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1 Définitions - Divers exemples de suites

Définition 1-1 : Une suite réelle est une application u définie de N dans R. On note
classiquement (un)n∈N cette suite et un est appelé le terme d’indice n de la suite u.
u est parfois définie à partir d’un certain rang N et nous noterons u = (un)n≥N .

On note un le terme d’indice n de la suite u, mais on doit bien le comprendre comme u(n) :
l’image de l’entier n par l’application u. La notation par indice est caractéristique des suites.

Exemple 1-2 : On définit les suites u et v par :

1. pour tout entier naturel n, un = 2n,

2. v0 = 1 et pour tout entier naturel n, vn+1 = 2vn.

Nous affirmons que les suites u et v sont les mêmes !

— La suite u est clairement celle des puissances entières de 2 : 1, 2, 4, 8, 16, . . .On peut
directement calculer un en remplaçant l’indice n par la valeur souhaitée : on dit que u
est définie de manière explicite.

— En revanche, les termes de la suite v sont définis "de proche en proche". Le calcul du
terme vn nécessite la connaissance du terme précédent vn−1, et bien entendu du terme
initial v0. On dit que v est définie par récurrence.
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Exercice flash 1 : faire un dessin modélisant le calcul des vn

De manière heuristique : u0 = 20 = 1 = v0. Puis, pour "passer de" v0 à vn, on multiplie
consécutivement v0 n fois de suite par 2 , d’où vn = v0 × 2n = 2n = un. Nous justifierons
correctement cette idée dans la section consacrée au raisonnement par récurrence.

Définition 1-3 : On peut définir une suite u = (un)n∈N :
1. de manière explicite, par une relation du type un = f(n), où f est très souvent une

fonction réelle de la variable réelle définie sur (au moins) R+,
2. par récurrence (d’ordre 1), par la donnée d’un terme de la suite, souvent le terme

initial u0 et d’une relation du type un+1 = f(un) ou un+1 = f(n, un).

Remarque 1-4 : Les suites définies par récurrence sont truffées de pièges : il faut en effet
vérifier que le terme un existe bien quelle que soit la valeur de l’indice n. Par exemple, la suite
définie par u0 = 4 et pour tout entier naturel n par un+1 =

√
−3 + un n’a de sens que pour

n = 0 et n = 1, mais pas au-delà.
Enfin, il existe des suites définies par récurrence d’ordre supérieur à 1 : le calcul de un néces-
site la connaissance de plus d’un terme le précédant. Un exemple fondamental et non moins
classique est la suite de Fibonacci, définie par u0 = 0, u1 = 1, et pour tout entier naturel n
supérieur ou égal à 2 par la relation un = un−1 + un−2. On parle de suite récurrente (linéaire)
d’ordre 2.

Exemples 1-5 : Calculez pour chacune des suites données les termes u0 à u3. On admet que
les suites définies par récurrence sont parfaitement licites i.e un existe quel que soit l’entier
naturel n.

1. un = 2n2 − 3n+ 1

2. un = 1 +
1

n+ 1

3. u0 = 1 et un+1 = 1 +
1

un
4. u0 = 1 et un+1 = 2un + n2

Réponses :
1. u0 = 1, u1 = 0, u2 = 3, u3 = 10

2. u0 = 2, u1 =
3

2
, u2 =

4

3
, u3 =

5

4

3. u0 = 1, u1 = 2, u2 =
3

2
, u3 =

5

3
4. u0 = 1, u1 = 2, u2 = 5, u3 = 14

Quiz 1-6 : éventuellement plusieurs réponsse exactes.
1. Soit u la suite définie par récurrence par u0 = 2 et pour tout entier naturel n par
un+1 − un = 3. Alors :
(a) un = 3n− 2 (b) un = 2 + 3n (c) u10 = 32 (d) u34 = 104

2. Soit u la suite définie par récurrence par u0 = 2 et pour tout entier naturel n par
un+1 = 5un. Alors :
(a) un = 5n+ 2 (b) un = 2× 5n (c) u10 = 52 (d) u3 = 250
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3. Une suite réelle dont la différence entre deux termes consécutifs est constante, est une
suite :
(a) géométrique (b) arithmétique (c) autre.

4. Si (un)n∈N est une suite géométrique de raison q et si (vn)n∈N est une suite géométrique
de raison q′, alors :
(a) (un+ vn)n∈N est une suite géométrique de raison q+ q′ (b) (un+ vn)n∈N est une
suite géométrique de raison qq′ (c) (unvn)n∈N est une suite géométrique de raison
qq′ (d) (unvn)n∈N est une suite géométrique de raison q/q′

Réponses :

1. (b), (c) et (d)

2. (b) et (d)

3. (b)

4. (c)

Représentation des suites réelles : Se représenter une situation, même de manière in-
complète ou imparfaite, est déjà un premier pas vers la compréhension. En Mathématiques, la
rigueur et l’intuition sont intimement liées, et laisser la part belle à l’une plutôt qu’à l’autre,
est une malheureuse rupture d’équilibre.
Mais, bonne nouvelle, elles sont totalement complémentaires et non opposées ! Aussi, tra-
vailler son intuition empêche la stérilité résultant d’un excès de rigueur. Et cette dernière
apporte le crédit nécessaire à nos idées parfois foisonnantes dans tous les sens.

On peut représenter les termes d’une suite comme un nuage de points de coordonnées (n, un)
ou sur un axe horizontal.

Figure 1 – Nuage de points sur une courbe et sur un axe

Les termes d’une suite définie par récurrence se représentent sur l’axe des abscisses :
�� ��VIDEO 0 .
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2 Les fondamentaux

2.1 Majoration - minoration - sens de variation

Les définitions qui suivent sont essentielles à connaître et à savoir se représenter graphiquement.

Définition 2-1-1 : Soit u = (un)n∈N une suite réelle. Alors u est :
1. majorée (resp.minorée) s’il existe un réel M (resp. un réel m) tel que pour tout entier

naturel n : un ≤M (resp. un ≥ m).
2. bornée si u est majorée et minorée i.e s’il existe un réel M > 0 tel que pour tout

entier naturel n : |un| ≤M .
3. strictement croissante (resp. strictement décroissante) si pour tout entier naturel
n : un+1 > un (resp. un+1 < un).

4. monotone (resp. strictement monotone) si u est croissante ou décroissante (resp. stric-
tement croissante ou strictement décroissante).

Exercice flash 2 : faire un dessin modélisant chacune des situations

Remarque 2-1-2 : Très souvent, nous le verrons un peu plus loin, nous nous intéresserons
aux propriétés asymptotiques des suites, i.e vraies à partir d’un certain rang (apcr).
Ce sera le cas notamment du sens de variation d’une suite ou de son signe.

Remarque 2-1-3 : Les définitions précédentes peuvent se formaliser mathématiquement à
l’aide de quantificateurs. Ceci aide à comprendre une formulation du type : "il existe un réel M
tel que pour tout entier naturel n . . .", en aucun cas synonyme de "pour tout entier naturel
n, il existe un réel M tel que . . .". Ceci est très important à comprendre.
Par ailleurs, un majorant ou un minorant d’une certaine suite u :

— d’une, ne dépendent PAS de n,
— et de deux, ne sont pas uniques : Si M majore u, alors tous les M ′ supérieurs à M

majorent aussi u.

Exemples 2-1-4 : De l’importance de cerner rapidement les propriétés d’une suite (quand
cela est possible !). C’est le cas avec les exemples qui suivent :

1. La suite de terme général un = n2 est strictement croissante, minorée, mais non majo-
rée.

2. la suite de terme général un = −n+ sinn est décroissante, majorée mais non minorée.
3. La suite de terme général un = (−1)n n’est ni croissante, ni décroissante, et bornée.
4. La suite de terme général un = (−2)n n’est ni croissante, ni décroissante, ni majorée,

ni minorée.

Pour ce faire, une propriété très pratique nous permet de déterminer le comportement d’une
suite u définie explicitement :

Théorème 2-1-5 : Soit f une fonction définie sur D = [0;+∞[ et u la suite définie pour
tout entier naturel n par un = f(n). Alors :

1. u est majorée (resp. minorée, resp. bornée) si f est majorée (resp. minorée, resp. bornée)
sur D.

2. u est croissante (resp. décroissante) si f est croissante (resp. décroissante) sur D.

B La démonstration est immédiate vu que u est la restriction de f à N.

4



Remarque 2-1-6 : † † † Le théorème 1-2-1-5 ne concerne que les suites définies de manière
explicite et s’avère totalement faux pour les suites définies par récurrence comme nous le
verrons à la section 1.3. Vous pouvez faire ici l’indispensable exercice 0.

�� ��VIDEO 1

Exercice flash 3 : Construire les cinq premiers termes de la suite u définie sur N par un = f(n)
ainsi que ceux de la suite v définie par v0 = 2 et pour tout entier naturel n par vn+1 = f(vn),

où f(x) =
2

x+ 1
. On reportera les termes de v sur l’axe des abscisses.

Rappels : Nous rappelons quelques résultats fondamentaux sur les suites arithmétiques et
géométriques vues en classe de première.
Suites arithmétiques :

1. Une suite u est appelée suite arithmétique s’il existe un réel r tel que pour tout
entier naturel n : un+1 − un = r. r est appelée la raison de la suite.

2. Soit u une suite arithmétique de raison r : u est strictement croissante (resp. strictement
décroissante) si et seulement si r > 0 (resp. r < 0).

3. Soit u une suite arithmétique de raison r et de premier terme u0. Alors pour tout entier
naturel n : un = u0 + rn. La réciproque est vraie : ainsi les suites arithmétiques sont
les suites u de terme général un = an+ b.

4. La somme S de termes consécutifs d’une suite arithmétique est égale à :

S = (nombre de termes)× premier terme + dernier terme
2

Suites géométriques :

1. Une suite u est appelée suite géométrique s’il existe un réel q tel que pour tout entier
naturel n : un+1 = qun. q est appelée la raison de la suite.

2. Soit u une suite géométrique de raison q et de premier terme u0. Alors pour tout entier
naturel n : un = u0× qn. La réciproque est vraie : ainsi les suites géométriques sont les
suites u de terme général un = b× an.

3. Soit u une suite géométrique de premier terme u0 > 0 et de raison q : u est strictement
croissante (resp. strictement décroissante) si et seulement si q > 1 (resp. 0 < q < 1).
Nous laissons le lecteur traduire dans le cas où u0 < 0.

4. La somme S de termes consécutifs d’une suite géométrique de raison q 6= 1 est égale à :

S = (premier terme)× 1− qnombre de termes

1− q

Exemple 2-1-7 : On lance une balle dans un tube en plexiglas d’une hauteur de 10 mètres.
Elle rebondit chaque fois aux 2/3 de sa hauteur précédente. On considère qu’elle est immobile
si la hauteur de son rebond est inférieure à 1 mm. Calculez la distance parcourue par la balle
à 10−3 près et le nombre de rebonds qu’elle aura effectué.

Réponse : Soit un la hauteur de la balle et dn la distance parcourue (exprimée en mètres)
après n rebonds.
Avant de donner une solution théorique, tentons une approche informatique. Bien sûr, un petit
soupçon de mathématiques sera nécessaire afin de justifier le bien-fondé du script !
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# la fonction qui compte le nombre de rebonds
def rebonds(H): #H est la hauteur initiale de la balle en mm

r = 0 #r est le nombre de rebonds initial
while H > 1 :

5 H = (2/3)*H #rebond aux 2/3 de la hauteur precedente
r = r + 1 #raccourci : r += 1

return r - 1 #le dernier r pour lequel H > 1 : r-1 (decalage !)

# la fonction qui calcule la distance parcourue
10 def distance(H):

d = H #la balle tombe d'une hauteur H la premiere fois
while H > 1 :

H = (2/3)*H #raccourci : H /= (2/3)
d = d + 2*H #raccourci : d += 2*H

15 return d - 2*H #Attention au decalage

#Programme principal
H = float(input("Hauteur initiale de la balle en mm ? ")) #H = 10000 ici
print("La balle a fait ",rebonds(H), "rebonds")

20 print("La balle a parcouru ", round(distance(H)/1000,3), "m") #0,001 pres

On trouve 22 rebonds pour une distance parcourue de 49,995 m. Résolvons donc de manière
théorique le problème.
Par hypothèse u0 = 10 et pour tout entier natutel n, un+1 =

2
3un. Ainsi, (un)n∈N est une suite

géométrique de raison q = 2
3 . On a donc : un = 10

(
2

3

)n
.

Comme la balle tombe d’abord d’une hauteur initiale de 10 m, on a dn = u0 +
n∑
k=1

2uk i.e

dn = 10 + 2× 20

3

1−
(
2

3

)n
1− 2

3

, soit dn = 10 + 40

(
1−

(
2

3

)n)
.

Il reste à trouver la valeur de n, correspondant au nombre de rebonds effectués par la balle.
La suite u est strictement décroissante : sa raison est comprise strictement entre 0 et 1 et son
premier terme est strictement positif. SiN désigne le premier entier naturel tel que uN ≤ 0, 001,
alors n = N − 1.
En début d’année, avant que le logarithme népérien soit abordé, on peut se contenter de
programmer la suite u et de déterminer le dernier entier naturel n tel que un > 0, 001. Sinon,

n =

⌊
ln(0, 0001)

ln(2/3)

⌋
= 22 puis d22 ≈ 49, 995 m.

Vous pouvez faire ici les exercices 1 à 4.

2.2 Notion de valeur d’adhérence (Hors-programme)

La notion de valeur d’adhérence, qui n’est pas au programme du secondaire, est cependant
très utile pour aborder la notion de limite, qui elle, l’est totalement ! Nous la présenterons donc
de manière heuristique, sans définition précise, à travers plusieurs exemples à bien connaître,
et la garderons bien au chaud dans un petit coin de notre tête pour la seconde partie de cet
ouvrage dédiée aux mathématiques enseignées au niveau L1.
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Exemple 2-2-1 : Considérons la suite u de terme général un = (−1)n.

De manière évidente : un =

{
−1 si n est impair
1 si n est pair

Tous les termes d’indice pair de u sont égaux à 1 et tous les termes d’indice impair de u sont
égaux à −1. On peut écrire que pour tout entier naturel n, u2n = 1 et u2n+1 = −1.
Dans un certain sens, une infinité de termes de la suite u s’accumulent "autour de" 1 et de
−1, en fait exactement en 1 et −1 dans le cas présent.

Exemple 2-2-2 : Considérons la suite u de terme général un = sinn. La fonction sinus est
définie sur R, 2π-périodique et prend pour valeurs tous les réels de [−1; 1].
Qu’en-est-il si nous restreignons l’ensemble de définition de la fonction sinus à N ? Il semble
que les termes un puissent s’approcher de n’importe quelle valeur y ∈ [−1; 1].

Figure 2 – Nuage de points

Et cette impression se vérifie ! Nous prouverons dans la partie 2 de cette ouvrage que les termes
de la suite u s’accumulent autour de n’importe quelle valeur y de [−1; 1]. Plus précisément, si
l’on se donne une "bande de sécurité" [y− ε; y+ ε] autour d’un réel y ∈ [−1; 1], cette dernière
contient une infinité de termes un, aussi petit ε soit-il ! Nous dirons que tout y ∈ [−1; 1] est
une valeur d’adhérence de la suite u i.e que l’ensemble des valeurs d’adhérence de la suite
u est l’intervalle [−1; 1].

Exemple 2-2-3 : La suite u de terme général un = n n’a pas de valeur d’adhérence. En

revanche, la suite v de terme général vn =
1

n
si n est impair et vn = n si n est pair admet une

unique valeur d’adhérence : 0.

Exercice flash 4 : faites un graphique

Pour résumer, si une infinité de termes un de la suite u "s’accumulent" autour d’une valeur
réelle a, on dit que a est une valeur d’adhérence de u. Un cas très important où cette valeur
d’adhérence est unique est abordée dans la section suivante.

2.3 Notion de limite

Intéressons-nous à la suite u définie sur N∗ par un = 2+
1

n2
. Nous allons étudier le comporte-

ment asymptotique de u, c’est-à-dire les valeurs un prises par u lorsque n devient grand. Nous
pouvons déjà commencer par calculer les premiers termes à 10−3 près :
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n 1 2 3 4 5 6 7 8 9

un 3 2, 25 2, 111 2, 062 2, 04 2, 028 2, 02 2, 016 2, 012

Il semble que plus n grandisse, plus les termes un se rapprochent de ` = 2 (en décroissant
strictement).

Il en va de même pour la suite v définie sur N∗ par vn = 2 +
(−1)n

n
dont les termes vn se

rapprochent de ` = 2 quand n devient grand, mais en oscillant de plus en plus faiblement
autour de 2.

n 1 2 3 4 5 6 7 8 9

un 1 2, 5 1, 667 2, 25 1, 8 2, 167 1, 86 2, 13 1, 89

On peut formaliser l’intuition précédente en "coinçant" d’aussi près que l’on veut la valeur
` autour de laquelle tous les termes de la suite u, sauf un nombre fini d’entre eux, semblent
s’accumuler.

Définition 2-3-1 (limite finie) : Soit u une suite réelle. On dit que le réel ` est limite de
la suite u si pour tout intervalle ouvert ]a; b[ contentant ` il existe un rang N à partir duquel
tous les un appartiennent à ]a; b[.
Sans perte de généralité (réfléchissez bien pourquoi), on peut supposer que l’intervalle ]a; b[
est de la forme ]`− ε; `+ ε[ (ε > 0). La définition précédente s’écrit alors :

Le réel ` est limite de la suite u si pour tout ε > 0, il existe un rang N à partir duquel tous
les un appartiennent à ]`− ε; `+ ε[. On note ` = lim

n→+∞
un .

La définition précédente dit que si l’on se donne un petit intervalle ouvert centré en `, tous les
termes de la suite, sauf un nombre fini d’entre eux, sont compris dans cet intervalle. On peut
réduire la longueur de cet intervalle autant que voulu, ce qui a pour effet de générer des rangs
N de plus en plus grands.

Dessin et animation Geogebra :
�� ��VIDEO 2 a

Théorème 2-3-2 : Si une suite réelle u a pour limite `, cette dernière est unique.
Démonstration : Supposons que la suite u possède deux limites ` et `′ distinctes. Alors
ε = |`− `′| > 0. D’après l’inégalité triangulaire, on a pour tout entier naturel n :
|`− `′| ≤ |`− un|+ |un − `′|.
Comme ` = lim

n→+∞
un, alors il existe un rang N tel que pour tout entier naturel n ≥ N , on a

|un − `| <
ε

2
.

Comme `′ = lim
n→+∞

un, alors il existe un rang N ′ tel que pour tout entier naturel n ≥ N ′, on

a |un − `′| <
ε

2
.

Mais alors :
Pour tout entier naturel n ≥ max (N,N ′) : ε = |` − `′| ≤ |` − un| + |un − `′|<2 × ε

2 = ε.
Contradiction !
Ainsi, la limite d’une suite, si elle existe, est unique. �

On peut maintenant parler de LA limite d’une suite u.

Définition et remarque 2-3-3 : Si une suite u a pour limite réelle `, on dit que u converge
vers ` ou que (un)n∈N tend vers ` quand n tend vers +∞.
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Pour rebondir sur le paragraphe concernant les valeurs d’adhérence, si une suite u a une limite
finie `, cette dernière est une valeur d’adhérence de u et c’est la seule. En effet, la définition
de la limite d’une suite assure qu’une fois une précision ε fixée, "tous les termes de u, sauf
un nombre fini, s’accumulent autour de `" à ε près. Les un de rapprochent donc aussi
près de ` que l’on souhaite, pourvu que n soit suffisamment grand.
† † † Une suite u peut avoir une unique valeur d’adhérence sans pour autant converger vers
cette dernière : c.f le contre-exemple 2-2-3.

Figure 3 – Suite convergente

Exemples et contre-exemples 2-3-4 :

1. Les suites de terme général un =
1

n
, n ≥ 1 et vn =

1√
n

convergent vers 0.

2. La suite de terme général wn = (−1)n n’a pas de limite.

3. La suite de terme général zn = sinn n’a pas de limite.

Démonstration : Au niveau de la Terminale Maths complémentaires ou même spécialité, on

peut se contenter d’admettre les résultats du 1. : plus n grandit, plus
1

n
se rapproche de 0.

Il en est de même pour
1√
n
. Ceci dit, revenir à la définition de la limite ne pose pas trop de

problème. Nous conseillons au lecteur de faire la démarche.
En revanche nous allons démontrer le point 2., et quitte à s’envoler dans l’abstraction et
admettre provisoirement un résultat théorique, nous traiterons même le cas du point 3 (exercice
5).
Supposons par l’absurde que la suite de terme général (−1)n admette une limite ` ∈ R. En
choisissant ε =

1

2
, on peut trouver un entier naturel N tel que si n est supérieur ou égal à N ,

alors |(−1)n − `| < 1

2
. Donc :

— Pour tous les entiers naturels n impairs supérieurs ou égaux à N , on a | − 1 − `| =
|1 + `| < 1

2
. D’où −3

2
< ` < −1

2
.
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— Pour tous les entiers naturels n pairs supérieurs ou égaux à N , on a |1− `| < 1

2
. D’où

1

2
< ` <

3

2
.

La contradiction éclate aussitôt !
Nous en concluons donc que la suite w n’a pas de limite, ce qui était déjà intuitivement évident
d’un point de vue graphique. �

Propriété 2-3-5 (bornitude) : Toute suite convergente est bornée.

Démonstration : On rappelle que ||a| − |b|| ≤ |a− b|.
Cela dit, soit u une suite convergente de limite `. Alors en prenant par exemple ε = 1, il existe
un rang N tel que pour tout entier naturel n ≥ N , |un − `| < 1.
Tenant compte du rappel, on a pour tout entier naturel n ≥ N : |un| < |`|+ 1.
Donc pour tout entier naturel n : |un| ≤ max(|u0|, |u1|, . . . , |uN−1|, |`| + 1). Donc u est
bornée. �

Propriété 2-3-6 (signe des termes) : Soit u une suite convergente de limite réelle `. Si
` > 0 (resp. si ` < 0), alors à partir d’un certain rang, tous les un sont strictement positifs
(resp. strictement négatifs).

Démonstration : On ne traite que le cas ` > 0 : donc on peut trouver un réel strictement
positif ε tel que `− ε > 0 (faire un dessin). Pour cet ε, il existe un rang N à partir duquel tous
les un appartiennent à ]`− ε; `+ ε[. Donc si n ≥ N, un > `− ε > 0. �

† † † les termes un d’une suite convergente u peuvent être tous strictement positifs (ou stric-
tement négatifs) sans que la limite le soit. Un contre-exemple classique est la suite u définie

pour tout entier naturel n non nul par un =
1

n
: ∀n ∈ N∗ un > 0 mais lim

n→+∞
un = 0.

�� ��Les inégalités strictes se transforment en inégalités larges à la limite

.

Définition 2-3-7 (limite infinie) : Soit u une suite réelle. On dit que la suite u a pour
limite +∞ (resp. −∞) si pour tout réel strictement positif A, il existe un rang N à partir
duquel tous les un sont supérieurs à A (resp. inférieurs à −A).

Dessin et animation Geogebra :
�� ��VIDEO 2 b

Autrement dit, si u tend vers +∞, la suite u "n’a pas de plafond" : quelle que soit le réel
A > 0 que l’on se donne, aussi grand soit-il, nous sommes certains qu’à partir d’un certain
rang, tous les termes de la suite vont dépasser A.

Propriété 2-3-8 : Limites usuelles (début d’année).

1. Les suites de terme général nk (k ∈ N∗), en, lnn, qn (q > 1) tendent vers +∞.

2. Les suites de terme général
1

n
,
1

n2
,
1

nk
(k ∈ N∗),

1√
n
,

1

lnn
, tendent vers 0.
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Figure 4 – Suite divergente vers +∞

Résumons les situations et le vocabulaire associé :

Convergence Divergence
u a une limite finie OUI NON
u a une limite infinie NON OUI
u n’a pas de limite NON OUI

2.4 Opérations sur les limites

La plupart des suites que nous rencontrons en pratique ne sont pas des "suites de référence",
mais peuvent s’interpréter comme la somme, le produit, l’inverse, le quotient, la composée de
telles suites. Il est donc important de pouvoir manipuler ces expressions.

Soient u et v deux suites réelles, `, `′ ∈ R et k ∈ R. On suppose dans tout ce paragraphe que
les limites lim

n→+∞
un et lim

n→+∞
vn EXISTENT.

Dans les tableaux qui vont suivre, le symbole ? ? ne signifie pas que la limite n’existe pas,
mais que nous ne pouvons pas conclure en toute généralité. Nous devons donc effectuer un
traitement au cas par cas. On parle dans ce cas d’indétermination ou de forme indéterminée.

Somme et limites

lim
n→+∞

un ` ` ou +∞ ` ou −∞ +∞
lim

n→+∞
vn `′ +∞ −∞ −∞

lim
n→+∞

(un + vn) `+ `′ +∞ −∞ ? ?

Explicitons le cas de la forme indéterminée +∞−∞ :
— On peut obtenir n’importe quel réel ` en posant un = n+` et vn = −n : lim

n→+∞
un = +∞,

lim
n→+∞

vn = −∞, mais lim
n→+∞

(un + vn) = `.

11



— On peut obtenir ±∞ en posant un = 2n et vn = −n : lim
n→+∞

un = +∞, lim
n→+∞

vn = −∞,

mais lim
n→+∞

(un + vn) = +∞.

— On peut ne pas obtenir de limite en posant un = n + (−1)n et vn = −n : lim
n→+∞

un =

+∞, lim
n→+∞

vn = −∞, mais (un + vn) = ((−1)n) n’a pas de limite.

Produit et limites

lim
n→+∞

un ` 6= 0 ` 6= 0 ∞
lim

n→+∞
vn `′ ∞ 0

lim
n→+∞

unvn ``′ ∞ ? ?

Explicitons le cas de la forme indéterminée ∞× 0 :

— On peut obtenir n’importe quel réel ` en posant un =
`

n
et vn = n : lim

n→+∞
un = 0,

lim
n→+∞

vn = +∞, mais lim
n→+∞

unvn = `.
—
— On peut obtenir ±∞ en posant un =

1

n
et vn = n2 : lim

n→+∞
un = 0, lim

n→+∞
vn = +∞,

mais lim
n→+∞

unvn = +∞.

— On peut ne pas obtenir de limite en posant un =
(−1)n

n
et vn = n : lim

n→+∞
un = 0,

lim
n→+∞

vn = +∞, mais (unvn) = ((−1)n) n’a pas de limite.
Remarquons que le produit d’une constante réelle k par le terme général un d’une suite ne
pose aucun problème : si lim

n→+∞
un = `, alors lim

n→+∞
kun = k`.

Si k 6= 0 et si la limite de u est infinie, il s’agit d’appliquer la règle des signes. Et si k = 0 ? ? ?
Nous n’osons pas insulter l’intelligence du lecteur avec ce cas !

Inverse et limites

un > 0 apcr un < 0 apcr sinon
lim

n→+∞
un ` 6= 0 ±∞ 0 0 0

lim
n→+∞

1

un

1

`
0 +∞ −∞ ? ?

Conjuguant les tableaux des produit et inverse, on obtient celui des quotients :

Quotient et limites

lim
n→+∞

un ` ` 6= 0 ∞ ` ou ∞ 0 ∞
lim

n→+∞
vn `′ 6= 0 ∞ `′ 6= 0 0 avec vn de signe constant 0 ∞

lim
n→+∞

un
vn

`

`′
0 ∞ ∞ ? ? ? ?

Retenons donc les quatre formes indéterminées au programme du secondaire :

+∞−∞ 0×∞ 0

0

∞
∞

Signalons enfin un résultat très utile de composition que nous utilisons fréquemment dans le
cadre des fonctions continues.
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Théorème 2-4-1 : Soit u une suite réelle à valeurs dans un intervalle I et soit f une fonction
définie sur I. Si lim

n→+∞
un = ` et si lim

x→`
f(x) = L, alors lim

n→+∞
f(un) = L.

Exemple 2-4-2 :

1. Donner deux exemples de suites (un) et (vn) qui tendent vers +∞ et telles que
un
vn

:

a) tende vers un réel ` b) tende vers +∞ c) n’a pas de limite
2. Après avoir justifié de la présence d’une forme indéterminée, levez cette dernière en

réécrivant le terme général des suites définies pour tout entier naturel n par :

a) un = n2 − 3n+ 1 b) un = 4n − 2n c) un =
n2 − 2n

n3 + 1
d) un = e

4n2 + n

n2 + 1

Démonstration :
1. a) un = n` et vn = n conviennent. b) un = n2 et vn = n conviennent. c)
un = (−1)nn et vn = n conviennent.

2. a) lim
n→+∞

n2 = +∞ et lim
n→+∞

(−n + 1) = −∞, donc nous sommes en présence d’une
forme indéterminée +∞−∞. Il y a plusieurs manières de lever l’indétermination, mais
nous retiendrons que pour les fonctions polynomes, il suffit de factoriser le terme de

plus haut degré. Ici, un = n2
(
1− 3

n
+

1

n2

)
. Or lim

n→+∞
n2 = +∞ et par somme :

lim
n→+∞

(
1− 3

n
+

1

n2

)
= 1. Donc par produit : lim

n→+∞
un = +∞.

b) lim
n→+∞

4n = lim
n→+∞

2n = +∞, donc nous sommes en présence d’une forme indétermi-
née +∞−∞. Factorisons par 4n, le terme qui semble, et qui est, prépondérant dans

l’expression de un. Donc un = 4n
(
1−

(
2

4

)n)
. Or si q > 1, lim

n→+∞
qn = +∞ et si

−1 < q < 1, lim
n→+∞

qn = 0.

Donc lim
n→+∞

4n = +∞ et lim
n→+∞

(
2

4

)n
= 0, donc par différence lim

n→+∞

(
1−

(
2

4

)n)
=

1, puis enfin par produit, lim
n→+∞

un = +∞.

c) Le numérateur de un est sous forme indéterminée +∞−∞, mais on peut comme
au a) prouver qu’il tend vers +∞. Le dénominateur tend clairement vers +∞. Nous
somme donc en présence d’une forme indéterminée

∞
∞

.
L’idée est de factoriser le terme de plus haut degré du numérateur et le terme de plus

haut degré du dénominateur : un =
n2(1− 2

n
)

n3(1 +
1

n3
)
=

1− 2

n

n(1 +
1

n3
)
.

On a lim
n→+∞

1 − 2

n
= 1 et lim

n→+∞
n(1 +

1

n3
) = +∞ par somme et produit. Donc finale-

ment, par quotient : lim
n→+∞

un = 0.

d) On prouve comme au c) que lim
n→+∞

4n2 + n

n2 + 1
= 4. Or par continuité de la fonction

exponentielle en x = 4 : lim
x→4

ex = e4. Donc par le thèorème 1-2-4-1 : lim
n→+∞

un = e4.

Nous retiendrons que factoriser le terme dominant nous permet souvent, déjà dans le cas des
fonctions rationnelles (quotient de deux fonctions polynomes) de lever des indéterminations.
Encore faut-il préciser ce qu’on appelle "terme dominant" (Hors programme dans le secon-
daire). Nous l’effleurerons en exercice et thème d’étude.
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Terminons en touchant quelques mots sur la notion de croissance comparée qui nous servira
également dans les cas douteux. Sous réserve de ne pas tomber sur des cas pathologiques : suite
qui s’annule une infinité de fois, on dira que (un) est négligeable devant (vn) si lim

n→+∞

un
vn

= 0.

Théorème 2-4-3 (Deux résultats de croissances comparées) :

1. lim
n→+∞

ne−n = 0 ; on a même pour tout réel a > 0 : lim
n→+∞

nae−n = 0.

2. lim
n→+∞

lnn

n
= 0 ; on a même pour tout réel a et tout réel b > 0 : lim

n→+∞

(lnn)a

nb
= 0.

Démonstration :

1. Nous admettons, pour gagner du temps, que pour tout réel x ≥ 0 : 1 + x +
x2

2
≤ ex.

Mais alors pour tout réel x > 0 :
ex

x
≥ 1

x
+ 1 +

x

2
. Le terme de droite tend vers +∞

quand x tend vers +∞, donc par comparaison lim
x→+∞

ex

x
= +∞. D’où lim

n→+∞

n

en
= 0.

2. Soit n > 0. Posons un =
lnn

n
. On a un =

lnn

elnn
.

lim
n→+∞

lnn = +∞ et par 1. : lim
x→+∞

x

ex
= 0, donc par composition lim

n→+∞
un = 0.

Nous vous proposons dans les fiches méthode de ce chapitre un recueil de techniques utiles de
calculs explicites de limite, qui seront également détaillées dans la

�� ��VIDEO 3 . Pour autant,
toutes les suites ne sont pas définies explicitement et même pour celles qui le sont, il peut être
extrêmement délicat de déterminer leur limite, si elle existe. Vous verrez en première année
d’enseignement supérieur scientifique des outils plus performants. Mais patience !

Exemple 2-4-4 : En utilisant les résultats de croissance comparée lim
n→+∞

ne−n = 0 et

lim
n→+∞

lnn

n
= 0, déterminer la limite des suites de terme général

1. a) un =
lnn√
n

et b) vn =
(lnn)2

n

2. wn =
en

2

n3

Démonstration : Tout est question de réécriture !

1. a) Pour tout entier naturel n ≥ 1 : un =
lnn√
n

=
ln(
√
n
2
)√

n
= 2

ln(
√
n)√
n

.

Or lim
n→+∞

√
n = +∞ et lim

x→+∞

lnx

x
= 0, donc par composition : lim

n→+∞

ln(
√
n)√
n

= 0, et

partant lim
n→+∞

un = 0.

b) Pour tout entier naturel n ≥ 1 : vn =

(
lnn√
n

)2

= u2n. On en déduit immédiatement

que lim
n→+∞

vn = 0.

2. Posons pour tout n ∈ N∗, un = ln(wn). Alors wn = n2 − 3 lnn = n

(
n− 3

lnn

n

)
.

On a lim
n→+∞

n = +∞ et lim
n→+∞

n − 3
lnn

n
= +∞, donc par produit : lim

n→+∞
un = +∞.

Comme lim
x→+∞

ex = +∞, on a par composition lim
n→+∞

wn = +∞.
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3 Le raisonnement par récurrence (spécialité Maths)

Vous fréquentez l’ensemble des entiers naturels N depuis votre plus tendre enfance où vous
avez appris à compter sur vos doigts, puis appris vos tables d’addition et de multiplication.
Pour autant, sauriez-vous définir N ?
Sa construction n’est pas au programme du secondaire, mais certaines de ses propriétés si !
Nous résumons donc ci-dessous les axiomes qui sont à la base de sa définition et qui permettent
ensuite d’établir de nombreuses propriétés.

Axiomes de Peano : Il existe un ensemble N dont les éléments sont appelés les entiers na-
turels, un élément 0 ∈ N appelé zéro et une application s : N→ N, dite application successeur,
vérifiant les propriétés suivantes :

1. 0 n’est le successeur d’aucun entier,

2. Deux nombres entiers qui ont le même successeur sont égaux,

3. Si A ⊂ N est tel que

{
0 ∈ A
s(A) ⊂ A

, alors A = N.

Le point 3 définit le principe de récurrence, d’une utilité capitale en analyse et que nous allons
reformuler de manière pragmatique et pratique sous la forme suivante :

Principe de récurrence (récurrence simple) : Soit P(n) une propriété dépendant de
l’entier naturel n.
Initialisation : Si P(0) est vraie,
Hérédité : Si pour tout entier naturel n, le fait que P(n) soit vraie entraine que P(n+1) est
vraie,
Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

On peut se représenter le principe de récurrence comme celui qui nous permet de monter une
échelle infinie : le barreau du bas est numéroté 0, puis son successeur est numéroté 1, etc.
L’initialisation nous permet de mettre le pied sur le premier barreau 0 ; l’hérédité nous dit que
si l’on a le pied sur le barreau n, alors on peut grimper au barreau suivant n+1 et ceci quelle
que soit la valeur de n. Bref, avoir le droit de poser le pied sur le premier barreau et le droit
de passer d’un barreau à son successeur nous permet de grimper notre échelle infinie.
Remarquons enfin que l’on peut remplacer 0 par tout autre entier n0, auquel cas la conclusion
devient : P(n) est vraie pour tous les entiers naturels n supérieur ou égal à n0.

Exemple 3-1 : Prouvons que pour tout entier naturel n non nul :

1. 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

2. 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
Démonstration : voir aussi https://www.youtube.com/watch?v=a6AWclssIF4

1. Posons pour tout entier naturel n non nul : P(n) : 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Initialisation : 1 =
1 + 1

2
, donc P(1) est vraie.

Hérédité : Soit n un entier naturel non nul quelconque. Supposons que P(n) est vraie

et prouvons que P(n+ 1) est vraie : 1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
.
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Par hypothèse de récurrence : 1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1).

Or
n(n+ 1)

2
+ (n + 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
. Ainsi, P(n + 1) est

vraie.
Conclusion : on a prouvé que P(1) est vraie, et que pour tout entier naturel n non nul,
P(n) vraie entraine P(n + 1) vraie, donc d’après le principe de récurrence, P(n) est
vraie pour tous les entiers naturels n non nuls i.e pour tout entier naturel n non nul :

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

2. Posons pour tout entier naturel n non nul : P(n) : 12+22+· · ·+n2 = n(n+ 1)(2n+ 1)

6
.

Initialisation :
1(1 + 1)(2× 1 + 1)

6
= 1 = 12, donc P(1) est vraie.

Hérédité : Soit n un entier naturel non nul quelconque. Supposons que P(n) est vraie et

prouvons que P(n+1) est vraie : 12+22+· · ·+n2+(n+1)2 =
(n+ 1)(n+ 2)(2(n+ 1) + 1)

6

i.e 12 + 22 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.

Par hypothèse de récurrence, 12+22+ · · ·+n2+(n+1)2 =
n(n+ 1)(2n+ 1)

6
+(n+1)2.

Or
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

n(n+ 1)(2n+ 1) + 6(n+ 1)2

6
.

Et
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6
=

(n+ 1)[n(2n+ 1) + 6(n+ 1)]

6
.

Enfin, comme n(2n+1)+ 6(n+1) = 2n2 +7n+6 = (n+2)(2n+3), on en déduit que
P(n+ 1) est vraie.
Conclusion : on a prouvé que P(1) est vraie, et que pour tout entier naturel n non nul,
P(n) vraie entraine P(n + 1) vraie, donc d’après le principe de récurrence, P(n) est
vraie pour tous les entiers naturels n non nuls i.e pour tout entier naturel n non nul :

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

† † † Il convient de rédiger parfaitement vos récurrences. Signalons quelques erreurs souvent
commises et qui n’en sont pas moins abominables ! Voici le top 3 :

— N°3 : Dans l’hérédité, on suppose que pour un certain n donné, la propriété
P(n) est vraie, qui peut se traduire par "il existe un entier naturel n" tel que P(n) est
vraie. Alors que l’hérédité repose sur le principe "Pour tout entier naturel n, P(n) vraie
entraine P(n+1) vraie". Vous apprendrez ceci dans le supérieur avec les quantificateurs
existentiels et universels.

— N°2 : Oublier l’initialisation ! Grandes ou petites valeurs, le problème reste le
même ; et puis pour reprendre l’heuristique de l’échelle, comment grimper le long de
l’échelle si vous n’avez pas le droit de poser le pied dessus ?

— N°1 : Et enfin la pire des erreurs qui consiste à prendre pour hypothèse de
récurrence : "Supposons que pour tout entier naturel n, P(n) est vraie". Autrement
dit, vous prenez pour hypothèse exactement ce que vous cherchez à prouver !
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Exemple 3-2
�� ��VIDEO 4 : Considérons la suite u définie sur N par u0 ∈ R+ et pour tout

entier naturel n par un+1 =
√
1 + un.

1. La première chose à vérifier est que la suite u est bien définie, c’est-à-dire que l’on
puisse calculer un pour n’importe quelle valeur de l’entier n.
(a) ´Etudier les variations de f : [−1;+∞[→ R, x 7→

√
1 + x et justifier que si x ∈ R+,

alors f(x) ∈ R+ (on dit que l’intervalle [0; +∞[ est stable par f).
(b) Prouver par récurrence que pour tout entier naturel n, un est bien défini et que

un ≥ 0.
2. On suppose ici que u0 = 0. Placer sur l’axe des abscisses les termes u0 à u3 à l’aide

du graphe de f et de la droite D d’équation y = x (la première bissectrice). Vers
quelle valeur ` semblent se rapprocher les termes un ? (on pourra résoudre l’équation
f(x) = x)

3. Démontrer que pour tout entier naturel n, 0 ≤ un ≤ un+1 ≤ `. Que dire sur la
monotonie de u ? u est-elle minorée, majorée, bornée ?

4. Si l’on choisit u0 > `, par exemple u0 = 2, 5, quel semble être le comportement de u ?
Justifier par récurrence sur n ∈ N que pour tout entier naturel n : ` ≤ un+1 ≤ un.

5. Conclure selon la valeur initiale de u0 ∈ [−1;+∞[ de la limite éventuelle de la suite u.
6. Qu’en est-il si un+1 = f(un), où f : [0; +∞[→ [0; +∞[, x 7→ x2 ? Vous préciserez selon la

valeur de u0 la convergence ou divergence éventuelle de u. En revanche, vous prouverez
de manière précise par récurrence la monotonie de u et son éventuel caractère minoré
ou majoré. Let’s play !

Solution : Nous verrons en exercice comment prolonger cet exercice et prouver de manière
effective les résultats subodorés.

1. (a) u : [−1;+∞[→ R+, x 7→ x + 1 est strictement croissante et v : R+ → R+, x 7→
√
x

est strictement croissante, donc par composition f = v ◦u est strictement croissante
sur [−1;+∞[.

(b) Posons pour tout entier naturel n, P(n) : un est bien défini et un ≥ 0.
Initialisation : u0 = 0 donc P(0) est vraie !
Hérédité : Soit n ∈ N quelconque ; supposons que P(n) est vraie : un existe et
un ≥ 0. Comme f est définie sur R+ et que un+1 = f(un) , un+1 existe et par
croissance de f : un+1 = f(un) ≥ f(0) = 1 > 0. Donc P(n+ 1) est vraie.
Conclusion : Pour tout entier naturel n, un est bien défini et un ≥ 0.

2. Il semble que la suite u converge vers l’abscisse du point d’intersection de la courbe
représentative de f et de la première bissectrice, ce qui revient à déterminer la solution

sur R+ de
√
1 + x = x. Cette équation équivaut à :

{
1 + x = x2

x ≥ 0
i.e x =

1 +
√
5

2
.

3. Posons pour tout entier naturel n, P(n) : 0 ≤ un ≤ un+1 ≤ `.

Initialisation : u0 = 0, u1 = f(u0) = 1 et ` =
1 +
√
5

2
. On a bien 0 ≤ u0 ≤ u1 ≤ `,

donc P(0) est vraie.
Hérédité : Soit n ∈ N quelconque. Supposons que P(n) est vraie : 0 ≤ un ≤ un+1 ≤ `.
Prouvons que P(n+ 1) est vraie : 0 ≤ un+1 ≤ un+2 ≤ `.
Par croissance de f sur R+, on a : f(0) ≤ f(un) ≤ f(un+1) ≤ f(`) i.e 1 ≤ un+1 ≤
un+2 ≤ ` car f(`) = `. D’où 0 ≤ un+1 ≤ un+2 ≤ ` et P(n+ 1) est vraie.
Conclusion : Pour tout entier naturel n, 0 ≤ un ≤ un+1 ≤ `.
On en déduit que la suite u est croissante et bornée (minorée par 0 et majorée par `).
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Figure 5 – Premiers termes avec u0 = 0

4. Traçons les premiers termes de u.
Là encore, ils semblent se rapprocher de `.

Figure 6 – Premiers termes avec u0 = 2, 5

Posons pour tout entier naturel n, P(n) : ` ≤ un+1 ≤ un.
Initialisation : Soit u0 > `. u1 = f(u0) > f(`) par stricte croissance de f . Comme

f(`) = `, on a u1 > `. Enfin, u1− u0 =
√
1 + u0− u0 =

1 + u0 − u20√
1 + u0 + u0

. Mais le trinôme

1 + x − x2 prend des valeurs strictement négatives quand x > `, et comme u0 > `,
1 + u0 − u20 < 0, donc u1 − u0 < 0. D’où ` < u1 < u0 et P(0) est vraie.
Hérédité : Paradoxalement, ce sera plus simple que l’initialisation ! Donnons-nous un
entier naturel n quelconque et supposons P(n) vraie :` ≤ un+1 ≤ un. Par croissance de
f : ` = f(`) ≤ f(un+1) = un+2 ≤ f(un) = un+1. Donc P(n+ 1) est vraie.

18



Conclusion : pour tout entier naturel n, ` ≤ un+1 ≤ un. On en déduit en particulier
que si u0 > `, la suite u est décroissante et minorée par `.
Il semble là encore que les termes un se rapprochent de `.

5. — Pour tout réel u0 ≥ 0, il semble que u converge vers ` : en croissant si u0 ∈ [0; `[, en
décroissant si u0 > `, et en stagnant (suite constante) si u0 = ` (récurrence triviale).

— Si u0 ∈ [−1; 0[, alors u1 ∈ [0; 1[⊂ [0; `[, et on est ramené au cas précédent.
6. Laissé à la sagacité du lecteur. Nous vous donnons le graphe utile à vos supputations.

Figure 7 – Avec u0 ∈ R+ et un+1 = u2n

Il est parfois nécessaire de modifier le principe énoncé précédemment afin de prouver qu’une
propriété P(n) est vraie pour tous les entiers naturels n (éventuellement apcr). C’est le cas
notamment lorsqu’une suite est définie par une récurrence d’ordre 2 : u0, u1 donnés et pour
tout entier naturel n : un+2 = f(n, un, un+1). Énonçons le . . .

Principe de récurrence (récurrence double) : Soit P(n) une propriété dépendant de
l’entier naturel n.
Initialisation : Si P(0) et P(1) sont vraies,
Hérédité : Si pour tout entier naturel n, le fait que P(n) et que P(n+1) soient vraies entraine
que P(n+ 2) est vraie,
Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

Exemple 3-3 : On note u la suite définie par u0 = 0, u1 = 1 et pour tout n ∈ N : un+2 =√
un + un+1 + 3. Prouver que la suite u est bien définie, croissante et majorée par 3.

Solution : Pour tout entier naturel n, posons P(n) : un, et un+1 sont bien définis et 0 ≤
un ≤ un+1 ≤ 3.
Initialisation : u0 = 0 et u1 = 1 sont bien définis et 0 ≤ u0 ≤ u1 ≤ 3 donc P(0) est vraie.
u2 =

√
0 + 1 + 3 = 2 est bien défini et on a 0 ≤ u1 ≤ u2 ≤ 3, donc P(1) est vraie.

Hérédité : Soit n ∈ N. Supposons P(n) et P(n+ 1) vraies : un, un+1 et un+2 sont bien définis
et 0 ≤ un ≤ un+1 ≤ un+2 ≤ 3. Prouvons que P(n + 2) vraie : un+2 et un+3 sont bien définis
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et 0 ≤ un+2 ≤ un+3 ≤ 3.
Par hypothèse, un+2 est bien défini et comme un+1 ≥ 0 et un+2 ≥ 0, un+3 =

√
un+1 + un+2 + 3

est bien défini. De plus, par hypothèse de récurrence : 0 ≤ un+un+1+3 ≤ un+1+un+2+3 ≤
3+3+3 = 9. Par croissance de la fonction racine carrée : 0 ≤ un+2 ≤ un+3 ≤ 3, donc P(n+2)
est vraie.
Conclusion : Pour tout n ∈ N, u est croissante et majorée par 3.

Voir aussi https://www.youtube.com/watch?v=G_KqFsucyBs

Dans certains cas, il est même nécessaire de considérer le cas de tous les P(k), 0 ≤ k ≤ n.

Principe de récurrence (récurrence forte) : Soit P(n) une propriété dépendant de l’en-
tier naturel n.
Initialisation : Si P(0) est vraie,
Hérédité : Si pour tout entier naturel n donné, le fait que tous les P(k) soient vraies (pour
k compris entre 0 et n) entraine que P(n+ 1) est vraie,
Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

Exemple 3-4 : Soit u la suite définie par u0 ≥ 0 et pour tout n ∈ N, un+1 ≤
n∑
k=0

uk.

Prouvons que pour tout entier naturel n : un ≤ 2nu0.

Solution : Pour tout entier naturel n, posons P(n) : un ≤ 2nu0.
Initialisation : u0 = 20u0 ≤ 20u0, donc P(0) est vraie.
Hérédité : Soit n ∈ N. Supposons que P(0), P(1), . . .P(n) vraies et prouvons que P(n + 1)
vraie : un+1 ≤ 2n+1u0.

un+1 ≤
n∑
k=0

uk ≤
n∑
k=0

2ku0 = u0
2n+1 − 1

2− 1
≤ 2n+1u0. Donc P(n+ 1) est vraie.

Conclusion : Pour tout entier naturel n : un ≤ 2nu0.

Remarque 3-5 : il existe d’autres formes de récurrence : triple, descendante, limitée, etc.
Nous en verrons quelques unes en exercice, mais déjà, maitriser correctement celles qui sont
présentées ci-dessus est essentiel. Le raisonnement par récurrence est très courant en mathé-
matiques et s’applique à de nombreuses situations qui dépassent largement le thème de ce
cours.

4 Théorèmes d’existence, de comparaison et d’encadrement

Théorème 4-1 (de la limite monotone) : fondamental !

1. (a) Toute suite croissante et majorée converge.

(b) Toute suite croissante et non majorée tend vers +∞.

2. (a) Toute suite décroissante et minorée converge.

(b) Toute suite décroissante et non minorée tend vers −∞.

Les théorèmes 1.(a) et 2.(a) sont admis au niveau du secondaire, mais leur utilité n’en reste
pas moins redoutable ! Signalons donc en corollaire que toute suite monotone et bornée
est nécessairement convergente. Démontrons 1. (b) :
Supposons u croissante et non majorée :
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— u non majorée, donc pour tout réel A > 0, il existe un entier naturel N tel que uN > A.
— u croissante, donc pour tout entier naturel n ≥ N : un ≥ uN > A.

Conclusion : on a prouvé que pour tout réel A > 0 il existait un entier naturel N , tel que pour
tout entier n ≥ N : un > A, ce qui est la définition de lim

n→+∞
un = +∞.

Exemple 4-2 : Soit u la suite définie par u0 ∈ R et pour tout entier naturel n par un+1 =√
3un + 6.
1. On suppose u0 = 0.

(a) Prouver que pour tout entier naturel n que 0 ≤ un ≤ un+1 ≤ 6.
(b) En déduire que u converge.

2. On suppose u0 = 10.
(a) Prouver que pour tout entier naturel n que 4 ≤ un+1 ≤ un.
(b) En déduire que u converge.

Solution : Une récurrence immédiate prouve que pour tout entier naturel n, un est bien
défini et un ≥ 0.

1. (a) La fonction f définie sur [0; +∞[ par f(x) =
√
3x+ 6 est clairement strictement

croissante.
Pour tout entier naturel n, posons P(n) : 0 ≤ un ≤ un+1 ≤ 6.
Initialisation : u1 =

√
6 ≤ 6, donc 0 ≤ u0 ≤ u1 ≤ 6 : P(0) est vraie.

Hérédité : Fixons-nous un entier naturel n quelconque et supposons P(n) vraie :
0 ≤ un ≤ un+1 ≤ 6. Par croissance de f sur [0; +∞[, on a : f(0) ≤ f(un) ≤
f(un+1) ≤ f(6) i.e

√
6 ≤ un+1 ≤ un+2 ≤

√
24. Comme

√
24 < 6 :

0 ≤ un+1 ≤ un+2 ≤ 6 : P(n+ 1) est vraie.
Conclusion : pour tout entier naturel n : 0 ≤ un ≤ un+1 ≤ 6.

(b) Croissante et majorée, u converge.
2. En raisonnant comme à la question précédente, on prouve que u est décroissante et

minorée, donc convergente.
Remarquons que le théorème de la limite monotone est un théorème d’existence de limite. Il
ne donne en aucun cas sa valeur.
Nous disposons encore d’autres résultats d’existence :

Théorème 4-3 (de comparaison) : Soient u et v deux suites réelles. On suppose qu’apcr
un ≤ vn. Alors :

1. Si lim
n→+∞

vn = −∞, alors u a une limite et lim
n→+∞

un = −∞.

2. Si lim
n→+∞

un = +∞, alors v a une limite et lim
n→+∞

vn = +∞.

Démonstration : On peut comprendre heuristiquement ce résultat comme : si le plus grand
(resp. le plus petit) des deux termes généraux de nos deux suites tend vers−∞ (resp. vers+∞),
alors le plus petit (resp. le plus grand) tend nécessairement vers −∞ (resp. +∞). Prouvons le
premier point. Le second se traite de même. Il s’agit de démontrer que pour tout réel A > 0,
il existe un entier N tel que pour tout entier n ≥ N , un ≤ −A.
Soit N1 un entier tel que pour tout entier n ≥ N1 : un ≤ vn.
Soit A un réel strictement positif. Comme lim

n→+∞
vn = −∞, il existe un entier naturel N2 tel

que pour tout entier n ≥ N2 : vn ≤ −A.
Mais alors pour tout entier n ≥ N = max(N1, N2) : un ≤ vn ≤ −A, ce qui prouve bien que
lim

n→+∞
un = −∞. �
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Exemple 4-4 : Soit x un réel strictement positif. Prouver par récurrence que pour tout
entier naturel n : (1 + x)n ≥ 1 + nx et en déduire que si q > 1 : lim

n→+∞
qn = +∞.

Solution : Posons pour tout entier naturel n, P(n) : (1 + x)n ≥ 1 + nx.
Initialisation : (1 + x)0 = 1 = 1 + 0× x, donc P(0) vraie.
Hérédité : Soit n un entier naturel quelconque. Supposons que P(n) est vraie : (1+x)n ≥ 1+nx,
et prouvons que P(n+ 1) est vraie : (1 + x)n+1 ≥ 1 + (n+ 1)x.
Multiplions chaque membre de l’inégalité (1+x)n ≥ 1+nx par le réel strictement positif 1+x.
On obtient (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + x+ nx+ nx2 ≥ 1 + (n+ 1)x. Donc P(n+ 1)
est vraie. Ainsi, pour tout entier naturel n : (1 + x)n ≥ 1 + nx.
Posons pour tout entier naturel n : un = 1+nx et vn = (1+x)n. On a pour tout entier naturel
n : vn ≥ un et lim

n→+∞
un = +∞. D’après le théorème de comparaison : lim

n→+∞
vn = +∞.

Soit q > 1. On peut écrire q = 1 + x, avec x = q − 1 > 0.
D’après ce qui précède : lim

n→+∞
qn = +∞.

Théorème 4-5 (encadrement) : Soient u,v et w trois suites réelles et ` ∈ R. Si apcr
vn ≤ un ≤ wn et si lim

n→+∞
vn = lim

n→+∞
wn = `, alors lim

n→+∞
un = `.

Démonstration : Soit ε > 0. Par hypothèse, il existe un rang N1 à partir duquel vn ≤
un ≤ wn. Puis il existe un rang N2 à partir duquel ` − ε < vn et un rang N3 à partir duquel
wn < ` + ε. Donc si n ≥ sup(N1, N2, N3), on a ` − ε < un < ` + ε i.e |un − `| < ε. D’où
lim

n→+∞
un = `. �

† † † Le théorème d’encadrement n’est pas un simple théorème de passage à la limite dans
des inégalités larges. Quand on passe à la limite dans une inégalité, on sait déjà que les
membres de gauche et de droite ont une limite. Dans le théorème d’encadrement, seules les
limites des suites v et w sont supposées exister (et être égales). On en déduit l’existence de la
limite de u et sa valeur.

Exemple 4-6 : Soit (un)n∈N∗ de terme général un =
3n+ sinn

n
. Justifier que u converge et

préciser sa limite.

Solution : Remarquons que pour tout entier naturel n non nul : un = 3 +
sinn

n
. Il suffit

donc d’encadrer
sinn

n
. Or pour tout entier n : −1 ≤ sinn ≤ 1, donc pour tout entier naturel n

non nul : 3− 1

n
≤ un ≤ 3 +

1

n
. Comme lim

n→+∞
3− 1

n
= lim

n→+∞
3 +

1

n
= 3, on a par le théorème

d’encadrement que lim
n→+∞

un = 3.

Quiz 4-7 : Pour chaque question, une ou plusieurs réponses sont possibles.

1. Soit u la suite de terme général un =

∫ 1

0

xn

1 + x
dx. Alors u est :

(a) croissante (b) décroissante (c) minorée (d) majorée (e) convergente (f)
divergente

2. Si une suite u est décroissante et minorée par 0, alors la limite de u est 0.
(a) VRAI (b) FAUX
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3. Si pour tout entier naturel non nul : 3 ≤ un ≤ 5, alors :
(a) u a pour limite 4 (b) u diverge (c) on ne peut rien dire

4. Une suite u non minorée :
(a) ne peut pas tendre vers +∞ (b) tend vers −∞ (c) diverge toujours

5. Le produit d’une suite u bornée par une suite v de limite nulle est une suite :
(a) minorée (b) majorée (c) divergente (d) qui tend vers 0

Solution :

1. (b) (c) (d) (e) : se rendre compte que pour tout x ∈ [0; 1]
xn+1

1 + x
≤ xn

1 + x
et utiliser

la croissance de l’intégrale, puis que 0 ≤ un ≤
1

n+ 1
.

2. (b) : prendre par exemple un = 1 +
1

n
(n ≥ 1).

3. (c) : prendre par exemple un = 3 + 2
sinn

n
et vn = 3 si n est pair et vn = 5 si n est

impair : u tend vers 3 mais v n’a pas de limite.

4. (a) et (c) : pour (a) revenir aux définitions de u minorée et de u tend vers +∞ et
raisonner par l’absurde. Pour (c), se rappeler que toute suite convergente est bornée,
donc minorée.

5. (a) (b) et (d) : il existe M > 0 tel que pour tout entier naturel n : −M |vn| ≤ unvn ≤
M |vn| puis appliquer le théorème d’encadrement.

5 un+1 = f(un)

Nous avons étudié à l’exemple 3-2 une suite récurrente du type un+1 = f(un), mais malgré
quelques avancées : exploration graphique, preuve par récurrence du caractère minoré ou ma-
joré et croissance de la suite, il nous manque la preuve rigoureuse de la convergence de u et
la calcul de sa limite.
Cette section se propose d’initier le lecteur à l’étude de telles suites à travers quelques exemples
simples. Un chapitre entier leur est consacré pour aller plus loin dans leur approche.

Théorème 5-1 : Soit u une suite réelle définie par récurrence : u0 donné et pour tout entier
naturel n : un+1 = f(un). Si u converge vers ` et f continue en `, alors ` = f(`).

Ce théorème est admis au niveau du secondaire, mais se retrouve propulsé comme outil fonda-
mental de recherche de limite : Si jamais la suite u converge, alors sa limite est l’une
des solutions éventuelles de l’équation f(x) = x sur l’ensemble de définition de f .
Cette dernière fonction sera toujours considérée comme continue.
Bon, démontrons-le quand même !

Démonstration : Fixons ε > 0. Comme f est continue en `, il existe un réel η > 0 tel que
pour tout réel x ∈ Df∩]`− η; `+ η[, |f(x)− f(`)| < ε.
Or (un) converge vers `, donc il existe N ∈ N tel que pour tout entier n ≥ N, |xn − `| < η.
Mais alors si n ≥ N, |f(un)− f(`)| < ε. Donc (f(un)) converge vers f(`).
D’autre part, comme pour tout n ∈ N, un+1 = f(un), (un+1) converge vers ` donc par unicité
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de la limite : ` = f(`).

En fait, comme nous le verrons au chapitre continuité d’une fonction de la variable
réelle, nous disposons même d’un théorème extrêmement important et pratique caractérisant
la continuité d’une fonction en un point.

Théorème (caractérisation séquentielle de la continuité) : Soit f : D → R une fonc-
tion et ` ∈ D. Alors :
f est continue en ` si et seulement si pour toute suite (un) d’éléments de D convergeant vers
`, la suite (f(un)) converge vers f(`).

Revenons à nos moutons !

Un peu de théorie applicable en pratique Dans toute la suite, f désigne une fonction
définie (et même continue) sur une partie D de R telle que f(D) ⊂ D i.e telle que pour tout
x ∈ D, f(x) ∈ D : on dit que D est stable par f . Soit (un) une suite définie par récurrence
par u0 ∈ D et pour tout entier naturel n par un+1 = f(un).

1. On prouve aisément par récurrence que (un) est bien définie et que pour tout entier
naturel n : un ∈ D.

2. Limites éventuelles : on résout l’équation (E) : f(x) = x sur D. Ses solutions sont les
seules limites possibles de la suite (un) d’après le théorème 5-1. S’il n’y en a pas, c’est
terminé : (un) diverge.

3. On suppose (ou on prouve par une étude de fonction) que f est croissante sur D.
a) Si u0 ≤ u1 (resp. u0 ≥ u1) on prouve par récurrence que la suite (un) est croissante
(resp. décroissante).
b) On prouve ensuite par récurrence que (un) est majorée ou minorée, très souvent par
l’une des solutions ` de (E).
c) Croissante et majorée OU décroissante et minorée, (un) converge par le théorème de
la limite monotone.
d) En fonction de ce qui a été démontré en a) et b), on sait vers quelle solution de (E)
la suite converge et on conclut.

Le cas où f est décroissante sera abordé en exercice.

Un exemple type : Soit f la fonction définie sur D = [0; 1] par f(x) =
ex

x+ 2
et la suite

(un) définie par u0 =
1

2
et pour tout n ∈ N par un+1 =

eun

un + 2
.

1. Justifier que f est strictement croissante sur D et préciser les valeurs f(0) et f(1). En
déduire que si x ∈ D, alors f(x) ∈ D.

2. Prouver par récurrence que pour tout n ∈ N, 0 ≤ un ≤ un+1 ≤ 1 et en déduire que la
suite (un) converge. On note ` sa limite.

3. En étudiant la fonction g définie sur D par g(x) = ex−x(x+2), justifier que l’équation
(E) : f(x) = x admet une unique solution α sur D. Vous donnerez un encadrement de
α à 10−2 près.

4. En déduire que (un) converge vers α.
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Solution : Remarquons que f est dérivable sur D = [0; 1] comme quotient de deux fonctions
dérivables sur D dont celle au dénominateur ne s’annule pas.

1. Pour tout x ∈ D, f ′(x) = ex(x+ 1)

(x+ 2)2
> 0, donc f est strictement croissante sur D. On

a f(0) =
1

2
et f(1) =

√
e

3
.

2. Posons pour tout entier naturel n, Pn : 0 ≤ un ≤ un+1 ≤ 1.
Initialisation : Comme f est croissante sur [0; 1] :

0 ≤ u0 =
1

2
= f(0) ≤ f

(
1

2

)
≤ f(1) =

√
e

3
≤ 1, donc P0 est vraie.

Hérédité : Soit n ∈ N quelconque. Supposons Pn : 0 ≤ un ≤ un+1 ≤ 1 vraie. Alors par

croissance de f sur [0; 1] : f(0) ≤ f(un) ≤ f(un+1) ≤ f(1) i.e
1

2
≤ un+1 ≤ un+2 ≤

√
e

3
.

Donc Pn+1 est vraie, ce qui achève la récurrence.
On en déduit que la suite (un) est croissante et majorée, donc converge d’après le
théorème de la limite monotone.
Notons ` sa limite et remarquons que puisque pour tout n ∈ N, un ∈ [0; 1], alors
` ∈ [0; 1] (le fait que D = [0; 1] soit fermé est important : considérer 1/n . . .).

3. Soit x ∈ D.
f(x) = x ⇐⇒ ex

x+ 2
− x = 0 ⇐⇒ ex − x(x+ 2)

x+ 2
= 0 ⇐⇒ ex − x(x+ 2) = 0.

On pose pour tout x ∈ D, g(x) = ex − x(x+ 2).
g est indéfiniment dérivable sur D et pour tout réel x ∈ D :
g′(x) = ex − 2x− 2 et g′′(x) = ex − 2 (pas le choix de calculer g′′(x)).
g′′(x) ≤ 0 ⇐⇒ x ∈ [0; ln 2] et g′′(x) ≥ 0 ⇐⇒ x ∈ [ln 2; 1]. Donc g′ possède un
minimum global en x = ln 2. Comme g′(0) = −1 < 0 et g′(1) = e− 4 < 0, on en déduit
que g′(x) < 0 pour tout x ∈ D. Donc g est strictement décroissante sur D.
Ainsi, g est continue sur D = [0; 1], strictement décroissante, et 0 ∈ [g(1); g(0)] =
[e − 3; 1], donc d’après le TVI strictement monotone, l’équation g(x) = 0 possède une
unique solution α ∈ D. En utilisant une calculatrice, on obtient 0, 78 < α < 0, 79.

4. Nous savons que (un) converge vers ` ∈ D et que pour tout entier naturel n, un+1 =
f(un). Comme f est continue sur D, alors le théorème 5.1 nous assure que ` est solution
de l’équation x = f(x) sur D. Or cette équation a une unique solution α d’après la
question précédente, donc par unicité de la limite ` = α.
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6 Exercices

Nous regroupons ici des exercices niveau Maths complémentaires (MC), de Maths spécialité
(MS) ainsi que quelques exercices de Maths expertes (ME). Les deux derniers exercices sont
plus théoriques. L’exercice 10 nécessite notamment de connaître le cours de calcul intégral.

Exercice 0 : Définir deux fonctions : l’une présentant f croissante et u définie par récurrence
décroissante ; l’autre f décroissante et u définie par récurrence non monotone.

Exercice 1 (MC et MS) : Préciser dans chacun des cas si la suite est définie de manière
explicite ou par récurrence et calculer les termes u0 à u3.

1. Pour tout entier naturel n, un =
2n− 3

n2 + 1
2. Pour tout entier naturel n, un = 4n − 2n

3. u0 = 1 et pour tout entier naturel n, un+1 = −u2n + n− 1

4. u0 = 3 et pour tout entier naturel n, un+1 =
3

4
un + 2

Exercice 2 (MC et MS) : Justifier précisément le sens de variation des suites de terme
général :

1. un = 5× 32n

2. un = − 2

n+ 1
3. u0 = −10 et pour tout entier naturel n, un+1 = un + 2n+ 3

4. un+1 = un −
1

en

Exercice 3 (MC et MS) : Justifier précisément si les suites de terme général ci-dessous
sont minorées, majorées, bornées ou non.

1. un = cosn

2. un =
1

n2
(n ≥ 1)

3. un = 3n− 7

4. un = (−3)n

5. un = 0, 4n

Exercice 4 (MC, MS et ME) : Soit E = {(un)n∈N ; ∀n ∈ N, un =

n∑
k=1

εk
2k
, εk ∈ {−1; 1}}.

Écrire un programme en Python qui prend pour entrée un réel quelconque x ∈ [−1; 1] et un
seuil de précision ε > 0 et qui renvoie un comme défini ci-dessus, tel que |un − x| < ε.
Nous prouverons plus tard que toute suite appartenant à l’ensemble E est convergente vers
un réel x ∈ [−1; 1] et que réciproquement, tout réel x ∈ [−1; 1] est limite d’une suite u ∈ E.

Exercice 5 (MC, MS et ME) : Considérons la suite u définie sur N par un = sinn. On
suppose par l’absurde que la suite u converge vers un réel `.

1. Exprimer sin(n+1) en fonction de sinn et de cosn puis en déduire en faisant tendre n
vers +∞ que la suite de terme général cosn converge vers une limite que l’on précisera.

2. En utilisant la relation : ∀x ∈ R, cos2 x+ sin2 x = 1, justifier que ` 6= 0.
3. Exprimer sin(2n) en fonction de sinn et de cosn, puis aboutir à une contradiction.
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Exercice 6 (MC, MS et ME) : Déterminer les limites, si elles existent, des suites de terme
général :

1. a) un = 3n2− 10n+1 b) un =
2n2 − 3n+ 5

n3 + 5n2 + 1
c) un =

3− lnn√
n

d) un = (−2)n

2. a) un = n10e−n b) un =
√
n+ 1−

√
n c) un =

n∑
k=1

k

n2
d) un =

3n

n2

3. a) un =

{
0 si n est pair
0, 5n si n est impair

b) un =

{
n si n est pair
2n si n est impair

Exercice 7 (MS et ME) : Prouver qu’une suite d’entiers convergente est stationnaire i.e
constante à partir d’un certain rang : pour N assez grand uN = uN+1 = uN+2 = . . . .

Exercice 8 (MS et ME) : Soient u et v deux suites et soient a et b deux réels tels que
pour tout entier naturel n : un ≤ a et vn ≤ b. Prouver que si lim

n→+∞
(un + vn) = a + b, alors

lim
n→+∞

un = a et lim
n→+∞

vn = b.

Exercice 9 (MS et ME) : Nous rappelons le résultat suivant :
Théorème : Soit D une partie de R et f une fonction définie sur D. Considérons la suite u
définie par récurrence : u0 ∈ D et un+1 = f(un) pour tout entier naturel n. Si u converge vers
` ∈ D et si la fonction f est continue en `, alors ` = f(`).
Autrement dit, les limites éventuelles de u sont à chercher parmi les points fixes de f i.e parmi
les solutions de l’équation f(x) = x sur D.

1. Justifier proprement la convergence de u de l’exemple 3-2 vers une limite que vous
préciserez.

2. Étudier la suite u définie par la donnée de u0 ≥ 0 et pour tout entier naturel n par
un+1 = sinun.
(a) Rechercher les limites éventuelles en déterminant la ou les solutions de l’équation

sinx = x sur R+.
(b) Traiter le cas où u0 = 0. On supposera désormais que u0 > 0..

(c) Prouver que pour tout entier naturel n : 0 ≤ un+1 ≤ un ≤
π

2
.

(d) En déduire que la suite u converge et préciser sa limite.

Exercice 10 (MS et ME) : Ce problème a pour but d’étudier la suite de terme général
nne−n

n!
et de donner une expression de ea comme limite d’une suite.

Pour tout n ∈ N∗, on note fn la fonction définie sur [0; +∞[ par fn(x) =
xne−x

n!
.

1. Étudier les variations de fn et démontrer que pour tout n ≥ 2, fn−1(n) = fn(n).
2. Soit (un) la suite définie sur N∗ par un = fn(n). Démontrer que la suite (un) est

décroissante. Cette suite est-elle convergente ? (justifier la réponse).

3. Soit g la fonction définie sur I = [0; 1] par : g(t) = ln(1 + t)− t+ t2

4
.

a) En étudiant les variations de g, démontrer que pour tout t ∈ I, ln(1 + t) ≤ t− t2

4
.

b) En déduire que pour tout entier n ≥ 1, on a :
(
1 +

1

n

)n
≤ e1−1/4n
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4. Démontrer que pour tout entier n ≥ 1, on a :
un+1

un
≤ e−1/4n et en déduire que pour

tout entier n ≥ 2, on a : un ≤ exp

(
−1− 1

4

(
1

n− 1
+

1

n− 2
+ · · ·+ 1

2
+ 1

))
.

5. a) Démontrer que pour tout entier n ≥ 2, on a :
∫ n

1

dt

t
≤ 1+

1

2
+ · · ·+ 1

n− 2
+

1

n− 1
.

(on pourra utiliser des considérations d’aire).

b) En déduire que pour tout entier n ≥ 2, on a : un ≤ exp

(
−1− 1

4
lnn

)
. Quelle est

la limite de la suite (un) ?

6. Pour tout entier n ≥ 1 et réel a ≥ 0, a fixé, on pose : In(a) =
∫ a

0

tne−t

n!
dt.

a) Calculer I1(a).

b) Démontrer que pour tout entier n ≥ 1 et tout réel t ≥ 0, on a : 0 ≤ fn(t) ≤
tn

n!
.

c) En déduire un encadrement de In(a).

7. Démontrer que pour tout entier n ≥ 1, on a :
1

n!
<
( e
n

)n
(on pourra utiliser 2.).

Déterminer alors une nouvelle majorationde In(a) puis la limite de In(a) quand n tend
vers +∞.

8. a) En utilisant une intégration par parties, établir une relation entre In(a) et In−1(a)
pour tout entier n ≥ 2.

b) En déduire que pour tout entier n ≥ 2, In(a) = 1− e−a
(
1 +

a

1!
+ · · ·+ an

n!

)
.

Cette égalité reste-t-elle valable pour n = 1 ?

9. Démontrer que pour tout réel a ≥ 0, on a : ea = lim
n→+∞

(
1 +

a

1!
+
a2

2!
+ · · ·+ an

n!

)
.

(D’après Bac C-E)

Exercice 11 (MS et ME) : Dans toute la suite, f désigne une fonction continue et stricte-
ment décroissante sur un segment D = [a; b] (a < b) de R telle que pour tout x ∈ D, f(x) ∈ D.
On suppose que l’équation (E) : x = f(x) a une unique solution α ∈ D.
Soit (un) une suite définie par récurrence par u0 ∈ D et pour tout entier naturel n par
un+1 = f(un).

1. On suppose ici u0 = α. Que dire de la convergence de (un) ? On supposera désormais
u0 6= α.

2. On pose pour tout x ∈ D, h = f ◦ f .
a) Justifier que h est bien définie sur D, et à valeurs dans D, puis que h est continue
sur D.
b) Quel est le sens de variation de h sur D ?

3. Considérons les suites (u2n) et (u2n+1). Supposons u0 ≤ u2.
a) Démontrer par récurrence que la suite (u2n) est bien définie et croissante.
b) Démontrer que la suite (u2n+1) est bien définie et décroissante.
c) Que peut-on dire de la suite (un) si u2n+1−u2n tend vers 0 quand n tend vers +∞ ?

4. Et si u0 ≥ u2 ?
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