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1 Définitions - Divers exemples de suites

Définition 1-1 : Une suite réelle est une application u définie de N dans R. On note
classiquement (uy)nen cette suite et u, est appelé le terme d’indice n de la suite u.
u est parfois définie & partir d’un certain rang N et nous noterons u = (up)p>nN-

On note u,, le terme d’indice n de la suite u, mais on doit bien le comprendre comme wu(n) :
I'image de ’entier n par I'application u. La notation par indice est caractéristique des suites.

Exemple 1-2 : On définit les suites u et v par :
1. pour tout entier naturel n, u, = 2",
2. vg = 1 et pour tout entier naturel n, v,11 = 2v,.

Nous affirmons que les suites u et v sont les mémes!

— La suite u est clairement celle des puissances entiéres de 2 : 1, 2, 4, 8, 16, ...On peut
directement calculer u,, en remplacant I'indice n par la valeur souhaitée : on dit que u
est définie de maniére explicite.

— En revanche, les termes de la suite v sont définis "de proche en proche". Le calcul du
terme v,, nécessite la connaissance du terme précédent v,_1, et bien entendu du terme
initial vg. On dit que v est définie par récurrence.



Exercice flash 1 : faire un dessin modélisant le calcul des v,

De maniére heuristique : ug = 2° = 1 = vy. Puis, pour "passer de" vy & v,, on multiplie
consécutivement vy n fois de suite par 2 , d’ou v, = vg X 2" = 2™ = wu,. Nous justifierons
correctement cette idée dans la section consacrée au raisonnement par récurrence.

Définition 1-3 : On peut définir une suite u = (U )pen :

1. de maniére explicite, par une relation du type u, = f(n), ou f est trés souvent une
fonction réelle de la variable réelle définie sur (au moins) R,

2. par récurrence (d’ordre 1), par la donnée d’'un terme de la suite, souvent le terme
initial ug et d’une relation du type up+1 = f(un) ou upt1 = f(n, uy).

Remarque 1-4 : Les suites définies par récurrence sont truffées de piéges : il faut en effet
vérifier que le terme u,, existe bien quelle que soit la valeur de 'indice n. Par exemple, la suite
définie par ug = 4 et pour tout entier naturel n par u,+1 = v/—3 + u, n’a de sens que pour
n =0 et n = 1, mais pas au-dela.

Enfin, il existe des suites définies par récurrence d’ordre supérieur a 1 : le calcul de u,, néces-
site la connaissance de plus d’un terme le précédant. Un exemple fondamental et non moins
classique est la suite de Fibonacci, définie par ug = 0, u; = 1, et pour tout entier naturel n
supérieur ou égal a 2 par la relation u, = u,—1 + up—2. On parle de suite récurrente (linéaire)
d’ordre 2.

Exemples 1-5 : Calculez pour chacune des suites données les termes ug & uz. On admet que
les suites définies par récurrence sont parfaitement licites i.e u, existe quel que soit I'entier
naturel n.

1. up, =2n2—3n+1
1

2. =1
tn +n—i—l

1
.u=letupp; =1+ —
U

n

4. ug =1 et up41 = 2uy + n?

Réponses :

1. uO:1, ’LL1:0, U2:3, U3:10

3 4 )

2. U0:2, ulzia u2:§) U3ZZ
3 5

3. UO:L ’LL1:2, UQ:§, ngg
4. Uy = 1, Uy = 2, Uz = 5, uz = 14

Quiz 1-6 : éventuellement plusieurs réponsse exactes.

1. Soit u la suite définie par récurrence par ug = 2 et pour tout entier naturel n par
Upt1 — Uy = 3. Alors :
(a) Up = 3n — 2 (b) Up = 2+ 3n (C) U1 = 32 (d) ugzq = 104

2. Soit u la suite définie par récurrence par ug = 2 et pour tout entier naturel n par
Upt1 = duy. Alors :
(a) up =5n+2 (b)) u, =2x5"  (c)uip="52 (d) ug =250



3. Une suite réelle dont la différence entre deux termes consécutifs est constante, est une
suite :
(a) géométrique  (b) arithmétique  (c) autre.

4. Si (up)nen est une suite géométrique de raison g et si (v, )pen est une suite géométrique
de raison ¢, alors :
(a) (up + vy )nen est une suite géométrique de raison g+q'  (b) (un + vn)nen est une

suite géométrique de raison qq’ (¢) (Unvp)nen est une suite géométrique de raison
q¢  (d) (upvp)nen est une suite géométrique de raison q/q’
Réponses :
1. (b), (c) et (d)
2. (b) et (d)
3. (b)
4. (c)

Représentation des suites réelles : Se représenter une situation, méme de maniére in-
compléte ou imparfaite, est déja un premier pas vers la compréhension. En Mathématiques, la
rigueur et l'intuition sont intimement liées, et laisser la part belle & 'une plutét qu’a 'autre,
est une malheureuse rupture d’équilibre.

Mais, bonne nouvelle, elles sont totalement complémentaires et non opposées! Aussi, tra-
vailler son intuition empéche la stérilité résultant d’un excés de rigueur. Et cette derniére
apporte le crédit nécessaire & nos idées parfois foisonnantes dans tous les sens.

On peut représenter les termes d’une suite comme un nuage de points de coordonnées (n, uy,)
ou sur un axe horizontal.
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FIGURE 1 — Nuage de points sur une courbe et sur un axe

Les termes d’une suite définie par récurrence se représentent sur ’axe des abscisses : | VIDEO 0 ).



2 Les fondamentaux

2.1 DMajoration - minoration - sens de variation

Les définitions qui suivent sont essentielles & connaitre et a savoir se représenter graphiquement.

Définition 2-1-1 : Soit u = (uy)nen une suite réelle. Alors u est :

1. majorée (resp. minorée) s’il existe un réel M (resp. un réel m) tel que pour tout entier
naturel n : u, < M (resp. u, > m).

2. bornée si u est majorée et minorée ¢.e s’il existe un réel M > 0 tel que pour tout
entier naturel n : |u,| < M.

3. strictement croissante (resp. strictement décroissante) si pour tout entier naturel
N Uyl > Up (TESP. Upt1 < Up).

4. monotone (resp. strictement monotone) si u est croissante ou décroissante (resp. stric-
tement croissante ou strictement décroissante).

Exercice flash 2 : faire un dessin modélisant chacune des situations

Remarque 2-1-2 : Trés souvent, nous le verrons un peu plus loin, nous nous intéresserons
aux propriétés asymptotiques des suites, i.e vraies @ partir d’un certain rang (apcr).
Ce sera le cas notamment du sens de variation d’une suite ou de son signe.

Remarque 2-1-3 : Les définitions précédentes peuvent se formaliser mathématiquement &
I’aide de quantificateurs. Ceci aide & comprendre une formulation du type : "il existe un réel M
tel que pour tout entier naturel n ...",_en aucun cas synonyme de "pour tout entier naturel
n, il existe un réel M tel que ...". Ceci est trés important & comprendre.
Par ailleurs, un majorant ou un minorant d’une certaine suite u :

— d’une, ne dépendent PAS de n,

— et de deux, ne sont pas uniques : Si M majore u, alors tous les M’ supérieurs a M

majorent aussi u.

Exemples 2-1-4 : De l'importance de cerner rapidement les propriétés d’une suite (quand
cela est possible!). C’est le cas avec les exemples qui suivent :

1. La suite de terme général u,, = n? est strictement croissante, minorée, mais non majo-
rée.

2. la suite de terme général u, = —n + sinn est décroissante, majorée mais non minorée.

3. La suite de terme général u,, = (—1)™ n’est ni croissante, ni décroissante, et bornée.

4. La suite de terme général u, = (—2)" n’est ni croissante, ni décroissante, ni majorée,

ni minorée.

Pour ce faire, une propriété trés pratique nous permet de déterminer le comportement d’une
suite u définie explicitement :

Théoréme 2-1-5 : Soit f une fonction définie sur D = [0; +00[ et u la suite définie pour
tout entier naturel n par u,, = f(n). Alors :

1. u est majorée (resp. minorée, resp. bornée) si f est majorée (resp. minorée, resp. bornée)
sur D.

2. u est croissante (resp. décroissante) si f est croissante (resp. décroissante) sur D.

> La démonstration est immédiate vu que u est la restriction de f a N.



Remarque 2-1-6 : {71 Le théoréme 1-2-1-5 ne concerne que les suites définies de maniére
explicite et s’avére totalement faux pour les suites définies par récurrence comme nous le
verrons & la section 1.3. Vous pouvez faire ici ’indispensable exercice 0. | VIDEO 1

Exercice flash 3 : Construire les cinq premiers termes de la suite u définie sur N par u, = f(n)
ainsi que ceux de la suite v définie par vg = 2 et pour tout entier naturel n par v,+1 = f(vy),
2 ) .
ou f(z) = ool On reportera les termes de v sur 1'axe des abscisses.
x
Rappels : Nous rappelons quelques résultats fondamentaux sur les suites arithmétiques et

géométriques vues en classe de premiére.
Suites arithmétiques :

1. Une suite u est appelée suite arithmétique s’il existe un réel r tel que pour tout
entier naturel n : up+1 — upn = 7. 7 est appelée la raison de la suite.

2. Soit u une suite arithmétique de raison r : u est strictement croissante (resp. strictement
décroissante) si et seulement si 7 > 0 (resp. r < 0).

3. Soit u une suite arithmétique de raison r et de premier terme wug. Alors pour tout entier
naturel n : u, = ug + rn. La réciproque est vraie : ainsi les suites arithmétiques sont
les suites u de terme général u,, = an + b.

4. La somme S de termes consécutifs d’une suite arithmétique est égale a :

premier terme + dernier terme
2

S = (nombre de termes) x

Suites géométriques :
1. Une suite u est appelée suite géométrique s’il existe un réel g tel que pour tout entier

naturel n : up11 = quyn. ¢ est appelée la raison de la suite.

2. Soit u une suite géométrique de raison g et de premier terme ug. Alors pour tout entier
naturel n : u, = ug x ¢". La réciproque est vraie : ainsi les suites géométriques sont les
suites u de terme général u,, = b x a™.

3. Soit u une suite géométrique de premier terme ug > 0 et de raison ¢ : u est strictement
croissante (resp. strictement décroissante) si et seulement si ¢ > 1 (resp. 0 < ¢ < 1).
Nous laissons le lecteur traduire dans le cas ol ug < 0.

4. La somme S de termes consécutifs d’une suite géométrique de raison g # 1 est égale a :

nombre de termes

—4q

S = ier t X
(premier terme) -

Exemple 2-1-7 : On lance une balle dans un tube en plexiglas d’une hauteur de 10 métres.
Elle rebondit chaque fois aux 2/3 de sa hauteur précédente. On considére qu’elle est immobile
si la hauteur de son rebond est inférieure & 1 mm. Calculez la distance parcourue par la balle
4 1073 prés et le nombre de rebonds qu’elle aura effectué.

Réponse : Soit u, la hauteur de la balle et d,, la distance parcourue (exprimée en métres)
aprés n rebonds.

Avant de donner une solution théorique, tentons une approche informatique. Bien siir, un petit
soupcon de mathématiques sera nécessaire afin de justifier le bien-fondé du script !
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# la fonction qui compte le nombre de rebonds

def rebonds (H) : #H est la hauteur initiale de la balle en mm
r =0 #r est le nombre de rebonds initial
while H > 1 :
H = (2/3)*H #rebond aux 2/3 de la hauteur precedente
r=r + 1 #raccourci : r += 1
return r - 1 #le dernier r pour lequel H > 1 : r-1 (decalage !)

# la fonction qui calcule la distance parcourue
def distance (H) :

d =H #la balle tombe d'une hauteur H la premiere fois
while H > 1

H = (2/3)*H #raccourci : H /= (2/3)

d =d + 2xH #raccourci : d += 2+H
return d - 2xH #Attention au decalage

#Programme principal

H = float (input ("Hauteur initiale de la balle en mm ? ")) #H = 10000 ici
print ("La balle a fait ", rebonds (H), "rebonds")

print ("La balle a parcouru ", round(distance (H)/1000,3), "m") #0,001 pres

On trouve 22 rebonds pour une distance parcourue de 49,995 m. Résolvons donc de maniére
théorique le probléme.
Par hypothése ug = 10 et pour tout entier natutel n, u,+1 = %un Ainsi, (un)nen est une suite

2 n
géométrique de raison q = % On a donc : u, = 10 <3> .

n

Comme la balle tombe d’abord d’une hauteur initiale de 10 m, on a d,, = ug + Z2uk i.e
k=1

)
1-13 n
d, =104+2 x @73, soit d,, = 10 + 40 (1— (2> >
3 2 3
1——

Il reste & trouver la valeur de n, correspondant au nombre de rebonds effectués par la balle.
La suite u est strictement décroissante : sa raison est comprise strictement entre 0 et 1 et son
premier terme est strictement positif. Si /N désigne le premier entier naturel tel que uy < 0,001,
alorsn =N —1.

En début d’année, avant que le logarithme népérien soit abordé, on peut se contenter de
programmer la suite u et de déterminer le dernier entier naturel n tel que uw, > 0,001. Sinon,

In(0,0001) .
{ In(2/3) J puis dao 9,995 m

Vous pouvez faire ici les exercices 1 a 4.

2.2 Notion de valeur d’adhérence (Hors-programme)

La notion de valeur d’adhérence, qui n’est pas au programme du secondaire, est cependant
trés utile pour aborder la notion de limite, qui elle, I’est totalement ! Nous la présenterons donc
de maniére heuristique, sans définition précise, a travers plusieurs exemples & bien connaitre,
et la garderons bien au chaud dans un petit coin de notre téte pour la seconde partie de cet
ouvrage dédiée aux mathématiques enseignées au niveau L1.



Exemple 2-2-1 : Considérons la suite u de terme général u,, = (—1)".

. —1 sin est impair
De maniére évidente : u, =

1 si n est pair
Tous les termes d’indice pair de u sont égaux & 1 et tous les termes d’indice impair de u sont
égaux & —1. On peut écrire que pour tout entier naturel n, us, =1 et ugpy1 = —1.

Dans un certain sens, une infinité de termes de la suite u s’accumulent "autour de" 1 et de
—1, en fait exactement en 1 et —1 dans le cas présent.

Exemple 2-2-2 : Considérons la suite u de terme général u,, = sinn. La fonction sinus est
définie sur R, 27-périodique et prend pour valeurs tous les réels de [—1;1].

Qu’en-est-il si nous restreignons ’ensemble de définition de la fonction sinus & N? Il semble
que les termes u,, puissent s’approcher de n’importe quelle valeur y € [—1;1].

L 2°°3°°%°%9°%0°%°,
° ° ° ° oo ° ® e ° ® e
oo L %
e o oo °® °
° ° o © o ©
e ° ° ° ° ° L4 O)
o ° ° e ° ° ° ° °
° ° ° ° e °
° O e o o ® o ° °
o9 oo e ® ° [ ° o
° ° ° e ©
° ° o © ° " ° L4 °®
e o © ® o o ° ° g0 e o0 ee® 0,

FIGURE 2 — Nuage de points

Et cette impression se vérifie! Nous prouverons dans la partie 2 de cette ouvrage que les termes
de la suite u s’accumulent autour de n’importe quelle valeur y de [—1; 1]. Plus précisément, si
I'on se donne une "bande de sécurité" [y — €; y + €] autour d’un réel y € [—1; 1], cette derniére
contient une infinité de termes u,, aussi petit € soit-il! Nous dirons que tout y € [—1;1] est
une valeur d’adhérence de la suite u i.e que 'ensemble des valeurs d’adhérence de la suite
u est Uintervalle [—1;1].

Exemple 2-2-3 : La suite u de terme général u,, = n n’a pas de valeur d’adhérence. En

. 1. . . . .
revanche, la suite v de terme général v,, = — si n est impair et v, = n si n est pair admet une
n

unique valeur d’adhérence : 0.
Exercice flash 4 : faites un graphique

Pour résumer, si une infinité de termes u,, de la suite u "s’accumulent" autour d’une valeur
réelle a, on dit que a est une valeur d’adhérence de u. Un cas trés important ou cette valeur
d’adhérence est unique est abordée dans la section suivante.

2.3 Notion de limite

1
Intéressons-nous a la suite u définie sur N* par u,, = 2+ —. Nous allons étudier le comporte-

ment asymptotique de u, c’est-a-dire les valeurs u,, prises par u lorsque n devient grand. Nous
pouvons déja commencer par calculer les premiers termes & 1073 prés :



nl1] 2 3 1 5 6 7 8 9
wn | 312,25 2,111 | 2,062 | 2,04 | 2,028 | 2,02 | 2,016 | 2,012

Il semble que plus n grandisse, plus les termes w, se rapprochent de ¢ = 2 (en décroissant
strictement).

(="

n
rapprochent de £ = 2 quand n devient grand, mais en oscillant de plus en plus faiblement
autour de 2.

Il en va de méme pour la suite v définie sur N* par v, = 2 + dont les termes v,, se

n|1| 2 3 4 5 6 7 8 9
up, 112,511,667 |2,25|1,8|2,167 | 1,86 | 2,13 | 1,89

On peut formaliser 'intuition précédente en "coingant" d’aussi prés que l'on veut la valeur
£ autour de laquelle tous les termes de la suite u, sauf un nombre fini d’entre eux, semblent
s’accumuler.

Définition 2-3-1 (limite finie) : Soit u une suite réelle. On dit que le réel £ est limite de
la suite u si pour tout intervalle ouvert |a; b contentant ¢ il existe un rang N a partir duquel
tous les u,, appartiennent a ]a;bl[.

Sans perte de généralité (réfléchissez bien pourquoi), on peut supposer que Uintervalle |a;b]
est de la forme |¢ — €; £ + €[ (¢ > 0). La définition précédente s’écrit alors :

Le réel £ est limite de la suite u si pour tout € > 0, il existe un rang N a partir duquel tous

les u,, appartiennent a [¢ — €; £ + €. On note | £ = lim wuy, |
n—+400

La définition précédente dit que si I'on se donne un petit intervalle ouvert centré en £, tous les
termes de la suite, sauf un nombre fini d’entre eux, sont compris dans cet intervalle. On peut
réduire la longueur de cet intervalle autant que voulu, ce qui a pour effet de générer des rangs
N de plus en plus grands.

Dessin et animation Geogebra : | VIDEO 2 a

Théoréme 2-3-2 : Si une suite réelle u a pour limite ¢, cette derniére est unique.
Démonstration : Supposons que la suite u posséde deux limites £ et ¢ distinctes. Alors
e = | — ¢'| > 0. D’aprés l'inégalité triangulaire, on a pour tout entier naturel n :

[0 — 0| <[ —up|+ |up — ¢

Comme ¢ = lir}rl Uy, alors il existe un rang N tel que pour tout entier naturel n > N, on a
n—-+0oo
€
Comme ¢ = lim wu,, alors il existe un rang N’ tel que pour tout entier naturel n > N’, on

n—-+o0o
alu, — 0| < %
Mais alors :
Pour tout entier naturel n > max (N,N') : € = [{ —=| < [l —up| + |up, — 0|<2x § =€
Contradiction !
Ainsi, la limite d’une suite, si elle existe, est unique. X

On peut maintenant parler de LA limite d’une suite u.

Définition et remarque 2-3-3 : Si une suite u a pour limite réelle £, on dit que u converge
vers £ ou que (up)pen tend vers £ quand n tend vers +o0.



Pour rebondir sur le paragraphe concernant les valeurs d’adhérence, si une suite u a une limite
finie ¢, cette derniére est une valeur d’adhérence de u et c’est la seule. En effet, la définition
de la limite d’une suite assure qu’une fois une précision € fixée, "tous les termes de u, sauf
un nombre fini, s’accumulent autour de ¢" a ¢ prés. Les u,, de rapprochent donc aussi
pres de £ que 'on souhaite, pourvu que n soit suffisamment grand.

T 1 T Une suite u peut avoir une unique valeur d’adhérence sans pour autant converger vers

cette derniére : c.f le contre-exemple 2-2-3.
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FIGURE 3 — Suite convergente

Exemples et contre-exemples 2-3-4 :

1
1. Les suites de terme général u,, = —, n > 1 et v, =

vn

2. La suite de terme général w, = (—1)" n’a pas de limite.

convergent vers 0.

3. La suite de terme général z, = sinn n’a pas de limite.

Démonstration : Au niveau de la Terminale Maths complémentaires ou méme spécialité, on

1
peut se contenter d’admettre les résultats du 1. : plus n grandit, plus — se rapproche de 0.

Il en est de méme pour —=. Ceci dit, revenir a la définition de la limite ne pose pas trop de
n

probléme. Nous conseillons au lecteur de faire la démarche.

En revanche nous allons démontrer le point 2., et quitte & s’envoler dans ’abstraction et

admettre provisoirement un résultat théorique, nous traiterons méme le cas du point 3 (exercice

5).

Supposons par I’absurde que la suite de terme général (—1)" admette une limite £ € R. En

choisissant € = 2 on peut trouver un entier naturel IV tel que si n est supérieur ou égal & N,

1
alors |[(=1)" — ¢| < 2 Donc :

— Pour tous les entiers naturels n impairs supérieurs ou égaux & N,ona | —1—/| =
1 3 1
1+/4 <-. Dot —- <l < ——.
1+4 2 2 2




. . . 1
— Pour tous les entiers naturels n pairs supérieurs ou égaux a N, on a |1 — /| < 7 D’ou

1 3
— <l <=

La contradiction éclate aussitot !
Nous en concluons donc que la suite w n’a pas de limite, ce qui était déja intuitivement évident
d’un point de vue graphique. X

Propriété 2-3-5 (bornitude) : Toute suite convergente est bornée.

Démonstration : On rappelle que ||a| — |b|| < |a — b].

Cela dit, soit u une suite convergente de limite £. Alors en prenant par exemple € = 1, il existe
un rang N tel que pour tout entier naturel n > N, |u, — ¢] < 1.

Tenant compte du rappel, on a pour tout entier naturel n > N : |u,| < |¢] + 1.

Donc pour tout entier naturel n : |u,| < max(|ug|, |uil,...,|un—1],[¢| + 1). Donc u est
bornée. X

Propriété 2-3-6 (signe des termes) : Soit u une suite convergente de limite réelle ¢. Si
¢ > 0 (resp. si £ < 0), alors a partir d’'un certain rang, tous les u, sont strictement positifs
(resp. strictement négatifs).

Démonstration : On ne traite que le cas £ > 0 : donc on peut trouver un réel strictement
positif € tel que £ —¢e > 0 (faire un dessin). Pour cet ¢, il existe un rang N a partir duquel tous
les u,, appartiennent a [¢ —e; £ + €[. Doncsin > N, up, >0 —€e>0. X

T 171 les termes u,, d’une suite convergente u peuvent étre tous strictement positifs (ou stric-
tement négatifs) sans que la limite le soit. Un contre-exemple classique est la suite u définie

. 1 .
pour tout entier naturel n non nul par v, = — : Vn € N* u,, > 0 mais lim wu, = 0.
n n—-+o0o

[Les inégalités strictes se transforment en inégalités larges a la limite]

Définition 2-3-7 (limite infinie) : Soit u une suite réelle. On dit que la suite u a pour
limite +oo (resp. —oo) si pour tout réel strictement positif A, il existe un rang N a partir
duquel tous les u, sont supérieurs & A (resp. inférieurs & —A).

Dessin et animation Geogebra : |VIDEO 2 b

Autrement dit, si u tend vers +oo, la suite u "n’a pas de plafond" : quelle que soit le réel
A > 0 que l'on se donne, aussi grand soit-il, nous sommes certains qu’a partir d’'un certain
rang, tous les termes de la suite vont dépasser A.

Propriété 2-3-8 : Limites usuelles (début d’année).
1. Les suites de terme général n* (ke N*),e", Inn,q" (¢ > 1) tendent vers +oo.
1 1 1

T (k € N¥), %7 o tendent vers 0.

1
2. Les suites de terme général —,
n
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n=35 *
L
120 @ )
D:y=A 4"
e 1
- Jim w, =00 <= (VA > 0)(3N € N)(¥n = N)u, > A. L !
Si on se donne un “plafond” A>0, tous les termes de la suite - |
le dépassent a partir d’'un certain rang. - :
L]
80 . i
. i
. [
. !
&0 - |
. I
. i
. i
. i
40 . ® I
* !
. I
+ i
- .
20 - I
. ° I
- |
i
lN
1] 2 4 6 8 10 12 14 16 18 20 2 24 2% 23 30
FIGURE 4 — Suite divergente vers +o0
Résumons les situations et le vocabulaire associé :
Convergence | Divergence

u a une limite finie OUI NON

u a une limite infinie NON OUI

u n’a pas de limite NON OUI

2.4 Opérations sur les limites

La plupart des suites que nous rencontrons en pratique ne sont pas des "suites de référence",
mais peuvent s’interpréter comme la somme, le produit, I'inverse, le quotient, la composée de
telles suites. Il est donc important de pouvoir manipuler ces expressions.

Soient u et v deux suites réelles, £,/ € R et k € R. On suppose dans tout ce paragraphe que
lim wu, et lim v, EXISTENT.
n—-+00 n—-+o0o

Dans les tableaux qui vont suivre, le symbole?? ne signifie pas que la limite n’existe pas,
mais que nous ne pouvons pas conclure en toute généralité. Nous devons donc effectuer un
traitement au cas par cas. On parle dans ce cas d’indétermination ou de forme indéterminée.

les limites

Somme et limites

lim wu, 14 fou—+oo | £ou —oco | +00

n—-+00
lim wv, v +o00 —00 —00

n——+00
lm (up +op) | £+ +0o0 —00 77

n—-+o0o
Explicitons le cas de la forme indéterminée +oo — 0o :
— On peut obtenir n’importe quel réel £ en posant u,, = n+fetv, = —n: lirf Uy = 400,
n—-+0o0o
lim v, = —o0, mais lim (u, + v,) =¢.
n—-+4o0o n—-+4o0o
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— On peut obtenir +oc0 en posant u, = 2netv, = —n: lim u, = +oo, lim v, = —o0,

n— 0o n—-+oo
mais lim (u, + v,) = +00.
n—+0o
— On peut ne pas obtenir de limite en posant u, =n+ (—=1)" et v, = —n : lirJrrl Uy =
n—-+0o0
+oo, lim w, = —oo, mais (u, +v,) = ((—1)") n’a pas de limite.

n—-+00

Produit et limites

lim w, [£#0|L#0]| c©
n—-+00

lim v, v 00 0
n—-+oo

lim wpv, | €0 00 77
n——+00

Explicitons le cas de la forme indéterminée oo x O :

— On peut obtenir n’importe quel réel £ en posant u, = — et v, = n : lim wu, = 0,
n n—-+oo
lim v, = +o0, mais lim wu,v, = £.
n—-+oo n—-+oo
2. lim w, =0, lim v, = 400,

. 1
— On peut obtenir +oo en posant u, = — et v, = n
n n—-+oo n—-+oo

mais lim wu,v, = +oo.
n—-4o00

(=n"

n
lim v, = +o0, mais (u,v,) = ((—1)") n’a pas de limite.
n—+o00

Remarquons que le produit d’une constante réelle k£ par le terme général u, d’une suite ne

pose aucun probléme : si lim wu, =/, alors lim ku, = kf.
n—-+o0o n—-+o0o

Si k # 0 et si la limite de u est infinie, il s’agit d’appliquer la régle des signes. Et si k =0777
Nous n’osons pas insulter I'intelligence du lecteur avec ce cas!

— On peut ne pas obtenir de limite en posant u, = et v, =n: lim u, =0,

n—-+o0o

Inverse et limites

u, > 0 aper | u, <0 apcr | sinon

ngr}rnoo uln Y4 71é 0 | £o0 0 0 0
lim — - 0 +00 —00 77
n—+00 Uy 14

Conjuguant les tableaux des produit et inverse, on obtient celui des quotients :

Quotient et limites

lim wu, 14 {#0 00 £ ou oo 0 | o0
n—-+00

lim v, | £ #0]| oo | ¢ #0 |0 avec v, de signe constant | 0 | oo
n—+oo

lim £ 0 o0 00 77177
n—+o00 Up 4

Retenons donc les quatre formes indéterminées au programme du secondaire :

0 00
+00 — 00 0 x oo — —
0 00

Signalons enfin un résultat trés utile de composition que nous utilisons fréquemment dans le
cadre des fonctions continues.

12



Théoréme 2-4-1: Soit u une suite réelle a valeurs dans un intervalle I et soit f une fonction

définie sur I. Si HETOO up = £ et si glcg% f(z) = L, alors ngrfwf(un) =L.

Exemple 2-4-2 :

. u
1. Donner deux exemples de suites (uy,) et (v,) qui tendent vers +oo et telles que — :
U,
a) tende vers un réel ¢ b) tende vers 400  ¢) n’a pas de limite
2. Aprés avoir justifié de la présence d’une forme indéterminée, levez cette derniére en
réécrivant le terme général des suites définies pour tout entier naturel n par :
an? +n

9 n? —2n 3
a)up =n*—=3n+1  b)u,=4"-2"  c)u,=—F5—+ du,=en +t1
n° +1
Démonstration :
1. a) up, = nl et v, = n conviennent. b) u, = n? et v, = n conviennent. c)
up = (—1)"n et v, = n conviennent.
2. a) lim n® = 400 et lim (—n + 1) = —oo, donc nous sommes en présence d’une
n—+o00 n—+o00

forme indéterminée +o0o — 0o. Il y a plusieurs maniéres de lever I'indétermination, mais
nous retiendrons que pour les fonctions polynomes, il suffit de factoriser le terme de

2

3 1
plus haut degré. Ici, u, = n? (1 - —+ 2). Or lim n* = 400 et par somme :
n o n

n——+o00
i 3 1 . .
lim {1-—+4 — ) =1 Donc par produit : lim wu, = +o0.
n—-+oo n n n—-+4oo
b) lim 4" = lim 2" = 400, donc nous sommes en présence d'une forme indétermi-
n—-+00 n—-+00
née 400 — oo. Factorisons par 4™, le terme qui semble, et qui est, prépondérant dans
2 n
I’expression de u,. Donc u, = 4" <1 — () > Orsig>1, lim ¢" = 400 et si
4 n—+o0o
—-1<g<1, lim ¢"=0.
n—-+00
2 n 2 n
Donc lim 4" = 4oo et lim <> = 0, donc par différence lim <1 — () ) =
n—-+oo n—-+oo \ 4 n—-+oo 4

1, puis enfin par produit, lim wu, = 4oc0.
n—-+o0o

c¢) Le numérateur de u,, est sous forme indéterminée 400 — oo, mais on peut comme
au a) prouver qu’il tend vers +o0o. Le dénominateur tend clairement vers 4+o0o0. Nous

somme donc en présence d’'une forme indéterminée —.

Q0
L’idée est de factoriser le terme de plus haut degré du numérateur et le terme de plus

2 2
n2(1 - 2) 1-=
haut degré du dénominateur : u,, = n_o_ n

1 1.
Ona lim 1-—=1et lim n(l+ —) = 400 par somme et produit. Donc finale-
n—-+oo n n—-+oo n
ment, par quotient : lim wu, = 0.
n—+oo
. 4An?+n o .
d) On prouve comme au ¢) que lim ——— = 4. Or par continuité de la fonction

n—+oo n2 41
exponentielle en = 4 : lim e® = e*. Donc par le théoréme 1-2-4-1 :  lim u, = e*.
z—4 n——+00
Nous retiendrons que factoriser le terme dominant nous permet souvent, déja dans le cas des
fonctions rationnelles (quotient de deux fonctions polynomes) de lever des indéterminations.
Encore faut-il préciser ce qu'on appelle "terme dominant" (Hors programme dans le secon-
daire). Nous l'effleurerons en exercice et théme d’étude.
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Terminons en touchant quelques mots sur la notion de croissance comparée qui nous servira
également dans les cas douteux. Sous réserve de ne pas tomber sur des cas pathologiques : suite

u
qui s’annule une infinité de fois, on dira que (u,) est négligeable devant (v,) si lim — = 0.
n—+00 Uy

Théoréme 2-4-3 (Deux résultats de croissances comparées) :

n

1. lim me™ ™ =0; on a méme pour tout réel @ >0 : lim n% e " =0.

n—-+00 n—-+00
. Inn ) Inn)?
2. lim —— = 0; on a méme pour tout réel a et tout réel b >0 : lim ( b) =0.
n—+oo n n—-+oo n
Démonstration :

2
x
1. Nous admettons, pour gagner du temps, que pour tout réel z > 0: 1+ x + o) < e”.

e’ 1 x
Mais alors pour tout réel x >0: — > — 4+ 1+ 5 Le terme de droite tend vers +o0
x x
e :
quand x tend vers 400, donc par comparaison lim — = 4o00. D’'ot lim — =0.
T—+00 I n—+oo e"
Inn Inn
2. Soit n > 0. Posons u,, = —. On a u, = o
n e nn

lim Inn=+ocoetparl. : lim L 0, donc par composition lim wu, = 0.
n—-+oo r—+oo el n—-+oo
Nous vous proposons dans les fiches méthode de ce chapitre un recueil de techniques utiles de
calculs explicites de limite, qui seront également détaillées dans la m Pour autant,
toutes les suites ne sont pas définies explicitement et méme pour celles qui le sont, il peut étre
extrémement délicat de déterminer leur limite, si elle existe. Vous verrez en premiére année
d’enseignement supérieur scientifique des outils plus performants. Mais patience !

Exemple 2-4-4 : En utilisant les résultats de croissance comparée liI_’I_l ne " = 0 et
n—-+0oo
lim —— =0, déterminer la limite des suites de terme général
n—4+oco n
Inn Inn)?
1.a)un:—etb)vn:( )

vn n

Démonstration : Tout est question de réécriture!

Inn In(y/n%) _ 2ln(\/ﬁ).

Vo n Vn
Inx In(y/n)

1. a) Pour tout entier naturel n > 1 : u, =

Or i = t lim — =0, d ition : i =0, et
r lim Vn = +oo e Jm , donc par composition : lim N , €
partant lim w, = 0.
n—-+0o

Inn
b) Pour tout entier naturel n > 1 : v, = (> = u2. On en déduit immédiatement

NG

que lim v, =0.

n—-+o0o
. 9 Inn
2. Posons pour tout n € N*, w, = In(w,). Alors w, =n* —3lnn=n|n—3— ).
n

: : Inn : :

Ona lim n=4occet lim n—3— = +o0o, donc par produit : lim wu, = +oo.
n—-+oo n—-+o00 n n—-+00

Comme lim e* = 400, on a par composition lim w, = +oo.

T—r+00 n—-+00
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3 Le raisonnement par récurrence (spécialité Maths)

Vous fréquentez 'ensemble des entiers naturels N depuis votre plus tendre enfance ot vous
avez appris & compter sur vos doigts, puis appris vos tables d’addition et de multiplication.
Pour autant, sauriez-vous définir N ?

Sa construction n’est pas au programme du secondaire, mais certaines de ses propriétés si!
Nous résumons donc ci-dessous les axiomes qui sont a la base de sa définition et qui permettent
ensuite d’établir de nombreuses propriétés.

Axiomes de Peano : Il existe un ensemble N dont les éléments sont appelés les entiers na-
turels, un élément 0 € N appelé zéro et une application s: N — N, dite application successeur,
vérifiant les propriétés suivantes :

1. 0 n’est le successeur d’aucun entier,

2. Deux nombres entiers qui ont le méme successeur sont égaux,

0eA
3. Si A C N est tel que , alors A =N.
s(A)C A
Le point 3 définit le principe de récurrence, d’une utilité capitale en analyse et que nous allons
reformuler de maniére pragmatique et pratique sous la forme suivante :

Principe de récurrence (récurrence simple) : Soit P(n) une propriété dépendant de
I’entier naturel n.

Initialisation : Si P(0) est vraie,

Hérédité : Si pour tout entier naturel n, le fait que P(n) soit vraie entraine que P(n + 1) est
vraie,

Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

On peut se représenter le principe de récurrence comme celui qui nous permet de monter une
échelle infinie : le barreau du bas est numéroté 0, puis son successeur est numéroté 1, etc.
L’initialisation nous permet de mettre le pied sur le premier barreau 0; I’hérédité nous dit que
si l'on a le pied sur le barreau n, alors on peut grimper au barreau suivant n + 1 et ceci quelle
que soit la valeur de n. Bref, avoir le droit de poser le pied sur le premier barreau et le droit
de passer d’un barreau a son successeur nous permet de grimper notre échelle infinie.
Remarquons enfin que I'on peut remplacer 0 par tout autre entier ng, auquel cas la conclusion
devient : P(n) est vraie pour tous les entiers naturels n supérieur ou égal a ng.

Exemple 3-1 : Prouvons que pour tout entier naturel n non nul :

1

1. 1+2+3+~-+n:”(”2+>
1)(2 1

2 12422442 = "0 )6( ntl

Démonstration : voir aussi https://www.youtube.com/watch?v=a6AWclssIF4
1
1. Posons pour tout entier naturel n non nul : P(n): 14+2+4---+n= n(n;—)
1+1
Initialisation : 1 = %, donc P(1) est vraie.

Hérédité : Soit n un entier naturel non nul quelconque. Supposons que P(n) est vraie

1 2
et prouvons que P(n + 1) estvraie:1—|—2+---—|—n—|—(n+1):(n—i_)z(n—i_).
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n(n+1)

Par hypothése de récurrence : 1 +2+---4+n+(n+1) = + (n+1).

1 1)+ 2 1 1 2
Or n(n;—) +(n+1) = nin + );_ (n+1) _ (nt )2(n+ ) Ainsi, P(n + 1) est
vraie.

Conclusion : on a prouvé que P(1) est vraie, et que pour tout entier naturel n non nul,
P(n) vraie entraine P(n + 1) vraie, donc d’aprés le principe de récurrence, P(n) est
vraie pour tous les entiers naturels n non nuls ¢.e pour tout entier naturel n non nul :

1
1_|_2_|_..._|_n:n(n2+).

1)(2 1
2. Posons pour tout entier naturel n non nul : P(n) : 124224 .. 4n2 = n(n+1)(2n+ )

11+ D)2 x141) 6

Initialisation : = 1= 12, donc P(1) est vraie.

6
Hérédité : Soit n un entier naturel non nul quelconque. Supposons que P(n) est vraie et

)
1 2)(2 1 1
prouvons que P(n+1) est vraie : 12422+ - -+4n?+(n+1)? = (n+ 1+ )6 (ntD)+1)

1 2)(2
e TP g (g 17— DO 2C )

6
1)(2 1
Par hypothése de récurrence, 12 +22 4+ - 4n?4 (n+1)% = n(n+1)@n+1)

n(n+1)(2n+1) 2 n(n+1)(2n+1)+6(n+1)2.

+(n+1)2

Or +(n+1)

6
Bt nn+1)2n+1)+6(n+1)2  (n+1)[n(2n+ 1)+ 6(n+1)]
6 R 6 '
Enfin, comme n(2n+1) 4+ 6(n+1) = 2n? + T+ 6 = (n +2)(2n + 3), on en déduit que
P(n+ 1) est vraie.
Conclusion : on a prouvé que P(1) est vraie, et que pour tout entier naturel n non nul,
P(n) vraie entraine P(n + 1) vraie, donc d’aprés le principe de récurrence, P(n) est

vraie pour tous les entiers naturels n non nuls i.e pour tout entier naturel n non nul :
12492 1o p2— n(n+1)6(2n—|—1).

111 I convient de rédiger parfaitement vos récurrences. Signalons quelques erreurs souvent
commises et qui n’en sont pas moins abominables! Voici le top 3 :

— N°3 : Dans 'hérédité, on suppose que POUR UN CERTAIN n donné, la propriété
P(n) est vraie, qui peut se traduire par "il existe un entier naturel n" tel que P(n) est
vraie. Alors que I’hérédité repose sur le principe " Pour tout entier naturel n, P(n) vraie
entraine P(n—+1) vraie". Vous apprendrez ceci dans le supérieur avec les quantificateurs
existentiels et universels.

— N°2 : OUBLIER L’INITIALISATION! Grandes ou petites valeurs, le probléme reste le
méme ; et puis pour reprendre I'heuristique de 1’échelle, comment grimper le long de
I’échelle si vous n’avez pas le droit de poser le pied dessus?

— N°1 : Et enfin LA PIRE DES ERREURS qui consiste a prendre pour hypothése de
récurrence : "Supposons que POUR TOUT entier naturel n, P(n) est vraie". Autrement
dit, vous prenez pour hypothése exactement ce que vous cherchez a prouver !

16



Exemple 3-2 VIDEO 4] : Considérons la suite u définie sur N par ug € R™ et pour tout
entier naturel n par uny41 = /1 + Up.

1. La premiére chose a vérifier est que la suite u est bien définie, c’est-a-dire que 1'on
puisse calculer u,, pour n’importe quelle valeur de I’entier n.

(a) “Etudier les variations de f: [~1;4+o00[— R,z — /1 + x et justifier que si z € R™,
alors f(z) € RT (on dit que I'intervalle [0; +o0o[ est stable par f).

(b) Prouver par récurrence que pour tout entier naturel n, u, est bien défini et que
uy > 0.

2. On suppose ici que ug = 0. Placer sur 'axe des abscisses les termes ug & ug a l'aide
du graphe de f et de la droite D d’équation y = x (la premiére bissectrice). Vers
quelle valeur ¢ semblent se rapprocher les termes w, ? (on pourra résoudre 1’équation
flx) = x)

3. Démontrer que pour tout entier naturel n, 0 < wu, < upy; < £. Que dire sur la
monotonie de u? u est-elle minorée, majorée, bornée ?

4. Sil’on choisit ug > ¢, par exemple ug = 2,5, quel semble étre le comportement de u?
Justifier par récurrence sur n € N que pour tout entier naturel n : £ < upy1 < uy.

5. Conclure selon la valeur initiale de ug € [—1; 4o00[ de la limite éventuelle de la suite u.
6. Quen est-il si up1 = f(uy), ot f: [0; +0o[— [0; +oo[, x — 22 ? Vous préciserez selon la
valeur de ug la convergence ou divergence éventuelle de u. En revanche, vous prouverez

de maniére précise par récurrence la monotonie de u et son éventuel caractére minoré
ou majoré. Let’s play !

Solution : Nous verrons en exercice comment prolonger cet exercice et prouver de maniére
effective les résultats subodorés.

1. (a) u: [~1;400[— RT,z — x + 1 est strictement croissante et v: RT — Rt x> /z
est strictement croissante, donc par composition f = vow est strictement croissante
sur [—1; +o0l.

(b) Posons pour tout entier naturel n, P(n) : u, est bien défini et u, > 0.
Initialisation : up = 0 donc P(0) est vraie!
Hérédité : Soit n € N quelconque; supposons que P(n) est vraie : u, existe et
up > 0. Comme f est définie sur R* et que u,y1 = f(un) , uny1 existe et par
croissance de f : upy1 = f(up,) > f(0) =1 > 0. Donc P(n + 1) est vraie.
Conclusion : Pour tout entier naturel n, u,, est bien défini et u,, > 0.

2. Il semble que la suite u converge vers ’abscisse du point d’intersection de la courbe
représentative de f et de la premiére bissectrice, ce qui revient & déterminer la solution

14z =a? 1 )
sur RT de /1 + 2 = . Cette équation équivaut a : { —; 0 1.e x = +2\[.
=z

3. Posons pour tout entier naturel n, P(n) : 0 < u, < upy1 < L.

1++5
2

Initialisation : ug = 0, u; = f(ug) =1 et £ = . On a bien 0 < ug < uy </,
donc P(0) est vraie.

Hérédité : Soit n € N quelconque. Supposons que P(n) est vraie : 0 < uy, < uptq < L.
Prouvons que P(n + 1) est vraie : 0 < upy1 < tpyo < L.

Par croissance de f sur RT, on a : f(0) < f(un) < flunt1) < f0) ie 1 < upqy <
Upto < Lcar f(£) =L. Dot 0 < uptq < upto < Let P(n+1) est vraie.

Conclusion : Pour tout entier naturel n, 0 < u, < tpqq < L.

On en déduit que la suite u est croissante et bornée (minorée par 0 et majorée par ).
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FIGURE 5 — Premiers termes avec ug =0

4. Tracons les premiers termes de u.
La encore, ils semblent se rapprocher de £.

FIGURE 6 — Premiers termes avec ug = 2,5

Posons pour tout entier naturel n, P(n) : £ < up1 < .
Initialisation : Soit ug > L. w1 = f(ug) > f(¢) par stricte croissance de f. Comme

1 2
f(0) =4, 0onau; >/ Enfin, ug —ug =1+ uy—ug = + o~ U . Mais le trindme

V14 ug+ ug

1 + x — 22 prend des valeurs strictement négatives quand = > £, et comme uy > £,
1+wup—ud <0, donc u; —up < 0. Dot £ < uy < ug et P(0) est vraie.

Hérédité . Paradoxalement, ce sera plus simple que l'initialisation! Donnons-nous un
entier naturel n quelconque et supposons P(n) vraie :¢ < up+1 < u,. Par croissance de
fil=f) < flunt1) =tnt2 < f(up) = upt1. Donc P(n + 1) est vraie.
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Conclusion : pour tout entier naturel n, £ < upy1 < uy. On en déduit en particulier
que si ug > £, la suite u est décroissante et minorée par /.
Il semble 14 encore que les termes u,, se rapprochent de /.

5. — Pour tout réel uy > 0, il semble que u converge vers £ : en croissant si ug € [0; [, en
décroissant si ug > ¢, et en stagnant (suite constante) si ug = ¢ (récurrence triviale).
— Siug € [—1;0], alors u; € [0;1[C [0; 4], et on est ramené au cas précédent.

6. Laissé a la sagacité du lecteur. Nous vous donnons le graphe utile & vos supputations.

451

FIGURE 7 — Avec ug € RT et u, 1 = u%

Il est parfois nécessaire de modifier le principe énoncé précédemment afin de prouver qu’une
propriété P(n) est vraie pour tous les entiers naturels n (éventuellement apcr). Clest le cas
notamment lorsqu’une suite est définie par une récurrence d’ordre 2 : ug, u; donnés et pour
tout entier naturel n : w9 = f(n, Un, Upt1)- Enoncons le ...

Principe de récurrence (récurrence double) : Soit P(n) une propriété dépendant de
I’entier naturel n.

Initialisation : Si P(0) et P(1) sont vraies,

Hérédité : Si pour tout entier naturel n, le fait que P(n) et que P(n+1) soient vraies entraine
que P(n + 2) est vraie,

Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

Exemple 3-3 : On note u la suite définie par ug =0, u; = 1 et pour tout n € N : uy10 =
VUn + un+1 + 3. Prouver que la suite u est bien définie, croissante et majorée par 3.

Solution : Pour tout entier naturel n, posons P(n) : up, et u,4; sont bien définis et 0 <
Up < Upy1 < 3.

Initialisation : ug = 0 et u; = 1 sont bien définis et 0 < up < w3 < 3 donc P(0) est vraie.
u2 = /0 + 1+ 3 =2 est bien défini et on a 0 < uy < uy < 3, donc P(1) est vraie.

Hérédité : Soit n € N. Supposons P(n) et P(n + 1) vraies : up, Un11 €t up12 sont bien définis
et 0 < up < upt1 < upto < 3. Prouvons que P(n + 2) vraie : up42 et uyy3 sont bien définis
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et 0 < upyo < upgsg < 3.

Par hypotheése, uy42 est bien défini et comme up+1 > 0 et upt2 > 0, Upt3 = \/Upy1 + Upy2 + 3
est bien défini. De plus, par hypothése de récurrence : 0 < uy + U1 +3 < Upt1 + Upgo +3 <
34343 = 9. Par croissance de la fonction racine carrée : 0 < upy2 < upt3 < 3, donc P(n+2)
est vraie.

Conclusion : Pour tout n € N, u est croissante et majorée par 3.

Voir aussi https://www.youtube.com/watch?v=G_KgFsucyBs

Dans certains cas, il est méme nécessaire de considérer le cas de tous les P(k), 0 < k < n.

Principe de récurrence (récurrence forte) : Soit P(n) une propriété dépendant de ’en-
tier naturel n.

Initialisation : Si P(0) est vraie,

Heérédité : Si pour tout entier naturel n donné, le fait que tous les P (k) soient vraies (pour
k compris entre 0 et n) entraine que P(n + 1) est vraie,

Conclusion : Alors P(n) est vraie pour tous les entiers naturels n.

n
Exemple 3-4 : Soit u la suite définie par ug > 0 et pour tout n € N, upy; < Zuk

k=0
Prouvons que pour tout entier naturel n : u, < 2"uqg.

Solution : Pour tout entier naturel n, posons P(n) : wu, < 2"ug.
Initialisation : ug = 2%uy < 2%, donc P(0) est vraie.
Hérédité : Soit n € N. Supposons que P(0), P(1),...P(n) vraies et prouvons que P(n + 1)
vraie : 1 < 2",
Upy1 < Zn:uk < Zn:Qkuo = u02”+17—1 < 2"y, Donce P(n 4+ 1) est vraie.
=0 ko 2-1 -

Conclusion : Pour tout entier naturel n : u, < 2™uy.

Remarque 3-5 : il existe d’autres formes de récurrence : triple, descendante, limitée, etc.
Nous en verrons quelques unes en exercice, mais déja, maitriser correctement celles qui sont
présentées ci-dessus est essentiel. Le raisonnement par récurrence est trés courant en mathé-
matiques et s’applique a de nombreuses situations qui dépassent largement le théme de ce
cours.

4 Théorémes d’existence, de comparaison et d’encadrement

Théoréme 4-1 (de la limite monotone) : FONDAMENTAL !
1. (a) Toute suite croissante et majorée converge.
(b) Toute suite croissante et non majorée tend vers +oo.
2. (a) Toute suite décroissante et minorée converge.
(b)

b

Toute suite décroissante et non minorée tend vers —oo.

Les théorémes 1.(a) et 2.(a) sont admis au niveau du secondaire, mais leur utilité n’en reste
pas moins redoutable! Signalons donc en corollaire que toute suite monotone et bornée
est nécessairement convergente. Démontrons 1. (b) :

Supposons u croissante et non majorée :
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— u non majorée, donc pour tout réel A > 0, il existe un entier naturel NV tel que uy > A.
— u croissante, donc pour tout entier naturel n > N : u, > uny > A.
Conclusion : on a prouvé que pour tout réel A > 0 il existait un entier naturel N, tel que pour

tout entier n > N : u, > A, ce qui est la définition de lim wu, = +oc.
n—-+4o0o

Exemple 4-2 : Soit u la suite définie par ug € R et pour tout entier naturel n par u,4+1 =
V3un + 6.
1. On suppose ug = 0.
(a) Prouver que pour tout entier naturel n que 0 < u,, < upy1 < 6.
(b) En déduire que u converge.
2. On suppose ug = 10.
(a) Prouver que pour tout entier naturel n que 4 < up41 < uy,.

(b) En déduire que u converge.

Solution : Une récurrence immeédiate prouve que pour tout entier naturel n, u, est bien
défini et u,, > 0.

1. (a) La fonction f définie sur [0; 4+o0[ par f(z) = v/3x + 6 est clairement strictement
croissante.
Pour tout entier naturel n, posons P(n) : 0 < up, < upt1 < 6.
Initialisation : uy = /6 <6, donc 0 < ug < ug < 6 : P(0) est vraie.
Hérédité : Fixons-nous un entier naturel n quelconque et supposons P(n) vraie :
0 < up < upy1 < 6. Par croissance de f sur [0;+o00[, on a : f(0) < f(u,) <
fni1) < £(6) ie V6 < upi1 < Upio < /24, Comme /24 < 6 :
0 < upt1 <tpga <6:P(n+1) est vraie.
Conclusion : pour tout entier naturel n : 0 < uy, < Upqq < 6.

(b) Croissante et majorée, u converge.

2. En raisonnant comme & la question précédente, on prouve que u est décroissante et
minorée, donc convergente.

Remarquons que le théoréeme de la limite monotone est un théoréme d’existence de limite. 11
ne donne en aucun cas sa valeur.
Nous disposons encore d’autres résultats d’existence :

Théoréme 4-3 (de comparaison) : Soient u et v deux suites réelles. On suppose qu’apcr
Uy < vp. Alors :

1. Si lim v, = —o0, alors u a une limite et lim wu, = —oo.
n—-+o0o n—-+o0o

2. Si lim w, = 400, alors v a une limite et lim v, = +oc.
n—-+oo n—-+oo

Démonstration : On peut comprendre heuristiquement ce résultat comme : si le plus grand
(resp. le plus petit) des deux termes généraux de nos deux suites tend vers —oo (resp. vers +00),
alors le plus petit (resp. le plus grand) tend nécessairement vers —oo (resp. +00). Prouvons le
premier point. Le second se traite de méme. Il s’agit de démontrer que pour tout réel A > 0,
il existe un entier IV tel que pour tout entier n > N, u,, < —A.

Soit N7 un entier tel que pour tout entier n > Ny : u, < vy,.

Soit A un réel strictement positif. Comme lirf v, = —00, il existe un entier naturel Ny tel
n—-+0oo

que pour tout entier n > N : v, < —A.
Mais alors pour tout entier n > N = max(Ny, N2) : u, < v, < —A, ce qui prouve bien que

lim u, = —oc0. X
n—-+00
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Exemple 4-4 : Soit = un réel strictement positif. Prouver par récurrence que pour tout

entier naturel n : (1 4+ )™ > 14 nz et en déduire que si ¢ > 1 : lirf q" = +oo0.
n—-—+0o0

Solution : Posons pour tout entier naturel n, P(n) : (1 +z)" > 1+ nz.

Initialisation : (14 x)° =1=1+ 0 x z, donc P(0) vraie.

Hérédité : Soit n un entier naturel quelconque. Supposons que P(n) est vraie : (14+z)" > 1+nz,
et prouvons que P(n + 1) est vraie : (14 2)"*! > 1+ (n 4+ 1)z.

Multiplions chaque membre de I'inégalité (1+z)™ > 1+nx par le réel strictement positif 14 z.
On obtient (1 4+ 2)"*' > (14 nz)(1 +z) =1+ 2z +nz +nx? > 1+ (n+ 1)z. Donc P(n + 1)
est vraie. Ainsi, pour tout entier naturel n : (14 x)" > 1+ na.

Posons pour tout entier naturel n : u,, = 1+nx et v, = (14x)". On a pour tout entier naturel

n: v, > u, et lim wu, = 4o0o. D’aprés le théoréme de comparaison : lim v, = 4o0.
n—-+o00 n—+-00

Soit ¢ > 1. On peut écrire g =1+ x, avecx =g —1 > 0.
D’aprés ce qui précéde : lim ¢" = +oo.

n—-+o0o
Théoréme 4-5 (encadrement) : Soient u,v et w trois suites réelles et ¢ € R. Si apcr
Up <tUp <wpetsi lim v, = lim w, =¥, alors lim wu, =/¢.
n——+0oo n—-+0o n—-+00

Démonstration : Soit € > 0. Par hypothése, il existe un rang Ny a partir duquel v, <

Uy < wy. Puis il existe un rang Ny a partir duquel ¢ — € < v, et un rang N3 & partir duquel

wy, < €+ €. Donc si n > sup(Ny,Na,N3), on al —e < uy, < £+ € ie |u, — ¢ < e Dou
lm wu, =4 K

n—-+o00

T 171 Le théoréme d’encadrement n’est pas un simple théoréme de passage a la limite dans
des inégalités larges. Quand on passe a la limite dans une inégalité, ON SAIT DEJA que les
membres de gauche et de droite ont une limite. Dans le théoréme d’encadrement, seules les
limites des suites v et w sont supposées exister (et étre égales). On en déduit l'existence de la
limite de u et sa valeur.

. 3n +sinn .
Exemple 4-6 : Soit (uy)nen+ de terme général u,, = ——— . Justifier que u converge et
n
préciser sa limite.

sinn

Solution : Remarquons que pour tout entier naturel n non nul : u, = 3 + . 11 suffit

sinn
donc d’encadrer

. Or pour tout entier n : —1 < sinn < 1, donc pour tout entier naturel n

1 1 1
nonnul : 3— — <wu, <3+ —. Comme lim 3——= lim 3+ — = 3, on a par le théoréme
n n n—+o00 n n—-+00 n

d’encadrement que lim wu, = 3.
n—-+oo

Quiz 4-7 : Pour chaque question, une ou plusieurs réponses sont possibles.
n
dx. Alors u est :

1
1. Soit u la suite de terme général u, = /
o 1+=x

(a) croissante  (b) décroissante  (c) minorée  (d) majorée  (e) convergente  (f)
divergente

2. Si une suite u est décroissante et minorée par 0, alors la limite de u est 0.

(a) VRAI  (b) FAUX
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3. Si pour tout entier naturel non nul : 3 < u,, <5, alors :
(a) u a pour limite 4  (b) u diverge  (c) on ne peut rien dire

4. Une suite u non minorée :
(a) ne peut pas tendre vers +00  (b) tend vers —oo  (c) diverge toujours

5. Le produit d’une suite u bornée par une suite v de limite nulle est une suite :
(a) minorée  (b) majorée  (c) divergente (d) qui tend vers 0

Solution :
xn+1 n
1. (b) (¢) (d) (e): serendre compte que pour tout z € [0;1] —— < et utiliser
®) © @ pre ane o tonc € 01) [ <
la croissance de l'intégrale, puis que 0 < u,, < ek
n

1
2. (b) : prendre par exemple u, =1+ — (n > 1).
n

sinn

3. (c) : prendre par exemple u,, = 3 + 2 et v, = 3 si n est pair et v, = 5 si n est

n
impair : u tend vers 3 mais v n’a pas de limite.

4. (a) et (¢) : pour (a) revenir aux définitions de u minorée et de u tend vers +oo et
raisonner par l’absurde. Pour (c), se rappeler que toute suite convergente est bornée,
donc minorée.

5. (a) (b) et (d):il existe M > 0 tel que pour tout entier naturel n : —M |v,| < upv, <
M/|vy,| puis appliquer le théoréme d’encadrement.

5 Upy1 = f(un)

Nous avons étudié a 'exemple 3-2 une suite récurrente du type un+1 = f(uy,), mais malgré
quelques avancées : exploration graphique, preuve par récurrence du caractére minoré ou ma-
joré et croissance de la suite, il nous manque la preuve rigoureuse de la convergence de u et
la calcul de sa limite.

Cette section se propose d’initier le lecteur a I’étude de telles suites a travers quelques exemples
simples. Un chapitre entier leur est consacré pour aller plus loin dans leur approche.

Théoréme 5-1 : Soit u une suite réelle définie par récurrence : ug donné et pour tout entier
naturel n : w41 = f(up). Si u converge vers ¢ et f continue en ¢, alors £ = f(¢).

Ce théoréme est admis au niveau du secondaire, mais se retrouve propulsé comme outil fonda-
mental de recherche de limite : Si jamais la suite u converge, alors sa limite est ’une
des solutions éventuelles de ’équation f(x) = = sur I’ensemble de définition de f.
Cette derniére fonction sera toujours considérée comme continue.

Bon, démontrons-le quand méme !

Démonstration : Fixons ¢ > 0. Comme f est continue en ¢, il existe un réel n > 0 tel que
pour tout réel x € DNl —n; 0+, |f(xz) — f(0)] <e.

Or (uyp) converge vers ¢, donc il existe N € N tel que pour tout entier n > N, |z, — | < n.
Mais alors si n > N, |f(u,) — f(¢)| < e. Donc (f(uy)) converge vers f(£).

D’autre part, comme pour tout n € N, w41 = f(uy), (un+1) converge vers £ donc par unicité
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de la limite : £ = f(¢).

En fait, comme nous le verrons au chapitre continuité d’une fonction de la variable
réelle, nous disposons méme d’un théoréme extrémement important et pratique caractérisant
la continuité d’une fonction en un point.

Théoréme (caractérisation séquentielle de la continuité) : Soit f: D — R une fonc-
tion et £ € D. Alors :

f est continue en £ si et seulement si pour toute suite (u,) d’éléments de D convergeant vers
¢, la suite (f(uy)) converge vers f({).

Revenons & nos moutons!

Un peu de théorie applicable en pratique Dans toute la suite, f désigne une fonction
définie (et méme continue) sur une partie D de R telle que f(D) C D i.e telle que pour tout
x €D, f(x) € D :on dit que D est stable par f. Soit (u,) une suite définie par récurrence
par ug € D et pour tout entier naturel n par u,+1 = f(un).

1. On prouve aisément par récurrence que (uy) est bien définie et que pour tout entier
naturel n : u, € D.

2. Limites éventuelles : on résout 'équation (E) : f(z) = x sur D. Ses solutions sont les
seules limites possibles de la suite (u,) d’aprés le théoréme 5-1. S’il n’y en a pas, c’est
terminé : (uy,) diverge.

3. On suppose (ou on prouve par une étude de fonction) que f est croissante sur D.
a) Si ug < uy (resp. ug > wuy) on prouve par récurrence que la suite (u,) est croissante
(resp. décroissante).
b) On prouve ensuite par récurrence que (u,) est majorée ou minorée, trés souvent par
I'une des solutions ¢ de (E).
c¢) Croissante et majorée OU décroissante et minorée, (u,,) converge par le théoréme de
la limite monotone.
d) En fonction de ce qui a été démontré en a) et b), on sait vers quelle solution de (F)
la suite converge et on conclut.

Le cas ou f est décroissante sera abordé en exercice.

Un exemple type : Soit f la fonction définie sur D = [0;1] par f(z) = 6+ 5 et la suite
x

eln

Up + 2
1. Justifier que f est strictement croissante sur D et préciser les valeurs f(0) et f(1). En
déduire que si z € D, alors f(z) € D.

1
(uy) définie par ug = 5 et pour tout n € N par u,+1 =

2. Prouver par récurrence que pour tout n € N, 0 < up < upyq < 1 et en déduire que la
suite (uy) converge. On note ¢ sa limite.

3. En étudiant la fonction g définie sur D par g(x) = e —x(z +2), justifier que ’équation
(E) : f(z) = = admet une unique solution a sur D. Vous donnerez un encadrement de
a 4 1072 pres.

4. En déduire que (u,) converge vers «.
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Solution : Remarquons que f est dérivable sur D = [0; 1] comme quotient de deux fonctions
dérivables sur D dont celle au dénominateur ne s’annule pas.
e’(r+1)

@127 > (, donc f est strictement croissante sur D. On
x

1. Pour tout z € D, f'(x) =

1 Ve
af(O):§et f(l):?
2. Posons pour tout entier naturel n, P, : 0 < up < upq1 < 1.
Initialisation : Comme f est croissante sur [0;1] :

1 1
Ogugzizf(O)gf 5 §f(1):\f§1, donc Py est vraie.
Hérédité : Soit n € N quelconque. Supposons P, : 0 < uy, < up4q < 1 vraie. Alors par

croissance de f sur [0;1] : f(0) < f(un) < f(unt1) < f(1) ie % < Upi1 < Upao < \éé.

Donc P41 est vraie, ce qui achéve la récurrence.

On en déduit que la suite (u,) est croissante et majorée, donc converge d’aprés le
théoréme de la limite monotone.

Notons ¢ sa limite et remarquons que puisque pour tout n € N, w, € [0;1], alors
¢ € [0;1] (le fait que D = [0; 1] soit fermé est important : considérer 1/n ...).

3. Soit ¢z € D.
—r=0 <<

f@) =2 — x4+ 2 x4+ 2
On pose pour tout z € D, g(z) = e* — z(x + 2).
g est indéfiniment dérivable sur D et pour tout réel x € D :

g (x) =" —2x — 2 et ¢’ (x) = e — 2 (pas le choix de calculer ¢’ (x)).

J"(z) <0 <= =z € [0;In2] et ¢"(x) >0 <= =z € [In2;1]. Donc ¢’ posséde un
minimum global en z = In2. Comme ¢’(0) = —1 <0 et ¢'(1) = e—4 < 0, on en déduit
que ¢'(z) < 0 pour tout z € D. Donc g est strictement décroissante sur D.

Ainsi, g est continue sur D = [0;1], strictement décroissante, et 0 € [g(1);¢(0)] =
[e — 3;1], donc d’aprés le TVI strictement monotone, I’équation g(x) = 0 posséde une
unique solution o € D. En utilisant une calculatrice, on obtient 0,78 < a < 0, 79.

e’ e’ —x(x+2)

=0 < " —z(z+2)=0.

4. Nous savons que (un) converge vers £ € D et que pour tout entier naturel n, u,+1 =
f(uy). Comme f est continue sur D, alors le théoréme 5.1 nous assure que £ est solution
de léquation z = f(z) sur D. Or cette équation a une unique solution « d’aprés la
question précédente, donc par unicité de la limite £ = a.
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6 Exercices

Nous regroupons ici des exercices niveau Maths complémentaires (MC), de Maths spécialité
(MS) ainsi que quelques exercices de Maths expertes (ME). Les deux derniers exercices sont
plus théoriques. L’exercice 10 nécessite notamment de connaitre le cours de calcul intégral.

Exercice 0 : Définir deux fonctions : I'une présentant f croissante et u définie par récurrence
décroissante ; 'autre f décroissante et u définie par récurrence non monotone.

Exercice 1 (MC et MS) : Préciser dans chacun des cas si la suite est définie de maniére
explicite ou par récurrence et calculer les termes ug & us.

. 2n —3
1. Pour tout entier naturel n, u, = ———
n2+1
2. Pour tout entier naturel n, u, = 4" — 2™
3. ug = 1 et pour tout entier naturel n, w41 = —u% +n—1
. 3
4. ug = 3 et pour tout entier naturel n, u,+1 = Zun + 2

Exercice 2 (MC et MS) : Justifier précisément le sens de variation des suites de terme
général :
L u, =5x3"

9 2
C Uy = —
" n+1
3. ug = —10 et pour tout entier naturel n, upy1 = up +2n + 3
1
4. Up+1 = Up — 67

Exercice 3 (MC et MS) : Justifier précisément si les suites de terme général ci-dessous
sont minorées, majorées, bornées ou non.

1. u, =cosn
1
2. Un =g (n>1)
3. Up =3n—7
4. uy, = (=3)"
5. u, =0,4"

n
. . €k
Exercice 4 (MC, MS et ME) : Soit E = {(un)nen ; VR € N, u, = Z ok k€ {-1;1}}.
k=1

Ecrire un programme en Python qui prend pour entrée un réel quelconque z € [—1;1] et un
seuil de précision € > 0 et qui renvoie u,, comme défini ci-dessus, tel que |u,, — z| < €.

Nous prouverons plus tard que toute suite appartenant & ’ensemble E est convergente vers
un réel x € [—1;1] et que réciproquement, tout réel z € [—1; 1] est limite d’une suite u € E.

Exercice 5 (MC, MS et ME) : Considérons la suite u définie sur N par u,, = sinn. On
suppose par I’absurde que la suite u converge vers un réel £.

1. Exprimer sin(n + 1) en fonction de sinn et de cosn puis en déduire en faisant tendre n
vers +0o que la suite de terme général cosn converge vers une limite que 1’on précisera.

2. En utilisant la relation : Vo € R, cos?x + sin® z = 1, justifier que ¢ # 0.

3. Exprimer sin(2n) en fonction de sinn et de cosn, puis aboutir & une contradiction.
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Exercice 6 (MC, MS et ME) : Déterminer les limites, si elles existent, des suites de terme
général :

2n? —3n+5 3—Inn
Loajun=3nt-lntl Bu=aogany dwms— 5 dum=0
2. a) up =n%e™  Db)u,=vn+1-yn ¢ un:kjnz d) Un =12

3. a) u, =

0 si n est pair n  sin est pair
. . . b) up = . . .
0,5"™ sin est impair 2" si n est impair

Exercice 7 (MS et ME) : Prouver qu’une suite d’entiers convergente est stationnaire i.e
constante a partir d'un certain rang : pour N assez grand uny = Un4+1 = UN42 = .. ..

Exercice 8 (MS et ME) : Soient u et v deux suites et soient a et b deux réels tels que
pour tout entier naturel n : u, < a et v, < b. Prouver que si lirf (up, + vp) = a + b, alors
n—-—+0o0o

lim u, =aet lim v, =0.
n—-+oo n—-+oo

Exercice 9 (MS et ME) : Nous rappelons le résultat suivant :
Théoréme : Soit D une partie de R et f une fonction définie sur D. Considérons la suite u
définie par récurrence : ug € D et up+1 = f(uy,) pour tout entier naturel n. Si u converge vers
¢ € D et sila fonction f est continue en ¢, alors £ = f(¥).
Autrement dit, les limites éventuelles de u sont & chercher parmi les points fixes de f i.e parmi
les solutions de I’équation f(x) = = sur D.
1. Justifier proprement la convergence de u de l'exemple 3-2 vers une limite que vous
préciserez.
2. Etudier la suite u définie par la donnée de ug > 0 et pour tout entier naturel n par
Up41 = SIN Up,.
(a) Rechercher les limites éventuelles en déterminant la ou les solutions de 1’équation
sinz = x sur RT.
(b) Traiter le cas ou ugp = 0. On supposera désormais que ug > 0..
m
(c) Prouver que pour tout entier naturel n : 0 < up41 < uy, < 5

(d) En déduire que la suite u converge et préciser sa limite.

Exercice 10 (MS et ME) : Ce probléme a pour but d’étudier la suite de terme général

n'e " . L .
— et de donner une expression de e comme limite d’une suite.
n! g
Pour tout n € N*, on note f,, la fonction définie sur [0; +oo[ par f,(z) = p

1. Etudier les variations de f,, et démontrer que pour tout n > 2, f,_1(n) = fu(n).

2. Soit (uy) la suite définie sur N* par w, = fp(n). Démontrer que la suite (u,) est
décroissante. Cette suite est-elle convergente ? (justifier la réponse).
2
3. Soit g la fonction définie sur I = [0;1] par : g(t) =In(1 +¢) —t + 1
2
a) En étudiant les variations de g, démontrer que pour tout ¢t € I, In(1+1t¢) <t — 1

1 n
b) En déduire que pour tout entier n > 1, on a : <1 + ) < elm1/4n
n
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4. Démontrer que pour tout entier n > 1, on a : L < e /% ot en déduire que pour

n
1 1 1 1
tout entier n > 2, ona: u, <exp|—-1— - + 4o+ =41,
4\n—-1 n-2 2

. . " dt 1 1 1
5. a) Démontrer que pour tout entier n > 2, on a : — <144+ + .
1t 2 n—2 n-1

(on pourra utiliser des considérations d’aire).
1
b) En déduire que pour tout entier n > 2, on a : u, < exp (—1 1 In n) Quelle est

la limite de la suite (uy,)?
a tne—t

6. Pour tout entier n > 1 et réel a > 0, a fixé, on pose : I,,(a) = / dt.

0 TL'
a) Calculer I (a).
tn

b) Démontrer que pour tout entier n > 1 et tout réel t > 0, on a : 0 < f,,(t) < -
n!

¢) En déduire un encadrement de I,,(a).
1 e\”
7. Démontrer que pour tout entier n > 1, on a : - < (—) (on pourra utiliser 2.).
n!
Déterminer alors une nouvelle majorationde I,(a) puis la limite de I,(a) quand n tend

vers +o0.

8. a) En utilisant une intégration par parties, établir une relation entre I,(a) et I,,—1(a)

pour tout entier n > 2.
a a™
b) En déduire que pour tout entier n > 2, I,(a) =1—e ¢ <1 + T + -+ '>.
! n!
Cette égalité reste-t-elle valable pour n =17

2 n
a a a
9. Démontrer que pour tout réel a > 0,ona: e = lim (1+—+—+ -+ —|.
n—+o0 1 2! n!

(D’aprés Bac C-E)

Exercice 11 (MS et ME) : Dans toute la suite, f désigne une fonction continue et stricte-
ment décroissante sur un segment D = [a;b] (a < b) de R telle que pour tout = € D, f(z) € D.
On suppose que l'équation (E) : z = f(x) a une unique solution o € D.
Soit (u,) une suite définie par récurrence par ug € D et pour tout entier naturel n par
Un+1 = f(un)
1. On suppose ici ug = a. Que dire de la convergence de (uy)? On supposera désormais
ug #£ a.
2. On pose pour tout © € D, h = fo f.
a) Justifier que h est bien définie sur D, et a valeurs dans D, puis que h est continue
sur D.
b) Quel est le sens de variation de h sur D ?

3. Considérons les suites (u2y) et (u2p+1). Supposons uy < ua.
a) Démontrer par récurrence que la suite (ug,) est bien définie et croissante.
b) Démontrer que la suite (ug,41) est bien définie et décroissante.
¢) Que peut-on dire de la suite (uy) si ugnt1 — U2y tend vers 0 quand n tend vers +oo 7

4. Et siug > ug?
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