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1 Notion de radioactivité

En 1896, Henri Becquerel découvre que certaines substances émettent spontanément des
rayonnements capables de traverser la matiére. Pierre et Marie Curie étudieront notamment
un de ces éléments qui prendra le nom de radium.

La radioactivité est d’origine naturelle. L’intégralité des éléments présents sur Terre, y compris
les noyaux radioactifs, ont été formés :
— dans la phase de nucléosynthése aux premiers instants de 'univers, pour les éléments
légers (hydrogéne et hélium),
— dans les étoiles, pour les éléments jusqu’au fer,
— lors de 'explosion des étoiles, marquant la fin de vie de celles-ci, pour les éléments
au-dela du fer.

La radioactivité est & 'origine de I’apparition de la vie sur Terre. C’est la chaleur qu’elle génére
qui maintient le noyau terrestre externe sous forme liquide, et qui a permis lors des éruptions
volcaniques la formation de I'atmosphére primitive (protection contre les météorites, effet de
serre pour diminuer les écarts thermiques entre le jour et la nuit).

C’est aussi la radioactivité qui entretient la combustion au sein du soleil, par le biais des
réactions thermonucléaires ou 'hydrogéne est transformé en hélium.

Un échantillon radioactif peut émettre trois types de particules associées a un rayonnement

électromagnétique :

1. Particules « : noyaux d’hélium 4 émis avec une vitesse de 20 000 Km/s, facilement
arrétés avec une feuille de papier.

2. Particules 3 : se déclinent en deux sous particules, & savoir :
Les particules 87, des électrons émis a une vitesse de 280 000 km /s, arrétés par une
feuille d’aluminium.



Les particules 371, des positrons émis a une vitesse de 280 000 km /s, facilement arrétés
(dés qu'ils rencontrent de la matiére : il y a annihilation!)

3. Rayonnement 7 : une onde électromagnétique de A = 10~*nm. Pour les arréter il faut
quelques métres de béton.

Les noyaux stables gardent "indéfiniment" la méme composition. En revanche, les noyaux
instables, entre autre radioactifs, se désintégrent (transforment) en émettant spontanément
des particules a ou 8 souvent accompagnées d’un rayonnement -y.

Sur 350 noyaux naturels, environ 60 sont instables, ainsi que presque tous les noyaux artificiels.

2 Evolution temporelle de la radioactivité

Voici la section qui va particuliérement nous intéresser mathématiquement. Il s’agit, étant
donné un élément radioactif Q‘X d’étudier I’évolution du nombre d’atomes radioactifs restants
(ne s’étant pas désintégrés) en fonction du temps ¢ d’observation.

Nous noterons Ny le nombre initial d’atomes radioactifs de 1’élément ‘gX .

N(t) désigne le nombre d’atomes radioactifs du méme élément a l'instant ¢.
Notre temps d’observation entre ¢ = 0 et 1" est subdivisé en sous-intervalles de temps réguliers

T

At = —, autrement dit, on observera le nombre d’atomes radioactifs restants de ’é‘X aux
n

instants : 0, At, 2At,...nAt="T.

Pendant la durée At, la variation AN (t) du nombre d’atomes radioactifs est égale a :
AN(t) = N(t+ At) — N(t)

Remarquons que pour tout instant ¢, AN(¢) < 0.

L’activité moyenne A(t) exprimée en Becquerels (Bq) est le nombre moyen de désintégrations
AN(t)

At

Elle est proportionnelle au nombre d’atomes radioactifs restants a 'instant ¢ : A(t) = AN (t),

avec A constante radioactive qui dépend uniquement du nucléide radioactif considéré (Il s’agit

de la loi de Rutherford et Soddy (1902)) et s’exprime en s *.

Ainsi, on a :

par seconde : A(t) = . (d’ou vient le signe "moins" ?7)

AN(t)
At

= “AN() (%)
Remarques :

1. La loi de Rutherford-Soddy traduit que la probabilité pour un atome radioactif de se
désintégrer pendant un intervalle de temps At est égale & AAtL.

2. On parle d’activité "sans mémoire".

Faisant tendre At vers 0 dans (*), on obtient 1'équation :

N'(t) = =AN(t)

Cette équation faisant intervenir une fonction IV et sa dérivée N’ est une équation o I'inconnue
est une fonction! On parle d’équation différentielle.

Quelques valeurs de A exprimées en s~ ou jour ™t ou an~! :

— pour 'uranium : A = 1,5 x 10710 an™!

— pour le carbone 14 : A =1,2 x 10~% an™!



— pour l'iode 131 : A = 8,5 x 1072 jour ™!

Récapitulons : Pour A donné, on cherche une fonction N définie ici sur [0; 400 telle que :

(t € [0;+00])

N'(t) = —AN(t)
N(0) = N,

2.1 Modélisation algorithmique

La probabilité qu'un atome d’iode 131 se désintégre par jour est égale 0,0085.

L’unité de temps étant le jour, écrivez un script qui sur 100 jours détermine jour par jour, la
quantité d’iode 131 restante. Tracez la courbe obtenue.

Pour les plus "geek" : simulez ceci avec un petit graphique qui illustre les désintégrations
successives.

2.2 Traitement avec la méthode d’Euler

Rappelons le principe de la méthode d’Euler : Soit f une fonction définie sur un intervalle
I = [a;b] subdivisé en n intervalles [zo;x1], [z1;22],...,[Tn—1;2Zn] que I'on supposera pour
—a

simplifier de méme longueur h,, =

n
On connait de plus la valeur initiale f(z9) = f(a) et une relation du type f'(z) = g(z, f(x))
(relation entre f et sa dérivée f7).

Pas 1 : On sait calculer f(xo) et f/(x¢). Donnez I’équation de la tangente Tp a la courbe
représentative de f au point Ag(xo; f(xo)) 1 y =

Comme on ne peut pas calculer directement f(z;), on remplace cette valeur par y(z1) calculée
grace a I’équation de Tp. On obtient ainsi un nouveau point Aj(x1;y1).

Pas 2 : On fait "comme si" A;j(x1,y1) était un point de la courbe représentative de f afin
d’utiliser le lien reliant f’(x) & f(z). Ceci nous permet de calculer I’équation de la tangente T}
a la courbe représentative de f en Aj. On pose alors yo = y(z2) calculé a partir de I’équation
de Tl.

Pas suivants : on réitére le processus effectué précédemment. On obtient ainsi une suite de
points A;(z;;y;) qui approximent la vraie courbe de f. La relation de récurrence permettant
d’obtenir les coordonnées de tous les points (z;;y;) est la suivante :

0<k<n-1)
Ykt1 = (T, Yr) (Ths1 — T) + U

{ Th+1 :flfk‘i‘hn

Ici, N vérifie N'(t) = —0,0085N (t) et N(0) = 2500. On restreint I’étude de N a un intervalle
[0;T] (T > 0) que I'on subdivise en n sous-intervalles [zy; zx41] (0 <k <mn —1).

1. De quelle nature est la suite (zj)? Exprimer xj en fonction de zg, k et n.
2. Meéme question avec (yi).
3.

En utilisant la méthode d’Euler, déterminez & ’aide d’un tableur ou d’un logiciel de
votre choix 'allure de la courbe représentative de N sur 100 jours. Comparez-la avec
celle obtenue & la sous-section précédente.



2.3 Quelques questions
1. La fonction N dont nous avons obtenu I’'idée de la courbe représentative est-elle la seule
N'(t) = =AN(t)
N(0) = Ny
2. On a parlé tout a ’heure d’activité de désintégration sans mémoire. Comment comprenez-
vous cette phrase?

(unicité) vérifiant notre équation différentielle : { (t>0)

3 Pour aller plus loin ...

Il n’est pas rare qu'un atome radioactif, dit atome-pére, se désintégrant donne naissance
a un "atome-fils" lui-méme radioactif. Le processus pouvant se répéter un certain nombre de
fois, jusqu’a 'obtention d’un isotope stable, nous avons toute une filiation radiogénique, dont
les constantes A différent. Les géologues qui souhaitent connaitre I’Age de certaines roches ainsi
que leur origine pétrogénétique, ont souvent recours a l’observation d’échantillons contenant
divers éléments en filiation radiogénique (i.e issus d’un méme type d’atome radioactif). Nous
le reverrons en exercice.

4 Vers la fonction exponentielle

Les sections précédentes nous ont permis de nous poser les problémes suivants : existe-
t-il une certaine fonction N proportionnelle & sa dérivée N', vérifiant une certaine condition
initiale, et si oui, quelle peut étre 1'allure de sa courbe 7 La condition initiale : donnée de N (0)
est-elle capitale ?

Intéressons-nous au probléme suivant : trouver une fonction f dérivable sur R telle que f’ = f

(f est égale a sa propre dérivée). Remarquons qu’ici, nous n’avons pas spécifié de condition
initiale.
1. Soit A un réel. Posons g = Af. Prouvez que 1'on a aussi ¢’ = g sur R. Conclure sur le
nombre de solutions de ’équation différentielle f/ = f.

2. Si f et g sont deux fonctions vérifiant f' = f et ¢’ = g sur R, que vérifie f + g7

3. On admet Dexistence d’une fonction f dérivable sur R vérifiant f' = f. Ajoutons-y la
condition initiale f(0) = 1.
a) Soit ¢ définie sur R par ¢(x) = f(z)f(—x). Justifier que ¢ est constante égale a
1. En déduire que f ne s’annule pas sur R
b) Démontrer que si g est une fonction vérifiant ¢’ = g et g(0) = 1, alors on a
nécessairement g = f.
c¢) Conclure.

On appelle fonction exponentielle, et on note exp 'unique fonction f vérifiant I’équation
f(x) = f(z)

=1 EH

différentielle : {
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