Une introduction a Python 3

Hubert Raymondaud - Yannick Le Bastard

20 mars 2019

1 Exercices d’initiation

Exercice O :

1. type(56+9) type int
type(3*4) type int
type(3/4) type float
type(3.%4) type float
type

(
(
(
(
type(
(
(
(

I

") type str

'5’+2) message d’erreur

type(CABC*2) type str : "ABC’*2 donne ’ABCABC’
type(’5’-+str(2)) type str :’5’+str(2) donne ’52’
type([11,’Hello’,56.3|) type list

S R A R

Exercice 1 : Pour bien comprendre I'affectation paralléele!
Question 1 : a prend pour valeur 7 et b prend pour valeur 3.
Question 2 : a prend pour valeur 7 et b prend pour valeur 1.

Exercice 2 : Voici un script :

from math import sqrt
AB=float (input ("AB= ? "))
AC=float (input ("AC= ? "))
print ("BC=", sqrt (AB**2+ACx*x2))

Exercice 3 : Voici un script :

N=int (input ("N= ? "))
for i in range(l1l):
print (i, "fois",N, "egale",Nx*1i)

Exercice 4 : Nous obtenons :
1. [2,5,8,11] et pas 14, exclus.
2. [14,11,8,5] et pas 2, exclus.
3. nous obtenons la liste vide.
4. [-2,—5,—8,—11] et pas -14, exclus.
5. [-2,1,4,7,10] et pas 13, exclus.

10

15

20

Exercice 5 : Une solution. ..

#question 1
S,p=1,1
for i in range(2,21,2):
P=Pxi
S=S+1/P
print (S) #on obtient 1.6487212706873655

#question 2
N=int (input ("Nombre de barres de fractions ? "))
S=1
for i in range(N): #ou range(1,N+1)
S=1+1/S
print (S) #avec N=5 on obtient 1.625

#question 3

S=0
for i in range(1,10): #ou range(l,11) ! pourquoi ?
for j in range(i+1,11): #3j>1
S=S+1ix7]
print (S) #on obtient 1320
2 0O 0 O T 1
. -1 2 1 . .
Nous devons résoudre 1’équation : 0 —1 (2) 8 ii =[] quise traduit par le
0 0 -1 2 T4 1
systéme :
2$1 =1
-1+ 229 =1 .
! 2 < —x;+2x;41 =1 (0 < i< 3) en posantzy = 0
—x9+2x3 =1
—x3+2x4 =1

On en déduit que z;41 = (1+z;)/2, ce qui nous permet de calculer pas a pas les z;. La solution
est (z1,x2,r3,24). Nous renvoyons le lecteur au paragraphe sur les listes pour ce qui suit.

#question 4
sol=[0,0,0,0,0]
for i in range(0,4):
sol[i+1]=(1+so0l[i])/2
print ("Solution :",sol[l:]) #on a Solution : [0.5, 0.75, 0.875, 0.9375]

Un petit exercice du méme ordre est de programmer un script dans le cas ol la matrice est
triangulaire supérieure avec des —1 au-dessus de la diagonale.

Exercice 6 : un bon galop d’essai!

#question 1
N=int (input ("N= ? "))
s,p=1,1
for i in range (N):
P=P*2%* (1+1)
S=S+1/P
print (S) #avec N=5 on obtient 1.641632080078125

#question 2

10

15

20

25

10

15

20

S=0
for i in range(1l,4):
P=1 #Attention a la place de 1l'initialisation de P
for k in range(l,i+1):
P=Pxkx (k+1)
S=S+1/P
print (S) #on obtient 0.5902777777777778

#question 3

u,v=1,1 #initialisation de la suite de Fibonacci

S=u+v

N=int (input ("Nombre de termes a sommer ? "))

for i in range(N-2): #Attention au decalage !
u,v=v,utv #Bien comprendre ceci
S=S+v

print (S) #avec N=7 on trouve 33

Exercice 7 : Soyez for! while not ?

#question 1

#solution 1 (avec for) : il suffit de remarquer que 3% (2++x16) = 196608

S=3

for i in range(1l,17):
S=S+3%2**1

print (S) #on trouve 393213

#solution 2 (avec while)

S=3

i=1

while 3%2+%x1<=196608: #le dernier terme donne la condition
S=S+3%x2*x1
i=i+1

print (S) #meme resultat : 393213

#question 2
S=1
N=2
while S<5:
S=S+1/N
N=N+1
print (N-1) #N-1 et pas N ; on trouve N=83

Exercice 8 : Test de saisie.

ch=""
while len(ch) !=10:
ch=input ("Saisir exactement 10 caracteres (espaces compris) ")
if len(ch)==10:
print ("Saisie correcte")
break

Exercice 9 : Dessinons la situation a ’aide d’'un diagramme de Venn :

10

15

-

N%4 # 0

O N
4

~

N%100 ==

4 N
N%400 == 0

_

-

/

Ainsi, 'année N est bissextile si et seulement si :

N%4 == 0 or (N%100! = 0 and N%400 == 0) : "le noyau et une couronne". Dés lors le

script devient simple :

N=int (input ("Entrez une annee N "))
if (N%4==0 and N%100!=0) or N%400==0:
print ("Annee bissextile")
else:
print ("Annee non bissextile")

Exercice 10 : Le jeu du devin.

#question 1
from random import randint
alea=randint (1, 100)
N=int (input ("Choisir un entier entre 1 et 100
compteur=1
while N!=alea:
if N>alea:
print ("Plus petit")
else:
print ("Plus grand")
N=int (input ())
compteur=compteur+1l
if N==alea:
print ("Gagne en", compteur, "essais")

"))

20

25

30

10

15

20

25

#question 2
from random import randint
alea=randint (1,100)
N=int (input ("Choisir un entier entre 1 et 100 : "))
compteur=1
while N!=alea and compteur<5:
if N>alea:
print ("Plus petit")
else:
print ("Plus grand")
N=int (input ())
compteur=compteur+1l
if N==alea:
print ("Gagne en", compteur, "essais")
else:
print ("Perdu ! il fallait trouver",alea)

Exercice 11 : ordre alphabétique.

#test de bonne saisie
chl=input ("Saisir une chaine 1 de caracteres en minuscules : ")
ch2=input ("Saisir une chaine 2 de caracteres en minuscules : ")
condition=(chl=="" or ch2=="")
while condition==True:
chl=input ("Saisir une chaine 1 de caracteres en minuscules : ")
ch2=input ("Saisir une chaine 2 de caracteres en minuscules : ")
condition=(chl=="" or ch2=="")

m=min (len(chl), len(ch2))
for i in range (m) :
if chl[il<ch2[i]:
print (chl, "<",ch2)
break
elif chl[i]>ch2[i]:
print (ch2, "<",chl)
break
else: #pour le cas abc < abcd par exemple
if len(chl)<len(ch2):
if ch2[m]!="":
print (chl, "<",ch2)
elif len(ch2)>len(chl) :
if chl[m]!="":
print (ch2, "<",chl)
else:
print ("Les chaines sont identiques")

Exercice 12 : Chiffres romains.

N=int (input ("saisissez un entier entre 1 et 3999 "))
Nbis=N #copie de N

R=""

while N>=1000: #car M peut etre ecrit plusieurs fois consecutivement
R=R+"M"
N=N-1000

#une fois tous les milliers epuises, on regarde les centaines
if N>=900:

10

15

20

25

30

35

40

45

50

55

R=R+"CM"
N=N-900

elif N>=500: #ou 1if
R=R+"D"
N=N-500

elif N>=400: #ou 1if
R=R+"CD"
N=N-400

while N>=100: #car C peut etre ecrit plusieurs folis consecutivement
R=R+"C"
N=N-100
#une fois les centaines epuisees, on regarde les dizaines
if N>=90:
R=R+"XC"
N=N-90

elif N>=50: #ou 1if
R=R+"L"
N=N-50

elif N>=40: #ou 1if
R=R+"XL"
N=N-40

while N>=10: #car X peut etre ecrit plusieurs fois consecutivement
R=R+"X"
N=N-10
#une fois les dizaines epuisees, on regarde les unites
if N>=9:
R=R+"IX"
N=N-9

elif N>=5: #ou if
R=R+"V"
N=N-5

elif N>=4: #ou if
R=R+"IV"
N=N-4

while N>=1: #car I peut etre ecrit plusieurs folis consecutivement
R=R+"I"
N=N-1

print (Nbis,"s'ecrit ",R, "en chiffres romains")

Exercice 13 : Attention a 'indexation!

ch=input ("Saisir une chaine de caracteres : ")
#question 1
DeO=" "
for i in range(len(ch)) :
neo=neo+ch[len(ch)-1-i] #Attention a 1'indice de fin

print (neo)

#question 2

neo=""

for i in range(len(ch)-1,-1,-2): #le retour de range(a,b,k)
neo=neo+ch[i]

print (neo)

Exercice 14 : Nous ne donnons que le script des questions 2, 3 et 4.

#En toute rigueur, nous devrions effectuer un test de bonne saisie.

#question 2
ch=input ("Saisir un mot en minuscules ")
CH=""
for i in range(len(ch)):
CH=CH+chr (ord(ch[i])-32)
print (CH)

#question 3

CH=input ("Saisir un mot en majuscules ")

ch=""

for i in range(len(CH)) :
ch=ch+chr (ord (CH[i]) +32)

print (ch)

#question 4
mot=input ("Saisir un mot avec majuscules et minuscules melangees ")
mot2=""
for el in mot:
if ord(el)<=90:
mot2=mot2+chr (ord(el)+32)
else:
mot2=mot2+chr (ord(el)-32)
print (mot2)

Exercice 15 : Plus court, tu meurs!

#questionl
print (chf::-17])

#question 2
print (ch[::-2])

Exercice 16 : Complétons le script entamé.

from random import randint

#creation du mot mystere choisi par 1'ordinateur
IL=['a','e', "1 o u','y'l] #liste de voyelles
mot_mystere="" #mot vide au depart
for i in range(5):
mot_mystere=mot_mystere+L[randint (0,5)]
Lmot=[""]=%5 #votre mot en liste (pourquoi ?)

]] A} A}
4 14

10

15

10

15

20

25

30

35

#print (mot_mystere)
while Lmot!=1list (mot_mystere) :
essai=input ("Saisir une voyelle : ")
if essai in mot_mystere:
for i in range(5):
if essai==mot_mystere[i]:
Lmot [i]=essai
print (Lmot)
print ("Bravo !", ILmot)

La variable de sortie est de type list. Pour améliorer le script, écrivez-la sous forme de chaine
de caractéres.

Exercice 17 : Récréation de re-créations!

#Question 1 : minimum d'une liste
L=[]
print ("Saisir cing nombres ") #saisie des elements

for i in range(5):
print ("Nombre",i+1,"? ")
N=float (input ())
L.append (N)

min=L[0]
for j in range(1l,5):
if L[j]l<min:
min=L[7]
print ("Le minimum de",L, "est",min)

#Question 2 : tri dans 1'ordre croissant
#La notion de fonction informatique est tres utile ici
#Mais nous la verrons plus tard !
L=[]
print ("Saisir cing nombres ") #initialisation de L
for i in range(5):
print ("Nombre",i+1,"? ")
N=float (input ())

L.append (N)

Lbis=[]

for j in range(5): #construction de Lbis
min=L[0] #L'initialisation de min est ici

for k in range(l,len(L)):
if L[k]<min:
min=L[k]
Lbis.append (min)
L.remove (min)
print (Lbis)

#Question 3 : tri dans 1'ordre decroissant
#I1 suffit de changer min en max
#Le lecteur le fera aisement !

Exercice 18 : Il faut s’en sort()ir!

#Question 1
from random import randint

10

15

20

10

15

20

25

30

IL=[randint (1,6) for i in range(5)]
print (L)

#Question 2
M=[]
for a in L:
if L.count(a)>1:
M. append (a)
M.sort ()
print (M)

#Question 3
pairs, impairs=[], []
for a in L:
if a%2==0:
pairs.append(a)
else:
impairs.append(a)
pairs.sort ()
impairs.sort ()
print (pairs, impairs)

Exercice 19 : Compréhension et indices!

#Question 1
print (sum([i for i in range(l,202,2)1]1))
#on trouve 10201

#Question 2

N=15

print (sum([1/i*x+«2 for i in range(l,N+1)]))
#on trouve 1.580440283444987

#Question 3

print ("S=",sum([1/(2*i)+*2 for i in range(4,11)]))
print ("T=",sum([1/ (2*«i+1) *+x2 for i in range(4,11)]))
#on trouve S= 0.047164155013857394, puis

#T= 0.039469610441116035

#Question 4

N=30 #on prend un N "grand" (N=22 suffit)

L=[1/1i%*%2 for i in range(l,N)]

print ("S=",sum(L[7:20:2])) #Attention au decalage !
print ("T=",sum(L[8:22:2]))

#Question 5
from math import sqrt
N=int (input ("Saisir un entier naturel N non nul : "))
A=[]
print ("Saisie des coordonnees du vecteur : ")
for k in range (N)
print ("a_"+str(k+1l)+"= 2?2 ")
a=float (input ())
A.append(a)

print ("norme euclidienne de A :",sqrt(sum([a*x*x2 for a in A])))

10

15

20

25

30

10

15

Exercice 20 : on mélange ce qu’on vu avant.

#Question 1
ch=input ("saisir une chaine de caracteres en minuscules : ")
#test de bonne saisie a faire normalement

chtri=""
I=[ord(ch[i]) for i in range (len(ch))]
L.sort () #sinon methode sort () a recreer (vu avant)

for carac in L:
chtri=chtri+chr (carac)
print (chtri)

#Question 2
from random import randint
#bases=['A','C','T', 'G']
chl=input ("Saisir votre brin 4d'ADN : ")
#normalement test de bonne saisie a faire
ch2="" #Le brin complementaire
#script naturel, mais long !
for el in chl:
if el=="A":
ch2=ch2+'T"'
elif el=='C':
ch2=ch2+'G'
elif el=="'T":
ch2=ch2+'A'
elif el=='G': #pourquoi pas else ?
ch2=ch2+'C'
print (chl) #affichage de la base de N nucleotides
print (len(chl)+"|",end="") #alignement de |
print ("")
print (ch2) #Le brin complementaire

#Remarque: ce script peut etre simplifie en remarquant
#quelque chose sur 1'indexation des elements de bases !

Exercice 21 : Exercice 2A ou 2B : ¢a se corse!

from random import =
Voyellesz[lal,lel,lil,lol,lul,lyl]
consonnes=['b','c','d','f','g','h','j','k','l','m','n','p','q','r','S'\

T+ 01 T T T 150
PR AR A S AN

liste=[voyelles[randint (0,5)] for i in range(5)]+[consonnes|[randint (0,19)]\
for i in range(5)]
shuffle(liste) #la liste de 5 voyelles et de 5 consonnes melangees est creee

#il1l reste maintenant a les re-ordonner par ordre d'apparition
print ("entree=",liste)
#initialisation de la liste alternee L
L,v,C=[],11,1] #V et C sont les listes de consonnes et de voyelles de liste
for ch in liste:
test=(ch in voyelles)
if test: #on separe de maniere ordonnee
V.append (ch)
else:
C.append (ch)

test=(liste[0] in voyelles) #pour bien demarrer

10

20

25

30

10

15

20

25

30

35

40

if test:
for i in range(len(C)) : #on reunit en alternant
L.append(V[i])
L.append(C[i])
else:
for i in range(len(C)) :
L.append(C[1])
L.append(V[i])

#print (V,C)
print ("sortie=", L)

Améliorez ce script : attendre la section Fonctions. ..

Exercice 22 : Comme avant, la section Fonctions rendra plus lisible ces scripts.

from turtle import =
#Question 1
for i in range(4):
forward (80)
left (90)

reset () #Pour effacer la figure d'avant
#Question 2
for i in range(5):

forward (70)

left (72)

reset ()

#Question 3

for i in range(6):
forward(100)
left (60)

for j in range(3):
forward(100)
left (120)
forward (200)
left (120)

reset ()
#Question 4
for i in range(10): #Attention : motif=carre + espace
color('red') #couleur des carres : rouge
for j in range(4):
forward (10) #taille d'un carre : 10
left (90)
up ()
forward (10+10) #espacement entre carres de 10
down ()

reset ()
#Question 5
t=10 #taille du premier carre
for i in range(4):
for j in range(4):
color('blue')
forward (t)

11

45

50

55

60

65

10

15

20

left (90)

up ()
forward (t+10) #espacement entre carres de 10
down ()
t=t+15
reset ()
#Question 6
t=10 #mesure d'un cote du carre
e=10 #ecart entre carres

for y in range(5):
for x in range(5) :
for i in range(4):
color('violet') #pour changer...
forward (t)
left (90)
up ()
forward (t+e)
down ()
up ()
goto (0, (y+1) % (t+e))
down ()

mainloop ()

Exercice 23 : Une fonction servira a toutes les questions.

from turtle import =
#fonction commune a toute les questions
def polygoneG(N,T,C):
color(C)
begin_fill ()
for i in range (N):
forward(T)
left (360/N)
end_fill()

#motif en couleurs plein
def motif () :
from math import sqrt
polygoneG (N=4,T=60,C="blue')
forward (30)
color('yellow')
begin_fill ()
circle (30)
end_fill()
left (45)
polygoneG (N=4,T=30*sqrt (2) ,C="green')

motif ()
exitonclick ()

Le motif composé de carrés bleus et de triangles rouges autour d’un hexagone peut s’obtenir
par le script qui suit. Petit bonus : on a rempli les figures.

#second motif (carres et triangles autour d'un hexagone)
#Attention, 11 convient de definir une autre fonction polygoneD(N,T,C)

12

#qui trace les figures en tournant a droite !
def polygoneD(N,T,C) :
color(C)
begin_fill ()
for i in range (N) :
forward (T)
right (360/N)
end_f£fill()

def figure():
polygoneD (N=4,T=80,C="blue')
forward (80)
left (60)
polygoneD (N=3,T=80,C="red")
forward (80)
left (60)

for i in range(3):
figure ()
mainloop ()

La rosace (nouveau motif) s’obtient par :

#motif en rosace (carres et pentagones entremeles)
def rosace():
for i in range (6) :
polygoneG (N=4,T=30,C="blue')
left (30)
up ()
forward (30)
down ()
polygoneG (N=5,T=30,C="red")
left (30)
up ()
forward (30)
down ()

rosace ()
mainloop ()

Nous laissons a la sagacité du lecteur le soin de tracer la suite de 8 rosaces, et pourquoi pas
de lenrouler!

Exercice 24 : Attention a la portée des variables!

on se donne un R.O.N (0;1i;7j)et deux points A (xA;yA) et B (xB;yB)
on souhaite savoir si un point M(xM ; yM) appartient au cercle de diametre [AB]

def saisie():

xA=float (input ("Abscisse de A ? "))
yA=float (input ("Ordonnee de A ? "))
xB=float (input ("Abscisse de B ? "))
yB=float (input ("Ordonnee de B ? "))
xM=float (input ("Abscisse de M ? "))
yM=float (input ("Ordonnee de M ? "))

def distance2(xl,yl,x2,vy2):
return (x1-x2)*x2+ (yl-y2) xx2

13

15

20

25

10

15

20

25

30

def Est_sur_C():
saisie ()

if distance2 (xA,yA,xB,yB)==distance?2 (xA, yA, xM, yM) +distance?2 (xM, yM, xB, yB) :

return 1
else:
return 0

if Est_sur_C()==
print ("M appartient au cercle de diametre [AB]")
else:
print ("M n'appartient pas au cercle de diametre [AB]")

Exercice 25 : Nous donnons un script utilisant une sortie de boucle : 'instruction break.

from math import sqrt

def liste_premiers(n):
liste,impairs=[2], [1 for i in range(3,n+l,2)]

for k in impairs: #on ne teste que les entiers impairs k <= n
for div in range(3,int (sqrt (k))+1,2): #diviseurs impairs
if k&%div==0: #si k a au moins un diviseur div<=racine (k)
break
else: #signifie que k est premier

liste.append (k)
return(liste)

#decomposition en facteurs premiers
def decompositionP (n):

decomposition=[]
for p in liste_premiers(n) :
test=(n%p==0)
while test: #Tant que test est vrai
decomposition.append(p) #liste des facteurs premiers de n
n=n//p
test=(n%p==0)

return decomposition

#Programme principal

n=int (input ("Saisir un entier n : "))

while n<=1: #test de bonne saisie
n=int (input ("Saisir un entier n : "))

print ("decomposition de n en facteurs premiers :")

print (decompositionP (n))

14

2 Exercices thématiques

2.1 Géométrie

Exercice x :

On se prend des droites ?

1.

10

15

20

25

10

15

Par soucis de rigueur, on effectue un test pour vérifier que les trois points A, B et C
sont bien distincts. La condition d’alignement repose sur la colinéarité des vecteurs A
et @ , que l'on exprime analytiquement & l’aides des coordonnées des points A, B et C.

#question 1 determiner si 3 points distincts A, B et C sont alignes.
#on prend le point de vue vectoriel
def sontDistincts (xA,vyA,xB,yB,xC,yC) :
if (xA==xB and yA==yB) or (xA==xC and yA==yC) or
return False
else:
return True

(xB==xC and yB==yC) :

def alignement (xA, yA, xB,yB,xC,yC) :
if sontDistincts (xA,yA,xB,yB,xC,yC) :
delta=(xB—xA) x (yC—yA) — (xC—xA) x (yB—VA)
if delta==0:
return True
else:

return False

xA=float (input ("Saisir l'abscisse de A "))
yA=float (input ("Saisir l'ordonnee de A "))
xB=float (input ("Saisir l'abscisse de B "))
yB=float (input ("Saisir 1l'ordonnee de B "))
xC=float (input ("Saisir l'abscisse de C "))
yC=float (input ("Saisir 1l'ordonnee de C "))

if alignement (xA, yA, xB,yB, xC,yC) :
print ("A, B et C sont alignes")
else:
print ("A, B et C ne sont pas alignes")

. Il faut prendre garde ici qu'une, voire les deux droites peuvent étre verticales (faire un

dessin pour les différents cas). Comme précédemment, on vérifiera que les points sont
tous distincts.

#question 2
def sontDistincts2 (xA,yA,xB,yB,xC,yC,xD,yD) :
if (xA==xB and yA==yB) or (xA==xC and yA==y(C) or
or (xA==xD and yA==yD) or (xD==xC and yD==yC) or
return False
else:
return

(xB==xC and yB==yC)\
(xB==xD and yB==yD) :

True
def Positions (xA,vyA,xB,yB,xC,yC,xD,yD) :
if sontDistincts2 (xA,yA, xB,yB, xC,yC,xD,yD) :
if (xA==xB and xC==xD) :

print (" (AB) et (CD) sont verticales et paralleles")

(xA!=xB and xC!=xD) :
ml,m2=(yB-yA) / (xB-xA), (yD-yC) / (xD-xC)
pl,p2=yA-ml*xA, yC-m2*xC

elif

15

10

15

20

if (ml==m2 and pl==p2):
print (" (AB) et (CD) sont confondues")

elif (ml==m2 and pl!=p2):
print (" (AB) et (CD) sont strictement paralleles")

20 else:
print (" (AB) et (CD) sont secantes")
else:
print (" (AB) et (CD) sont secantes")

25 xA=float (input ("Saisir 1'abscisse de
yA=float (input ("Saisir 1l'ordonnee de
xB=float (input ("Saisir 1l'abscisse de
yB=float (input ("Saisir 1l'ordonnee de
xC=float (input ("Saisir 1l'abscisse de

30 yC=float (input ("Saisir 1l'ordonnee de
xD=float (input ("Saisir 1l'abscisse de
yD=float (input ("Saisir 1l'ordonnee de

o ww® >

Positions (xA, yA, xB,yB, xC,yC, xD, yD)

3. Il suffit d’appliquer le script précédent. On trouve que les droites (AB) et (CD) sont
strictement paralléles.

Exercice y : Nous rappelons qu'un trapéze est un quadrilatére qui posséde deux cotés
paralléles. En particulier, tout parallélogramme est un trapéze.

La condition qui fait de ABCD un trapéze est donc :

condition0) = ((zB — zA) x (yC —yD) — (yB — yA) * (xC —xD) == 0 or (xD — zA) * (yC —
yB) — (yD — yA) x (xC — xB) == 0). Dés lors le script est immédiat :

#Saisie des coordonnees des 4 points
x_A=float (input ("Abscisse de ?2 ")
y_A=float (input ("Ordonnee de
x_B=float (input ("Abscisse de
y_B=float (input ("Ordonnee de
x_C=float (input ("Abscisse de
y_C=float (input ("Ordonnee de
x_D=float (input ("Abscisse de
y_D=float (input ("Ordonnee de

o ww® >
[V JEC JEC S I JSU I

def trapeze (xA,vA,xB,yB,xC,yC,xD,yD) :

condition00=(xB-xA) * (yC-yD) — (yB-yA) x (xC—xD) ==0
condition0l=(xD-xA) x (yC-yB) — (yD-yA) x (xC-xB)==0
conditionO0=(condition00 or conditionO1l)
if conditionO:

print ("ABCD est un trapeze")
else:

print ("ABCD n'est pas un trapeze")

trapeze(x_A,y_A,x_B,y_B,x_C,y_C,x_D,y_D)

Exercice z : Nous allons nous servir de la condition 0 de I'exercice précédent ainsi que des
conditions 1, 2 et 3 du cours qui nous ont servi & définir un parallélogramme, un rectangle, un
losange et a fortiori un carré. Rappelons-les. Considérons donc un quadrilatére ABCD.
— condition 0 : "ABCD a (au moins) deux cotés paralléles", ce que l'on a traduit par :
condition0) = ((zB — zA) * (yC —yD) — (yB — yA) *x (xC — D) == 0 or (xD — zA)

16

10

15

(yC —yB) — (yD — yA) x (2C — 2B) == 0)

— condition 1 : "ABCD a ses cotés paralléles deux a deux", ce que 'on traduit par :
conditionl = (xB — A == xC — zD and yB — yA == yC — yD)

— condition 2 : "L’angle ABC est droit", ce que l'on a traduit par :
condition2 = ((xB — zA) x %2 + (yB — yA) %2 + (xB — 2C) x x2 4+ (yB — yC) x %2 ==
(xC — zA) x %2 + (yC — yA) % *%2)

Attention : c’est la conjonction des conditions 1 et 2 qui permettait d’affirmer que
ABCD, en tant que parallélogramme, était en fait un rectangle.

— condition 3 : "Les cotés AB et BC sont de méme longueur", ce que l'on a traduit par :
conditiond = ((xB — zA) %2 + (yB — yA) x %2 == (2B — zC) x x2 + (yB — yC) * x2)
Attention : c’est la conjonction des conditions 1 et 3 qui permettait d’affirmer que
ABCD, en tant que parallélogramme, était en fait un losange.

En schématisant & I'aide d’un diagramme de Venn, c’est ce dernier qui va nous donner 'idée
du script :

screenshot001.png

Quadrilatéres quelcongues

Condition 0 : trapézes

Condition 1 : parallélogrammes

Condition 2 : l'angle ABC droit

Condition 3: AB = BC

xA=float (input ("abscisse de A ? "))
yA=float (input ("ordonnee de A ? "))
xB=float (input ("abscisse de B ? "))
yB=float (input ("ordonnee de B ? "))
xC=float (input ("abscisse de C ? "))
yC=float (input ("ordonnee de C ? "))
xD=float (input ("abscisse de D ? "))
yD=float (input ("ordonnee de D ? "))

def Quadrilatere (xA,yA, xB,yB,xC,yC,xD,yD) :
condition00=((xB—xA) x (yC-yD) — (yB-yA) * (xC—xD) ==0)
condition0l=((xD-xA) * (yC-yB) - (yD-yA) x (xC—xB) ==0)
conditionO0=(condition00 or conditionO01)
conditionl=((xB-xA==xC-xD) and (yB-yA==yC-yD))
condition2= ((XB—XA)*x2+ (yB-yA) x*x2+ (XC—xB) x*2+ (yC—yB) *%2==(XC—XA) x*x2+ (yC—yA) x%2)
condition3=((xB—xXA) **x2+ (yB-yA) xx2== (XC—xB) %2+ (yC—yB) **2)
if conditionO:
print ("ABCD est un trapeze")
if conditionl:

17

20

25

30

10

15

20

25

print ("ABCD est aussi un parallelogramme")
if conditionl and condition2:
print ("ABCD est un rectangle")
if conditionl and condition3:
print ("ABCD est meme un losange")
if conditionl and condition2 and condition3:
print ("ABCD est meme plus : un carre !")
if not conditionO:
print ("ABCD est un quadrilatere quelconque")

Quadrilatere (xA, vA, xB,yB, xC,yC, xD, yD)

2.2 Probabilités - statistiques

Exercice x : La variable aléatoire D : "différence entre le plus grand et le plus petit des
deux nombres affichés" prend clairement pour valeurs : {0;1;2;3;4;5} (& proposer aux éléves
en réflexion préliminaire). Notons que le langage Python dispose des fonctions min et max
comparant deux réels donnés, mais il est pédagogiquement intéressant de les reconstruire ad
hoc, ce que nous ne ferons pas ici.

def unePartie():
from random import randint
aleal,alea2=randint (1, 6), randint (1, 6)
D=max (aleal,alea2?2)-min(aleal,alea?)
return D

def frequence (N) :

L=[0 for i in range(6)] #liste des valeurs de D initialisee
for j in range (N):

L[unePartie ()]+=1
for k in range (6) :

L[k]/=N

return (L)

#Programme principal
import numpy as np
import matplotlib.pylab as plt

N=int (input ("Combien de parties ? "))
x=1list (range (6))

y=[el for el in frequence(N)]
plt.title('Loi simulee de D'")
plt.xlabel ('Valeurs prises par D')
plt.ylabel ("Frequences d'apparitions")
plt.bar(x,vy)

plt.show()

18

10

15

20

Loi simulee de D

0.25

0.20 4

0.15

0.10 4

Frequences d'apparitions

0.05

0.00 -
o] 1 2 3 4 5

Valeurs prises par D

Exercice xx : Les puristes vont se précipiter pour créer un arbre de probabilité et en déduire
la loi de variable aléatoire gain afin de calculer son espérance. C’est tout a fait adapté car le
probléme est simple! Il est néanmoins trés formateur de décomposer ce probléme dynamique
a l'aide de fonctions informatiques et de faire tourner la "machine fréquentiste" ! Tout & fait
présentable en classe.

Stratégie : nous allons créer cing fonctions correspondant :
— au tirage de la piéce truquée,
— au tirage dans l'urne 1 contenant 4 boules blanches et 6 boules noires,
— au tirage dans I'urne 2 contenant 2 boules blanches et 8 boules noires,
— au gain algébrique obtenu par partie,
— au gain moyen obtenu lors de N parties.

Nous allons ensuite les imbriquer de maniére précise pour s’en servir dans le programme
principal.

def piece():
alea=random ()
if alea<l1/3:
return 1 #on tombe sur pile, donc tirage dans 1'urne 1
else:
return 0 #on tombe sur face, donc tirage dans 1'urne 2

def urnel () :
alea=randint (1,10)
if alea<=4: #on tire une boule blanche dans 1'urne 1
return 5
else: #on tire une boule noire dans 1'urne 1
return -2

def urne2 () :
alea=randint (1,10)
if alea<=2:
return 5
else:
return -2

def gain() :
piece ()

19

if piece()==L1: #choix de 1'urne en fonction du tirage de la piece
25 g=urnel ()
else:
g=urne? ()
return g

30 def moyenne (N) :
G=0
for i in range(N) :
G=G+gain ()
return G/N
35
#Programme principal
from random import =«
N=int (input ("Nombre d'experiences ? "))
print ("Gain moyen : ",moyenne (N))

Exercice xxx : Donnons d’abord le script des fonctions demandées aux trois premiéres
questions :

def unePartie():
from random import randint
S=sum([randint (1,6) for i in range(3)])
while 8<=S<=14:
5 S=sum([randint (1,6) for i in range(3)])
if S<=7:
return 0O
else:
return 1
10
def TempsAttente() :
from random import randint
S=sum([randint (1,6) for i in range(3)])
compteur=1
15 while 8<=S<=14:
S=sum([randint (1,6) for i in range(3)])
compteur+=1
return compteur

20 def frequence (N) :
L=[0,0]
for i in range(N) :
L[O]+=unePartie ()
L[1l]+=TempsAttente ()
25 L[0]/=N;L[1]/=N
return L

#Programme principal
N=int (input ("Combien de parties ? "))
30 print ("Frequence de gain :", frequence(N) [0])
print ("Temps moyen d'une partie :", frequence(N) [1])

#En testant sur 10 000 parties, on obtient
#Frequence de gain : 0.3684

35 #Temps moyen d'une partie : 3.9093
#Bien sur, 1l y a fluctuation d'echantillonnage.

20

10

15

10

15

Puis la loi simulée de X :

"Diagramme en barres de la distribution des frequences simulees de X."
"Utilise frequence(N) et la bibliotheque matplotlib.pylab."

import matplotlib.pylab as plt

N = 50000

x = (0, 1)

fregXl = frequence(N) [0]

y = (1 - fregXl, fregXl)

titre = 'Distribution de frequence de '+ str(N) + ' simulations de X'
plt.figure ()

plt.bar(x, y, tick_label = ('Perdu', 'Gagne'), align = 'center')

plt.title(titre)

#plt.xticks((0, 1), ('Perdu', 'Gagne'))
plt.ylabel ('Frequences simulees')
plt.grid()

Distribution de frequence de 50000 simulations de X

0.6

o o o
w ES wn
. . .

Frequences simulees

o
8]
.

0.1 A

0.0 -

Perdu Gagne

Nous donnerons pour la représentation graphique de la loi simulée de Y un script un peu
orienté numpy :

import matplotlib.pyplot as plt
import numpy as np

def unePartie() :
from random import randint
S=sum([randint (1,6) for i in range(3)])
compteur=1 #nombre de coups par partie
while 8<=S<=14:
S=sum([randint (1,6) for i in range(3)])
compteur+=1
return compteur

def loi (N):

L=[unePartie() for i in range (N)]
return np.bincount (L,minlength=20) [1:]/N #explications plus tard

21

20

25

30

def frequence (N) :
coups=0 #duree d'une partie
for i in range(N) :

coupst=unePartie ()

return coups/N

#Programme principal
N=int (input ("Nombre de parties ? "))

print ("La duree moyenne d'une partie est de

Y=1oi (N)

X=[1i for i in range(l,len(Y)+1)]
plt.figure ()

plt.bar (X,Y,width=0.5, color='b'")
plt.title("Loi de probabilite simulee de Y")
plt.xlabel ("Duree d'une partie")

plt.ylabel ('Frequences simulees')

plt.grid()

plt.show ()

Puis la loi simulée de Y :

Frequences simulees

Distribution des frequences de 50000 simulations de T

", frequence (N))

0.25 1+ te-nombre-moyen-de-jetsde 3 des-est de-3:923

0.20

o

pa

(%]
!

e

[

L]
1

0.05 4

T T
0 5 10 15 20 25 30
Nombre de jets de la partie

22

	Exercices d'initiation
	Exercices thématiques
	Géométrie
	Probabilités - statistiques

