βS(t)I (t)− γI (t) (2)

R ′(t) = γI (t) (3)
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Épidémiologie : modèles SIS et SIR

Exemple 2 : Modèle SIR

Flux d’individus entre les compartiments S, I et R
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Épidémiologie : modèles SIS et SIR

Exemple 2 : Modèle SIR

Contrairement au cas précédent, le système d’EDO

(S) :


S ′(t) = −βS(t)I (t) (1)

I ′(t) = βS(t)I (t)− γI (t) (2)

R ′(t) = γI (t) (3)

n’a pas de solution explicite.

En revanche, du fait que β, γ > 0,S(t), I (t) ≥ 0, nous obtenons
directement que : S est décroissante et R est croissante.

Le cas de la fonction I est plus complexe et régit la dynamique de
l’épidémie : nous pouvons écrire que

I ′(t) = γI (t)

(
β

γ
S(t)− 1

)
= γI (t)(R0S(t)− 1), où R0 =

β

γ
a déjà été

défini avant.
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l’épidémie : nous pouvons écrire que
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Épidémiologie : modèles SIS et SIR

Exemple 2 : Modèle SIR

1 Si R0S0 < 1, alors I ′(0) < 0 et comme I (t) tend vers 0 quand t tend
vers l’infini (pourquoi ?), I va décroitre.

2 Si R0S0 > 1, alors I ′(0) > 0 et I va croitre. Mais S décroit, donc il
existe un certain instant T > 0 pour lequel R0S(T ) = 1.

Mais alors I ′(T ) = 0 et I atteint un maximum Imax .
Pour t > T , I ′(t) < 0 et I décroit.

L’épidémie a atteint son seuil critique à l’instant T .

Il est aisé de discrétiser le système précédent en regardant l’évolution jour
par jour, pour des paramètres β et γ donnés.
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Épidémiologie : modèles SIS et SIR

Exemple 2 : Modèle SIR

Évolution des proportions des compartiments S (en bleu), I (en rouge) et
R (en vert)
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Conclusion

Il nous resterait beaucoup à dire sur l’interprétation des coefficients β et γ,
du fait de considérer une population d’effectif non constant, etc.

Des documents détaillant ces problématiques seront disponibles bientôt
dans l’onglet DIVERS de mon site :

https://www.lessentiersmathematiques.com
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Conclusion

MERCI DE VOTRE ATTENTION
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