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1 Notion de radioactivité

En 1896, Henri Becquerel découvre que certaines substances émettent spontanément des
rayonnements capables de traverser la matière. Pierre et Marie Curie étudieront notamment
un de ces éléments qui prendra le nom de radium.

La radioactivité est d’origine naturelle. L’intégralité des éléments présents sur Terre, y compris
les noyaux radioactifs, ont été formés :

— dans la phase de nucléosynthèse aux premiers instants de l’univers, pour les éléments
légers (hydrogène et hélium),

— dans les étoiles, pour les éléments jusqu’au fer,
— lors de l’explosion des étoiles, marquant la fin de vie de celles-ci, pour les éléments

au-delà du fer.

La radioactivité est à l’origine de l’apparition de la vie sur Terre. C’est la chaleur qu’elle génère
qui maintient le noyau terrestre externe sous forme liquide, et qui a permis lors des éruptions
volcaniques la formation de l’atmosphère primitive (protection contre les météorites, effet de
serre pour diminuer les écarts thermiques entre le jour et la nuit).
C’est aussi la radioactivité qui entretient la combustion au sein du soleil, par le biais des
réactions thermonucléaires où l’hydrogène est transformé en hélium.
Un échantillon radioactif peut émettre trois types de particules associées à un rayonnement

électromagnétique :
1. Particules α : noyaux d’hélium 4 émis avec une vitesse de 20 000 Km/s, facilement

arrêtés avec une feuille de papier.
2. Particules β : se déclinent en deux sous particules, à savoir :

Les particules β−, des électrons émis a une vitesse de 280 000 km/s, arrêtés par une
feuille d’aluminium.
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Les particules β+, des positrons émis a une vitesse de 280 000 km/s, facilement arrêtés
(dès qu’ils rencontrent de la matière : il y a annihilation !)

3. Rayonnement γ : une onde électromagnétique de λ = 10−4nm. Pour les arrêter il faut
quelques mètres de béton.

Les noyaux stables gardent "indéfiniment" la même composition. En revanche, les noyaux
instables, entre autre radioactifs, se désintègrent (transforment) en émettant spontanément
des particules α ou β souvent accompagnées d’un rayonnement γ.
Sur 350 noyaux naturels, environ 60 sont instables, ainsi que presque tous les noyaux artificiels.

2 Evolution temporelle de la radioactivité

Voici la section qui va particulièrement nous intéresser mathématiquement. Il s’agit, étant
donné un élément radioactif A

ZX d’étudier l’évolution du nombre d’atomes radioactifs restants
(ne s’étant pas désintégrés) en fonction du temps t d’observation.
Nous noterons N0 le nombre initial d’atomes radioactifs de l’élément A

ZX.

N(t) désigne le nombre d’atomes radioactifs du même élément à l’instant t.
Notre temps d’observation entre t = 0 et T est subdivisé en sous-intervalles de temps réguliers

∆t =
T

n
, autrement dit, on observera le nombre d’atomes radioactifs restants de A

ZX aux
instants : 0, ∆t, 2∆t, . . . n∆t = T .
Pendant la durée ∆t, la variation ∆N(t) du nombre d’atomes radioactifs est égale à :

∆N(t) = N(t+ ∆t)−N(t)

Remarquons que pour tout instant t, ∆N(t) < 0.

L’activité moyenne A(t) exprimée en Becquerels (Bq) est le nombre moyen de désintégrations

par seconde : A(t) = −∆N(t)

∆t
. (d’où vient le signe "moins" ?)

Elle est proportionnelle au nombre d’atomes radioactifs restants à l’instant t : A(t) = λN(t),
avec λ constante radioactive qui dépend uniquement du nucléide radioactif considéré (Il s’agit
de la loi de Rutherford et Soddy (1902)) et s’exprime en s−1.
Ainsi, on a :

∆N(t)

∆t
= −λN(t) (∗)

Remarques :

1. La loi de Rutherford-Soddy traduit que la probabilité pour un atome radioactif de se
désintégrer pendant un intervalle de temps ∆t est égale à λ∆t.

2. On parle d’activité "sans mémoire".

Faisant tendre ∆t vers 0 dans (*), on obtient l’équation :

N ′(t) = −λN(t)

Cette équation faisant intervenir une fonctionN et sa dérivéeN ′ est une équation où l’inconnue
est une fonction ! On parle d’équation différentielle.

Quelques valeurs de λ exprimées en s−1 ou jour−1 ou an−1 :
— pour l’uranium : λ = 1, 5× 10−10 an−1

— pour le carbone 14 : λ = 1, 2× 10−4 an−1
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— pour l’iode 131 : λ = 8, 5× 10−2 jour−1

Récapitulons : Pour λ donné, on cherche une fonction N définie ici sur [0; +∞[ telle que :{
N ′(t) = −λN(t)

N(0) = N0

(t ∈ [0; +∞[)

2.1 Modélisation algorithmique

La probabilité qu’un atome d’iode 131 se désintègre par jour est égale 0,0085.
L’unité de temps étant le jour, écrivez un script qui sur 100 jours détermine jour par jour, la
quantité d’iode 131 restante. Tracez la courbe obtenue.
Pour les plus "geek" : simulez ceci avec un petit graphique qui illustre les désintégrations
successives.

2.2 Traitement avec la méthode d’Euler

Rappelons le principe de la méthode d’Euler : Soit f une fonction définie sur un intervalle
I = [a; b] subdivisé en n intervalles [x0;x1], [x1;x2], . . . , [xn−1;xn] que l’on supposera pour

simplifier de même longueur hn =
b− a
n

.
On connaît de plus la valeur initiale f(x0) = f(a) et une relation du type f ′(x) = g(x, f(x))
(relation entre f et sa dérivée f ′).

Pas 1 : On sait calculer f(x0) et f ′(x0). Donnez l’équation de la tangente T0 à la courbe
représentative de f au point A0(x0; f(x0)) : y =
Comme on ne peut pas calculer directement f(x1), on remplace cette valeur par y(x1) calculée
grâce à l’équation de T0. On obtient ainsi un nouveau point A1(x1; y1).

Pas 2 : On fait "comme si" A1(x1, y1) était un point de la courbe représentative de f afin
d’utiliser le lien reliant f ′(x) à f(x). Ceci nous permet de calculer l’équation de la tangente T1
à la courbe représentative de f en A1. On pose alors y2 = y(x2) calculé à partir de l’équation
de T1.

Pas suivants : on réitère le processus effectué précédemment. On obtient ainsi une suite de
points Ai(xi; yi) qui approximent la vraie courbe de f . La relation de récurrence permettant
d’obtenir les coordonnées de tous les points (xi; yi) est la suivante :{

xk+1 = xk + hn

yk+1 = g(xk, yk)(xk+1 − xk) + yk
(0 ≤ k ≤ n− 1)

Ici, N vérifie N ′(t) = −0, 0085N(t) et N(0) = 2500. On restreint l’étude de N à un intervalle
[0;T ] (T > 0) que l’on subdivise en n sous-intervalles [xk;xk+1] (0 ≤ k ≤ n− 1).

1. De quelle nature est la suite (xk) ? Exprimer xk en fonction de x0, k et n.

2. Même question avec (yk).

3. En utilisant la méthode d’Euler, déterminez à l’aide d’un tableur ou d’un logiciel de
votre choix l’allure de la courbe représentative de N sur 100 jours. Comparez-la avec
celle obtenue à la sous-section précédente.
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2.3 Quelques questions

1. La fonction N dont nous avons obtenu l’idée de la courbe représentative est-elle la seule

(unicité) vérifiant notre équation différentielle :

{
N ′(t) = −λN(t)

N(0) = N0

(t ≥ 0)

2. On a parlé tout à l’heure d’activité de désintégration sans mémoire. Comment comprenez-
vous cette phrase ?

3 Pour aller plus loin . . .

Il n’est pas rare qu’un atome radioactif, dit atome-père, se désintégrant donne naissance
à un "atome-fils" lui-même radioactif. Le processus pouvant se répéter un certain nombre de
fois, jusqu’à l’obtention d’un isotope stable, nous avons toute une filiation radiogénique, dont
les constantes λ diffèrent. Les géologues qui souhaitent connaître l’âge de certaines roches ainsi
que leur origine pétrogénétique, ont souvent recours à l’observation d’échantillons contenant
divers éléments en filiation radiogénique (i.e issus d’un même type d’atome radioactif). Nous
le reverrons en exercice.

4 Vers la fonction exponentielle

Les sections précédentes nous ont permis de nous poser les problèmes suivants : existe-
t-il une certaine fonction N proportionnelle à sa dérivée N ′, vérifiant une certaine condition
initiale, et si oui, quelle peut être l’allure de sa courbe ? La condition initiale : donnée de N(0)
est-elle capitale ?
Intéressons-nous au problème suivant : trouver une fonction f dérivable sur R telle que f ′ = f

(f est égale à sa propre dérivée). Remarquons qu’ici, nous n’avons pas spécifié de condition
initiale.

1. Soit λ un réel. Posons g = λf . Prouvez que l’on a aussi g′ = g sur R. Conclure sur le
nombre de solutions de l’équation différentielle f ′ = f .

2. Si f et g sont deux fonctions vérifiant f ′ = f et g′ = g sur R, que vérifie f + g ?

3. On admet l’existence d’une fonction f dérivable sur R vérifiant f ′ = f . Ajoutons-y la
condition initiale f(0) = 1.

a) Soit φ définie sur R par φ(x) = f(x)f(−x). Justifier que φ est constante égale à
1. En déduire que f ne s’annule pas sur R

b) Démontrer que si g est une fonction vérifiant g′ = g et g(0) = 1, alors on a
nécessairement g = f .

c) Conclure.

On appelle fonction exponentielle, et on note exp l’unique fonction f vérifiant l’équation

différentielle :

{
f ′(x) = f(x)

f(0) = 1
(x ∈ R)
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