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1 Introduction

1.1 Forme générale d’une équation d’évolution
Les équations aux dérivées partielles (EDP) apparaissent naturellement dans la modélisation de nom-
breux problèmes en physique, en biologie, en économie ou ailleurs. Sur de nombreux points, elles
semblent généraliser au contexte multi-dimensionnel les équations différentielles ordinaires. Pour au-
tant, leur étude approfondie s’avère délicate, car nécessitant l’apport de nombreuses branches des
mathématiques : géométrie différentielle pour les formules de Stokes, analyse fonctionnelle, etc.

Nous présenterons dans cette section le problème général que nous serons amenés à étudier. En particu-
lier, il sera détaillé pour différents types d’équation les résultats d’existence et d’unicité, ainsi que les
propriétés importantes qui les caractérisent : continuité par rapport aux données, positivité, principe
du maximum, régularité, etc. Les outils théoriques nécessaires seront soit rappelés au fur et à mesure,
ou s’ils nécessitent un plus long développement, indiqués en annexe. Si plusieurs approches sont pos-
sibles pour un même type d’EDP, une seule sera détaillée, les autres citées via un lien bibliographique.
Le but étant à terme, de traiter numériquement les problèmes exposés, l’approche variationnelle sera
préférée à d’autres méthodes aboutissant à des résultats puissants et généraux, mais peu pratiques
pour une implémentation.

Notations : Dans toute la suite X désigne un espace de Banach et I un intervalle de R. Le plus souvent,
on aura I = [0;T ], T > 0 ou I = R+. X sera souvent un espace de Hilbert, auquel cas on le notera
alors H. Ω désigne un ouvert borné de RN (N = 2 ou 3), de frontière Γ = ∂Ω suffisamment régulière.

La formulation usuelle d’un problème d’évolution (équation de la chaleur, de Schrödinger, etc.) nous
amène naturellement à distinguer deux types de variables jouant des rôles différents : la variable temps
t ∈ [0;T ] et la variable d’espace x ∈ Ω. Les deux problèmes précédents, comme bien d’autres s’écrivent
alors sous la forme : trouver u(t, x) telle que

∂u

∂t
(t, x) +Au(t, x) = f(t, x) sur ]0;T ]× Ω

con dition initiale : u(0, x) = u0(x) sur Ω

conditions de bord : Neumann ou Dirichlet par exemple

où A est un opérateur à préciser, f et u0 sont des fonctions à préciser.

Exemples :
1. L’équation de la chaleur avec condition de Dirichlet homogène : trouver u(t, x) telle que

∂u

∂t
(t, x)−∆u(t, x) = 0 sur ]0;T ]× Ω

u(0, x) = sin(x) sur Ω

u(t, x) = 0 sur ]0;T ]× ∂Ω

Ici A = −∆, f = 0 et u0(x) = sin(x).
2. L’équation de Schrödinger avec condition de Dirichlet homogène : trouver u(t, x) telle que

∂u

∂t
(t, x)− i∆u(t, x) = 1− x2 sur ]0;T ]× Ω

u(0, x) = 0 sur Ω

u(t, x) = 0 sur ]0;T ]× ∂Ω

Ici A = −i∆, f(t, x) = 1− x2 et u0(x) = 0.
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On utilisera la notation classique mais importante u(t) pour désigner la fonction définie sur l’ouvert
Ω, à valeurs réelles u(t, .) : x 7→ u(t, x), à t fixé.
On interprète ainsi la fonction inconnue (t, x) 7→ u(t, x) comme une fonction définie sur [0;T ] à valeurs
dans un espace de fonctions :

u :

{
[0;T ]→ V (Ω)

t 7→ u(t)

où V (Ω) est un espace de fonctions définies sur Ω qui devra en outre contenir l’information permettant
de retrouver les conditions aux bords. Dans la pratique, ce sera toujours un espace de Banach, et même
un espace de Hilbert.

Exemples :
1. C0(0;T ;V (Ω)), l’ensemble des fonctions continues sur [0;T ] à valeurs dans V (Ω), muni de la

norme ‖u‖ = sup
t∈[0;T ]

‖u(t)‖V (Ω) est un espace de Banach.

2. L2(0;T ;V (Ω)), l’ensemble des (classes de) fonctions de carré intégrable sur ]0;T [ à valeurs dans

V (Ω), muni de la norme ‖u‖ =

(∫ T

0

‖u(t)‖2V (Ω)

)1/2

est un espace de Banach.

Remarque : On a l’identification L2(0;T ;L2(Ω)) ' L2(]0;T [×Ω)

La forme générale d’un problème d’évolution linéaire (en temps fini) avec second membre peut s’écrire
alors : Trouver u telle que 

du

dt
+Au = f sur [0;T ]

u(0) = u0

Remarques :
— Moyennant certaines hypothèses sur l’opérateur A, la théorie de Hille-Yosida permet de traiter

le problème précédent avec un cadre abstrait très général. On pourra par exemple consulter
Brézis [1, commentaires du chapitre VII] ou Cazenave-Haraux [1, chapitres 3 et 4].

— On rencontre fréquemment des équations semi-linéaires du type

du

dt
+Au = F (u)

où F est un opérateur non linéaire de V (Ω) dans lui-même. Voir par exemple Cazenave-Haraux
[1, chapitre 4] ou chapitre 7.

1.2 Les grands types d’équation d’évolution
1.2.1 Problèmes paraboliques du second ordre

Définition : On dit qu’un opérateur L est elliptique (resp. uniformément elliptique) du second
ordre s’il agit sur des fonctions u de la manière :

Lu =

N∑
i,j=1

aij(x)∂iju+

N∑
i=1

bi(x)∂iu+ c(x)u

avec (aij(x))i,j une matrice à coefficients bornés, vérifiant la condition d’ellipticité (resp. d’uniforme
ellipticité) :

(∀x ∈ Ω)(∀ξi, ξj ∈ RN )

N∑
i,j=1

aij(x)ξiξj > 0
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resp. (∃α > 0)(∀x ∈ Ω)(∀ξi, ξj ∈ RN )

N∑
i,j=1

aij(x)ξiξj ≥ α|ξ|2


où |.| désigne la norme euclidienne usuelle sur RN .

Cas particuliers : équations linéaires, semi-linéaires et quasi-linéaires :
Ce sont les problèmes d’évolution du type :

du

dt
− Lu = f (linéaire)

du

dt
− Lu = F (u) (semi-linéaire)

du

dt
− Lu = F (u,∇u) (quasi-linéaire)

où L est un opérateur elliptique du second ordre. Attention, comme le temps t intervient, la matrice
(aij) dépend aussi de t : aij = aij(t, x).

Cas général :
La classe la plus générale est celle des problèmes "complètement non linéaires", où la dépendance en
les ∂iju est non-linéaire, i.e de la forme F (H(u),∇u, u, x) = 0, où H(u) désigne la matrice Hessienne de
u. La condition d’ellipticité est alors que F (., p, z, x) soit monotone par rapport à la matrice Hessienne,
i.e que pour tout p, z, x et toute matrice N définie positive, on ait F (M +N, p, z, x) ≥ F (M,p, z, x).

Remarque : Cette définition coïncide avec la définition d’ellipticité dans les cas linéaires et semi-
linéaires.

L’équation parabolique s’écrit alors : trouver u telle que

du

dt
− F (H(u),∇u, u, x) = 0

Remarques :
— Le plus souvent, on s’intéresse au cas où la matrice A(x) = (aij(x)) est symétrique, auquel cas

la condition d’ellipticité équivaut à dire que la matrice A(x) est définie positive et que sa plus
petite valeur propre, dont nous expliciterons le sens plus tard, est minorée par α.

— On considérera généralement le cas particulier des opérateurs elliptiques écrits sous forme di-
vergence :

Lu =
N∑

i,j=1

∂i(aij(x)∂ju) = div(A∇u)

.
— Le cas précédent, appliqué à la matrice A = Id et au problème linéaire se réécrit :

du

dt
−∆u = f ,

et nous retrouvons l’équation de la chaleur.
— Si les coefficients aij de la matrice A(x) sont constants (ne dépendent pas de x), alors on peut,

en changeant de base, se ramener au Laplacien.
— l’étude du problème stationnaire elliptique correspondant −div(A(x)∇u(x)) = f , apporte de

précieuses informations sur le problème parabolique initial.

Ainsi, l’étude de l’opérateur elliptique L et des problèmes elliptiques linéaires ou semi-linéaires associés
s’avère un préalable indispensable.

Pour traiter le cas d’existence de solutions (et dans quel sens, autrement dit dans quels espaces fonc-
tionnels) des équations linéaires, plusieurs stratégies sont possibles :
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— En utilisant des formules de représentation,
— Par des méthodes de dualité, type Lax-Milgram,
— Par la théorie spectrale, Riesz-Fredholm.

Pour le cas des équations non linéaires, on peut utiliser des méthodes de points fixes ou des méthodes
variationnelles (dérivant d’un principe de minimisation d’énergie).

L’unicité pour les équations linéaires est en général facile, difficile et même parfois en défaut pour les
autres.

Enfin, les équations elliptiques, linéaires ou non linéaires ont des propriétés communes, notamment
la régularité de leurs solutions et l’effet régularisant par rapport aux données initiales de L. Nous
étudierons en détail dans la section suivante de telles propriétés.

1.2.2 Problèmes de transport (hyperboliques)

Ce sont les problèmes où apparaît un terme de transport −∇.(u~v) = −div(u~v).
Ainsi l’équation d’advection s’écrit :

∂u

∂t
(t, x) = −div(u~v)

L’équation d’advection-diffusion prend la forme :

∂u

∂t
(t, x) = div(D(t, x)∇u)− div(u~v) (Fick)

ou
∂u

∂t
(t, x) = ∆(D(t, x)u)− div(u~v) (Fokker-Planck)

To be continued...

2 Cas d’école : théorie variationnelle de l’équation de la chaleur
On traite ici le cas modèle de l’équation de la chaleur : trouver u(t, x) telle que

(1)


∂u

∂t
(t, x)−∆u(t, x) = f(t, x) sur ]0;T ]× Ω

u(0, x) = u0(x) sur Ω

u(t, x) = 0 sur ]0;T ]× ∂Ω

Remarquons d’emblée que le terme source f n’est pas supposé dépendre de u (cas linéaire). Nous
allons faire quelques hypothèses de régularité sur f et u0 : f ∈ L2(0, T, L2(Ω)) et u0 ∈ L2(Ω). Pour
simplifier, sans pour autant perdre la généralité de la démarche, on a traité le cas d’une condition
de Dirichlet homogène. En vue d’une implémentation future où il sera nécessaire de discrétiser en
temps et travailler sur des espaces de dimension finie en espace (via la méthode des éléments finis),
nous adopterons la démarche décrite dans le cours Résolution numérique des équations aux dérivées
partielles de Bonnet-Bendhia et Luneville.

2.1 Formulation variationnelle de l’équation de la chaleur
Une solution forte (ou classique) du problème de Cauchy (1) sur l’ouvert borné Ω est une solution telle
que tous les termes de l’équation sont bien définis au sens classique (donc pas au sens des distributions)
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sur [0;T ] × Ω. Choisissons f égale à la fonction nulle. On cherche donc des solutions appartenant à
l’espace C2

1([0;T ] × Ω), espace des fonctions continues sur [0;T ] × Ω, et dont les dérivées en espace
jusqu’à l’ordre 2 et la dérivée en temps sont continues sur [0;T ]× Ω.
Remarquons qu’avec la condition de Dirichlet homogène choisie, des conditions de compatibilité avec
les conditions aux limites ou initiales s’imposent d’elles-mêmes :

— Si x0 ∈ ∂Ω, on a pour tout t ∈]0;T ], u(t, x0) = 0. Faisant tendre t vers 0, on obtient par
continuité de u : u0(x0) = 0. La donnée initiale doit donc vérifier la condition de Dirichlet
homogène.

— De même, en évaluant l’équation
∂u

∂t
(t, x)−∆u(t, x) = 0 en (t, x0), on obtient que ∆u(t, x0) = 0.

Passant encore à la limite en faisant tendre t vers 0, et toujours grâce à la continuité de ∆u, on
obtient ∆u0(x0) = 0.

De même, si l’on part d’une condition de Neumann homogène sur le bord, la condition de compatibilité

s’écrit
∂u0

∂ν
(x0) = 0 ∀x0 ∈ ∂Ω.

Sous ces conditions nécessaires, ainsi qu’en imposant à u0 une régularité supplémentaire (théorie Höl-
dérienne), on peut s’assurer de l’existence et l’unicité d’une solution forte au problème (1), même avec
T = +∞. Moyennant certaines hypothèses (caractère lipschitzien en x), on peut remplacer le terme
source f(x) par un terme non linéaire de la forme f(x, u) et garder le caractère bien posé du pro-
blème.
Si l’on souhaite affaiblir les hypothèses de régularité sur u0, il existe aussi une théorie Wm,p, se basant
sur les espaces de Sobolev.
Nous détaillerons ultérieurement les deux aspects cités précédemment. On peut consulter Roques[1]
ou Vitali-Volpert[1] pour plus de détails.

Abandonnons pour le moment la notion de solution forte au profit de celle de solution faible, i.e de
solution d’un problème dit variationnel équivalent (il faudra le vérifier) au problème (1). Supposons
que u(t, x) soit solution de (1). Dans un premier temps, on suppose u suffisamment régulière afin de
pouvoir utiliser les formules de Green : u ∈ C1(0, T, L2(Ω)) ∩ L2(0, T,H2(Ω)).

On multiplie la première ligne de (1) par une fonction test v ∈ H1
0 (Ω) et on intègre sur Ω. On a alors :∫

Ω

∂u

∂t
(t, x)v(x)dx−

∫
Ω

∆u(t, x)v(x)dx =

∫
Ω

f(t, x)v(x)dx

En utilisant une formule de Green, et prenant en compte le fait qu’on ait une condition de Dirichlet
homogène au bord, on a :

∫
Ω

∆u(t, x)v(x)dx = −
∫

Ω
∇u(t, x).∇v(t, x)dx, d’où :∫

Ω

∂u

∂t
(t, x)v(x)dx+

∫
Ω

∇u(t, x).∇v(t, x)dx =

∫
Ω

f(t, x)v(x)dx

Mais l’hypothèse de régularité sur u : u ∈ C1(0, T ;L2(Ω)) nous permet d’utiliser le théorème de

dérivation sous le signe somme et donc
∫

Ω

∂u

∂t
(t, x)v(x)dx =

d

dt

∫
Ω

u(t, x)v(x)dx. Ainsi :

d

dt

∫
Ω

u(t, x)v(x)dx+

∫
Ω

∇u(t, x).∇v(t, x)dx =

∫
Ω

f(t, x)v(x)dx

Supposons maintenant moins de régularité sur u : u ∈ C0(0, T ;L2(Ω)). La fonction F définie sur [0;T ]

par F (t) =

∫
Ω

u(t, x)v(x)dx est seulement continue, mais
d

dt

∫
Ω

u(t, x)v(x)dx a un sens en tant que

distribution.
On sait en effet que C0([0;T ]) s’injecte continûment dans D′(]0;T [) via l’application ψ : f 7→ ψf , où
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tout φ ∈ D(]0;T [), ψf (φ) =

∫ T

0

fφ. En utilisant plusieurs fois le théorème de Fubini et une intégration

par parties, on prouve alors que

∀Ψ ∈ D(]0;T [)

〈
d

dt

∫
Ω

u(t)v(x)dx,Ψ

〉
=

〈∫
Ω

∂u

∂t
(t)v(x)dx,Ψ

〉

Autrement dit, au sens des distributions on a toujours :
∫

Ω

∂u

∂t
(t, x)v(x)dx =

d

dt

∫
Ω

u(t, x)v(x)dx.

On peut alors énoncer la formulation variationnelle faible du problème (1) :

(2)


Trouver u ∈ C0(0, T, L2(Ω)) ∩ L2(0, T,H1

0 (Ω)) telle que ∀v ∈ H1
0 (Ω) :

d

dt

∫
Ω
u(t, x)v(x)dx+

∫
Ω
∇u(t, x).∇v(t, x)dx =

∫
Ω
f(t, x)v(x)dx ∀t ∈]0;T ]

u(0, x) = u0(x) sur Ω

La formulation forte (1) et la formulation faible (2) sont équivalentes dans le sens : Toute fonction
u ∈ C1(0, T, L2(Ω)) ∩ L2(0, T,H2(Ω)) est solution du problème (1) au sens des fonctions de L2(Ω) si
et seulement si elle vérifie la formulation faible (2).

Remarque : Plus généralement, si u ∈ C0(0, T, L2(Ω)) ∩ L2(0, T,H2(Ω)) est solution de (2), alors u
vérifie (1) au sens des distributions sur ]0;T [×Ω.

2.2 Existence d’une solution
Nous allons nous baser sur le résultat de décomposition spectrale de l’opérateur ∆ énoncé dans l’annexe
A : Soit Ω un ouvert borné régulier de RN . Il existe une base Hilbertienne (en)n≥1 de L2(Ω) et une
suite croissante λ1 ≤ λ2 ≤ · · · ≤ λn · · · → +∞ tels que ∀n ≥ 1 en ∈ H1

0 (Ω) ∩ C∞(Ω) et vérifiant :

(In)

{
−∆en = λnen sur Ω

en = 0 sur ∂Ω

.

De ce résultat, on peut expliciter précisément (si elle existe) la forme de la solution u du problème
variationnel (2).

Proposition : Si u est solution du problème (2), alors on a :

(3) ∀t ∈ [0;T ] u(t) =
∑
n≥1

(
(u0, en)e−λnt +

∫ t

0

(f(s), en)e−λn(t−s)ds

)
en

la série étant convergente dans L2(Ω) pour presque tout t.

Théorème (existence) : Si f ∈ L2(0, T, L2(Ω)) et u0 ∈ L2(Ω), alors le problème variationnel (2)
admet une unique solution u ∈ C0(0, T, L2(Ω)) ∩ L2(0, T,H1

0 (Ω)).

Démonstration : La proposition précédente nous permet d’affirmer qu’il suffit de prouver la conver-
gence de la série (3) pour tout f ∈ L2(0, T, L2(Ω)) et u0 ∈ L2(Ω). Elle se fait en trois étapes :

Étape 1 : On commence par se ramener à la résolution d’un problème en dimension finie.
Posons Em = Vect(e1, . . . , em) l’espace vectoriel de dimension finie engendré par lesm fonctions propres
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em. On remplace alors le problème continu (2) par le problème approché :
Trouver um : t ∈ [0;T ] 7→ um(t) ∈ Em solution du problème :

(4)


d

dt

∫
Ω
um(t)vdx+

∫
Ω
∇um(t).∇vdx =

∫
Ω
f(t)vdx ∀v ∈ Vm

um(0) = u0,m =
∑m
i=1(u0, ei)ei

En particularisant les v sous la forme ei on obtient en posant αi(t) = (um(t), ei)L2(Ω) que

(3)⇐⇒ ∀1 ≤ i ≤ m


d

dt
αi(t) + λi(t) = (f(t), ei)

αi(0) = (um(0), ei) = (u0, ei)

La formule de Duhamel nous assure alors l’existence et l’unicité d’une solution à chacune de ces

équations donnée par αi(t) = αi(0)e−λit +

∫ t

0

(f(s), ei)e
−λi(t−s)ds.

Mais comme um(t) =

m∑
i=1

(um(t), ei)ei, on obtient que :

um(t) =

m∑
i=1

(
(u0, ei)e

−λit +

∫ t

0

(f(s), ei)e
−λi(t−s)ds

)
ei

On retrouve la somme partielle d’ordre m de la série solution attendue.

Étape 2 : On va prouver que la suite (um) est une suite de Cauchy dans les espaces de Banach
C0(0, T, L2(Ω)) et L2(0, T,H1

0 (Ω)), et que les limites coïncident. C’est la partie la plus technique de la
démonstration.

� (un) est de Cauchy dans C0(0, T, L2(Ω)) muni de la norme ‖u‖ = sup
t∈[0;T ]

‖u(t)‖L2(Ω) :

Soient p > m ≥ 1 des entiers. Comme (ei)i≥1 est une base orthonormale de L2(Ω), on a en utilisant
l’égalité de Parseval que :

‖up(t)− um(t)‖L2(Ω) =

[
p∑

i=m+1

(
(u0, ei)e

−λit +

∫ t

0

(f(s), ei)e
−λi(t−s)ds

)2
]1/2

En vertu de l’inégalité triangulaire dans Rp−m (muni de la norme euclidienne), le terme de droite est
inférieur ou égal à :[

p∑
i=m+1

(u0, ei)
2e−2λit

]1/2

+

[
p∑

i=m+1

(∫ t

0

(f(s), ei)e
−λi(t−s)ds

)2
]1/2

De plus, l’inégalité de Cauchy-Schwarz dans L2(Ω) nous assure que :

(∫ t

0

(f(s), ei)e
−λi(t−s)ds

)2

≤
(∫ t

0

(f(s), ei)
2

)(∫ t

0

e−2λi(t−s)ds

)
≤ 1

2λi

(∫ t

0

(f(s), ei)
2

)
≤ 1

2λ1

(∫ t

0

(f(s), ei)
2

)
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Utilisant le fait que ∀t ∈ [0;T ] e−2λit ≤ 1, on obtient :

(5) sup
t∈[0;T ]

‖up(t)− um(t)‖L2(Ω) ≤

[
p∑

i=m+1

(u0, ei)
2

]1/2

+

[
1

λ1

p∑
i=m+1

∫ T

0

(f(s), ei)
2ds

]1/2

En vertu de l’égalité de Parseval, et du fait que u0 ∈ L2(Ω), on a

‖u0‖2L2(Ω) =
∑
i≥1

(u0, ei)
2 < +∞

De même, f ∈ L2(0, T, L2(Ω)), d’où

∑
i≥1

∫ T

0

(f(t), ei)
2dt < +∞

Ainsi, chacun des termes de droite de (5) tend vers 0 quand m et p tendent vers +∞. D’où le résultat
annoncé.

� (un) est de Cauchy dans L2(0, T,H0
1 (Ω)) muni de la norme ‖u‖ =

(∫ T

0

‖u(t)‖2H0
1 (Ω)

)1/2

:

Rappelons que puisque Ω est borné, l’inégalité de Poincaré nous permet d’affirmer que la semi-norme

|u| =
(∫

Ω

|∇u|2
)1/2

est en fait une norme sur H1
0 (Ω).

On a pour tout v ∈ H1
0 (Ω)

∫
Ω

∇ei.∇vdx = λi

∫
Ω

eivdx . On en déduit que pour presque tout t ∈ [0;T ]

on a : ∫
Ω

|∇up(t)−∇um(t)|2dx =

p∑
i=m+1

λi

(∫
Ω

(up(t)− um(t))eidx

)2

=

p∑
i=m+1

λi

(
(u0, ei)e

−λit +

∫ t

0

(f(s), ei)e
−λi(t−s)ds

)2

To be continued...

2.3 Propriétés de l’équation de la chaleur

2.4 Principe du maximum

2.5 Estimation d’énergie

3 Comportement asymptotique de solutions : problèmes ellip-
tiques

Lorsque le temps d’observation T tend vers +∞, il est fréquent de voir s’installer un régime stationnaire.

Le terme
∂

∂t
d’un problème parabolique disparait alors de l’équation et nous obtenons un problème
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elliptique (linéaire ou pas) où la variable temps t n’intervient plus. Nous rappelons dans cette section
des résultats et méthodes usuels sur les équations elliptiques, que nous retrouverons plus tard dans
le cas parabolique (par exemple la méthode d’itération monotone, l’utilisation des valeurs propres du
Laplacien et notamment de sa valeur propre principale). Dans la section sur les Travelling Waves (ondes
progressives), nous justifierons plus en détail cette idée de comportement en temps grand, et de l’utilité
d’avoir des résultats sur les problèmes elliptiques pour en gagner sur les problèmes paraboliques.

3.1 Problème linéaire
Dans la suite, Ω désigne un ouvert borné régulier de RN (N > 1) ; L est un opérateur elliptique du
second ordre , sans terme d’ordre 0, i.e de la forme

Lu =

N∑
i,j=1

aij(x)∂iju+

N∑
i=1

bi(x)∂iu

On suppose que aij , bi ∈ C∞(Ω)∩L∞(Ω). On suppose de plus que les fonctions aij sont symétriques et

vérifient la condition d’uniforme ellipticité usuelle : (∃µ > 0)(∀x ∈ Ω)(∀ξ ∈ RN )

N∑
i,j=1

aij(x)ξiξj ≥ µ|ξ|2.

On posera enfin L = L+ c l’opérateur elliptique du second ordre avec terme d’ordre 0 :

Lu =

N∑
i,j=1

aij(x)∂iju+

N∑
i=1

bi(x)∂iu+ c(x)u

Cette distinction entre L et L est capitale comme nous le verrons par la suite car le signe du terme de
réaction c a un rôle essentiel.

Principes du min/max (faible et fort) et principes de comparaison

Observation initiale importante :
— Si Lu > 0 dans Ω, alors on n’a pas de maximum local dans Ω
— Si Lu < 0 dans Ω, alors on n’a pas de minimum local dans Ω

Théorème : on suppose Ω borné et u ∈ C0(Ω) ∩ C2(Ω).
1. Si Lu ≥ 0 dans Ω, alors max

Ω
u = max

∂Ω
u (principe du maximum faible)

2. Si Lu ≤ 0 dans Ω, alors min
Ω
u = min

∂Ω
u (principe du minimum faible)

Le but est maintenant de préciser sous quelle(s) condition(s) on peut remplacer L par L := L + c.
Posons M := max

Ω
u = max

∂Ω
u et m := min

Ω
u = min

∂Ω
u.

Proposition :
— Si c ≤ 0 et M > 0, alors le principe du maximum faible reste vrai pour L
— Si M = 0, alors le principe du maximum faible reste vrai pour L, quelque soit le signe de c.

Ce dernier résultat nous permet en particulier d’obtenir un principe de comparaison elliptique pour
une condition de Dirichlet, qui entraîne lui-même l’unicité au problème de Dirichlet.

Théorème (comparaison pour le problème linéaire avec condition de Dirichlet) : On suppose que Ω
est borné et que c ≤ 0.
Si : {

−Lu ≥ −Lv sur Ω

u ≥ v sur ∂Ω
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alors u ≥ v partout dans Ω.

Le cas de la condition de Neumann demande un peu de théorie supplémentaire. Énonçons pour cela le :

Lemme de Hopf :
Si 

Lu ≥ 0 dans Ω borné
(∃x0 ∈ ∂Ω)(∀x ∈ Ω) u(x) < u(x0)

Ω vérifie la CSI : il existe une boule ouverte B telle que B ⊂ Ω et x0 ∈ ∂Ω

alors
∂u

∂ν
(x0) > 0.

Remarque : Ce résultat reste vrai pour L si c ≤ 0 et si u(x0) ≥ 0.

Théorème : Ω est borné ou Ω = RN .
1. Si Lu ≥ 0 sur Ω et si u atteint son maximumM en x0 ∈ Ω, alors u ≡M (principe du maximum

fort à l’intérieur)
2. Si Lu ≤ 0 sur Ω et si u atteint son minimum m en x0 ∈ Ω, alors u ≡ m (principe du minimum

fort à l’intérieur)
Remarque : Le principe du maximum fort reste vrai pour L si c ≤ 0 et si M ≥ 0.

Théorème (comparaison pour le problème linéaire avec condition de Neumann) : on suppose Ω borné,
c ≤ 0 et c 6= 0.
Si : −Lu ≥ −Lv sur Ω

∂u

∂ν
≥ ∂v

∂ν
sur ∂Ω

alors u ≥ v partout dans Ω.

Théorème (principe du maximum fort sans hypothèse de signe sur c) :
Si : {

−Lu ≥ 0 sur Ω

u ≥ 0 sur ∂Ω

alors :
1. Si u(x0) = 0 pour un x0 ∈ Ω, alors u ≡ 0

2. Si u 6= 0, alors (∀x0 ∈ ∂Ω)
∂u

∂ν
< 0

Remarque : Ici, nous n’avons pas d’hypothèse sur le signe de c, mais en revanche nous disposons d’une
information sur u : u ≥ 0 sur Ω.

Résolution du problème linéaire

Estimations elliptiques a priori

Ces outils sont fondamentaux pour prouver l’existence de solutions pour des problèmes elliptiques. La
démonstration des résultats mentionnés ci-après est néanmoins délicate. On pourra consulter Vitali-
Volpert[1] pour plus de détails. Deux cadres se dégagent :

— le cadre Höldérien, où nous disposons des estimations a priori de Schauder
— le cadre Sobolev, où nous disposons des estimations a priori de Agman-Douglas-Niremberg
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On s’intéresse au problème :

(P )

{
Lu = f sur Ω

u = 0 sur ∂Ω

avec l’hypothèse que tous les coefficients de L sont dans C0+α(Ω) pour un α ∈]0; 1] et que c ≤ 0.
Les résultats fondamentaux sur les espaces de Hölder et de Sobolev dont nous aurons besoin sont rap-
pelés en annexe. Remarquons cependant que nous possédons un lien entre ces deux catégories d’espaces
grâce au théorème suivant.

Théorème (de Sobolev-Morrey) : Ω est un ouvert borné régulier ou Ω = RN .

Si p > N (inégalité stricte), alors W k,p ↪→ Ck−1,α (injection continue), où α = 1− N

p
.

Énonçons-les estimations en question :

1. Il existe une constante C indépendante de f telle que pour toute solution u du problème de
Dirichlet (P), ‖u‖2+α ≤ C‖f‖α (estimation de Schauder).

2. Il existe une constante C indépendante de f telle que pour toute solution u du problème de
Dirichlet (P), ‖u‖W 2,p ≤ C‖f‖Lp (estimation de Agman-Douglas-Niremberg).

Solvabilité du problème linéaire

Théorème : (∀f ∈ C0+α(Ω))(∃!u ∈ C2+α(Ω)) tel que

{
∆u = f sur Ω

u = 0 sur ∂Ω

Le but est maintenant de relier L (connu) à L := L+ c (inconnu).
L’idée est de partir de la solution obtenue grâce au théorème précédent et, par homotopie, d’aller vers{
Lu = f sur Ω

u = 0 sur ∂Ω
.

Méthode : On construit une famille de problèmes

(Pτ )

{
(1− τ)∆u+ τLu = f sur Ω

u = 0 sur ∂Ω

avec 0 ≤ τ ≤ 1.
On prouve ensuite que : (∃ε > 0)(∀τ0 ∈ T ), [τ0, τ0 + ε] ⊂ T , où T := {τ ∈ [0; 1[; (∀f ∈ C0+α(Ω))(∃!u ∈
C2+α(Ω)) solution de (Pτ )}.
Remarquons que puisque ε est indépendant de τ0, on obtient T = [0; 1].
L’outil majeur est le théorème du point fixe de Picard.

Théorème : Soit Ω ⊂ RN un ouvert borné régulier. Supposons que
— L a ses coefficients dans C0+α(Ω) et vérifie la condition d’uniforme ellipticité
— c ≤ 0

Alors

(∀f ∈ C0+α(Ω))(∃!u ∈ C2+α(Ω)) tel que

{
(L+ c)u = f sur Ω

u = 0 sur ∂Ω

Donnons l’idée de la démonstration :
— on définit la famille de problèmes linéaires (Pτ )
— On reformule le problème Lτu = f : Pour τ0 ∈ T fixé, on remarque que Lτu = f ⇐⇒ Lτ0u =

f + (τ − τ0)(∆u− Lu). On pose alors f̃ := f + (τ − τ0)(∆u− Lu).
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— On définit l’opérateur

Φτ0 :


C2+α(Ω) −→ C2+α(Ω)

u 7→ Φ(u) = v solution de

{
Lτ0 = f̃ sur Ω

u = 0 sur ∂Ω

et on prouve à l’aide des estimations de Schauder et du fait que ‖∆u‖α ≤ C‖u‖2+α que cet
opérateur est contractant.

— On conclut à l’aide du théorème du point fixe de Picard.

Remarques :
— On a un théorème analogue avec une condition de Neumann, sous réserve que c 6= 0 et c ≤ 0.
— On a aussi un théorème analogue dans le cadre de la théorie de Sobolev. Le citer ?
Parler aussi d’estimations intérieures a priori ?

3.2 Problème non linéaire
La méthode d’itération monotone, qui sera détaillée dans le résultat suivant nous permet de traiter le
cas de problèmes semi-linéaires. Présentons le problème étudié :

Ω est un ouvert régulier borné, l’opérateur L est supposé uniformément elliptique et à coefficients dans
C0+α(Ω). On définit :

(P )

{
Lu+ f(x, u) = 0 dans Ω

u = 0 dans ∂Ω

On fait l’hypothèse que f ∈ C0+α
x (Ω) ∩ Cu1 (en fait f lipschitzienne par rapport à u suffirait).

Théorème : Si on a une sur-solution qui majore une sous-solution, alors il existe une solution du
problème (P) coincée entre les deux. Plus précisément :

Supposons que v0 ≤ u0 dans C2(Ω) tels que :

si

{
−Lv0 − f(x, v0) ≤ 0 dans Ω

v0 ≤ 0 dans ∂Ω

et

{
−Lu0 − f(x, u0) ≥ 0 dans Ω

u0 ≥ 0 dans ∂Ω

Alors ∃v0 ≤ u ≤ u0 dans C2+α(Ω) solution de (P).

Démonstration : Nous allons détailler ici la méthode d’itération monotone, très semblable à la notion
de suites adjacentes, mais nécessitant un arsenal technique plus important. Elle se généralise aisément
au cas des problèmes paraboliques.

Remarquons qu’aucune hypothèse n’est faite sur ∂uf qui joue le rôle de c.
Une solution est un point fixe de l’opérateur :

φ :


C2+α(Ω)→ C2+α(Ω)

u 7→ φ(u) := v l’unique solution de

{
Lv −Kv = −f(x, u)−Ku sur Ω

v = 0 sur ∂Ω

où K est choisi assez grand pour que K + ∂uf(x, u) > 0, ∀x ∈ Ω, ∀u ∈ [m = min v0,M = maxu0]
Remarque : (L − K)v = −f(x, u) − Ku ∈ C0+α(Ω). Comme c ≡ −K < 0, on sait qu’il existe une
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unique solution v ∈ C2+α(Ω).
Notre but est donc de construire un point fixe de l’opérateur φ.

Étape 1 : Si m ≤ u1 ≤ u2 ≤M, alors v1 < v2 dans Ω et u1 6= u2 .

On a par hypothèse :{
(L−K)v1 = −f(x, u1)−Ku1 dans Ω

v1 = 0 sur ∂Ω{
(L−K)v2 = −f(x, u2)−Ku2 dans Ω

v2 = 0 sur ∂Ω

Posons w = v1 − v2.

(L−K)w = −(f(x, u1)− f(x, u2))−K(u1 − u2)

= −(u1 − u2)∂uf(x, θ)−K(u1 − u2), u1 < θ < u2

= −(u1 − u2)[∂uf(x, θ) +K]

≥ 0 dans Ω (4)

w = 0 sur ∂Ω.
D’après le principe du maximum fort, si w touche son max M ≥ 0 à l’intérieur, alors w ≡M et M ≡ 0
grâce à la condition de bord. Ainsi, w ≡ 0. Par (4), u1 ≡ u2, ce qui n’est pas. Donc v1 < v2 dans Ω.

Étape 2 : Si u est une sur-solution qui n’est pas une solution, alors φu = v < u dans Ω .

On a par hypothèse :

{
−Lu− f(x, u) ≥ 0 dans Ω

u ≥ 0 sur ∂Ω{
(L−K)v = −f(x, u)−Ku dans Ω

v = 0 sur ∂Ω

Posons w := v − u.

(L−K)v ≥ (L−K)u, d’où

{
(L−K)w ≥ 0 dans Ω

w ≤ 0 sur ∂Ω

Comme précédemment, en utilisant le principe du maximum fort (sans hypothèse de signe sur c) :

1. Soit w 6= 0. Mais alors u ≡ v. Donc u solution. Absurde.
2. Soit w < 0 dans Ω. Ainsi v < u dans Ω.

Étape 3 : On utilise une récurrence .

u0 sursolution (non solution) −→ u1 < u0 dans Ω −→ u2 < u1 < u0 . . . un+1 = φ(un)
6= (sinon u0 = v0 solution) ∨ (par l’étape 1) ∨ ∨
v0 sous-solution (non solution) −→ v1 > v0 dans Ω −→ v2 > v1 > v0 . . . vn+1 = φ(vn)

On dispose ainsi de deux suites (un) (sur-solution) et (vn) (sous-solution) telles que :
v0(x) < v1(x) < · · · < vn(x) < un(x) < · · · < u1(x) < u0(x) dans Ω.
Ainsi, pour tout x ∈ Ω, (un(x)) est décroissante et minorée par v0(x).
Donc u(x) := lim

n→+∞
un(x) existe.

Malheureusement, cette convergence simple est insuffisante pour passer à la limite dans :

un+1 = φ(un) i.e

{
(L−K)un+1 = −f(x, un)−Kun dans Ω

un+1 = 0 sur ∂Ω
qui deviendrait :
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{
(L−K)u = −f(x, u)−Ku dans Ω

u = 0 sur ∂Ω

Étape 4 :

On va améliorer la convergence pour passer à la limite dans :

{
(L−K)un+1(x) := −f(x, un(x))−Kun(x) dans Ω

un+1(x) = 0 sur ∂Ω

D’une part, lim
n→+∞

fn(x) = −f(x, u(x))−Ku(x) ∀f ∈ C1
u(Ω) ⊂ C0

u(Ω).

D’autre part, ∀n ∈ N ∀x ∈ Ω |fn(x)| ≤ |f(x, un(x))|+K|un(x)|.
Or m ≤ un(x) ≤M , donc :
∀n ∈ N ∀x ∈ Ω |fn(x)| ≤ sup

x∈Ω,m≤u≤M
|f(x, u)|+K max (|m|, |M |) = constante ∈ Lp(Ω) (car Ω borné).

Donc par convergence dominée, on a fn → −f(x, u(x))−Ku(x) dans Lp(Ω).
En particulier, (fn) est de Cauchy dans Lp(Ω).

Les estimations elliptiquesW 2,p(Ω) de Agmon-Douglas-Niremberg assurent alors que : ‖un+1−up+1‖W 2,p ≤
‖fn − fp‖Lp(Ω).
Mais alors, (un) est de Cauchy dans l’espace de Banach W 2,p(Ω). Donc il existe w telle que un → w
dans W 2,p(Ω).
D’après le théorème de Sobolev-Morrey, W 2,p(Ω) ↪→ C1+α(Ω) en prenant p > N .
Donc un → w dans C1+α(Ω). En particulier (un) converge simplement vers w. D’où w ≡ u.
Bilan partiel : un → u dans C1+α(Ω) (�).

Effectuons une dernière amélioration :{
(L−K)(un+1 − up+1) = fn − fp dans Ω

un+1 − up+1 = 0 sur ∂Ω

(�) implique que fn → −f(x, u(x))−Ku(x) dans C0+α(Ω) grâce aux hypothèses sur f .
En utilisant les estimations de Schauder, on a ‖un+1 − up+1‖2+α ≤ ‖fn − fp‖α.
On prouve aisément que (fn) est de Cauchy dans C0+α(Ω), donc (un) est de Cauchy dans C2+α(Ω),
qui est un espace de Banach. Donc (un) converge vers une limite qui ne peut être que u.

Bilan final : un → u dans C2+α(Ω) et le passage à la limite devient possible. CQFD.

4 Équations de diffusion-réaction

4.1 Problèmes paraboliques généraux
4.1.1 Principes de comparaison parabolique

Notations : Définissons P = L − ∂

∂t
, où L est un opérateur elliptique du second ordre , sans terme

d’ordre 0, i.e de la forme Lu =

N∑
i,j=1

aij(t, x)∂iju+

N∑
i=1

bi(t, x)∂iu.

On posera P = P + c, soit Pu =

N∑
i,j=1

aij(t, x)∂iju+

N∑
i=1

bi(t, x)∂iu+ c(t, x)u− ∂u

∂t
.

On suppose les fonctions aij symétriques, vérifiant la condition d’ellipticité usuelle. On pose QT :=
]0;T ]× Ω et on suppose les bi ∈ C(QT ).
On pose enfin FL :=]0;T ]× ∂Ω (frontière latérale) et socle = {0} × Ω.
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La frontière parabolique est définie par FP = socle ∪ FL.
C2

1(]0;T ]×Ω), noté aussi C1,2(]0;T ]×Ω) désigne les fonctions de classe C1 en temps sur QT et de classe
C2 en espace sur QT .

Observation initiale importante : Soit u ∈ C(QT ) ∩ C2
1(QT ) vérifiant Pu > 0 sur QT . Alors u n’a

pas de maximum sur QT .

Théorème (Principes du maximum parabolique faible) : Ω est supposé borné.
1. Si Pu ≥ 0 dans QT et u ∈ C(QT ) ∩ C2

1(QT ). Alors max
QT

u = max
FP

u. On notera M ce maximum.

2. Sous l’hypothèse c(t, x) ≤ 0 et M ≥ 0, le résultat précédent reste vrai pour l’opérateur (avec
terme d’ordre 0) P := P + c.

Nous allons maintenant énoncer deux théorèmes de comparaison parabolique : le premier traite du
cas linéaire et le second s’applique au cas non linéaire (version semi-linéaire). Leur point commun est
qu’aucune hypothèse de signe n’est exigée sur c. Un des grands avantages des problèmes paraboliques
et que nous avons toujours comparaison !

Commençons par définir le problème parabolique linéaire :

(1)


−Pu = f(t, x) sur QT

u(t, x) = g(x) ou
∂u

∂ν
(t, x) = g(x) sur FL

u(0, x) = u0(x) sur {0} × Ω (socle)

Définition :
1. Une fonction régulière u ∈ C2

1(QT ) vérifiant
−Pu ≥ f(t, x) sur QT

u(t, x) ≥ g(x) ou
∂u

∂ν
(t, x) ≥ g(x) sur FL

u(0, x) ≥ u0(x) sur {0} × Ω (socle)

est appelée sur-solution du problème linéaire (1).
2. Une fonction régulière u ∈ C2

1(QT ) vérifiant
−Pu ≤ f(t, x) sur QT

u(t, x) ≤ g(x) ou
∂u

∂ν
(t, x) ≤ g(x) sur FL

u(0, x) ≤ u0(x) sur {0} × Ω (socle)

est appelée sous-solution du problème linéaire (1).

Remarque : Pour trouver des sur et sous-solutions du problème parabolique, on peut tester
— 0
— Les "grandes" constantes
— φ fonction propre principale (cf rappels sur la théorie spectrale en annexe)
— La solution de l’EDO associée (sans L)

Théorème (Principe de comparaison parabolique linéaire) :

Soient u et v deux fonctions dans C2
1(]0;T ]× Ω) ∩ C([0;T ]× Ω) vérifiant

(i) − Pu ≤ −Pv sur QT
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et
(ii) u(0, x) ≤ v(0, x) sur Ω

On suppose également que
(iii) u(t, x) ≤ v(t, x) sur FL

ou que

(iv)
∂u

∂ν
(t, x) ≤ ∂v

∂ν
(t, x) sur FL

Alors : u ≤ v dans QT et :
— soit u ≡ v dansQT ,
— soit u < v dans QT (séparation stricte).

Application : Si f ≥ 0, g ≥ 0, u0 ≥ 0, alors pour toute solution classique u du problème (1), on a
u(t, x) ≥ 0 ∀(t, x) ∈ QT .

Définissons maintenant le problème parabolique semi-linéaire :

(2)


−Pu = f(t, x, u) sur QT

u(t, x) = g(x) ou
∂u

∂ν
(t, x) = g(x) sur FL

u(0, x) = u0(x) sur {0} × Ω (socle)

On suppose que T > 0 (T peut éventuellement être infini), que f et
∂f

∂u
appartiennent à C([0;T ]×Ω×R).

Théorème (Principe de comparaison parabolique non linéaire) :

Soient u et v deux fonctions dans C2
1(]0;T ]× Ω) ∩ C([0;T ]× Ω) vérifiant

(i) − Pu− f(t, x, u) ≤ −Pv − f(t, x, v) sur QT
et

(ii) u(0, x) ≤ v(0, x) sur Ω

On suppose également que
(iii) u(t, x) ≤ v(t, x) sur FL

ou que

(iv)
∂u

∂ν
(t, x) ≤ ∂v

∂ν
(t, x) sur FL

Alors : u ≤ v dans QT et :
— soit u ≡ v dansQT ,
— soit u < v dans QT (séparation stricte).

Remarque : Comme pour le cas linéaire, nous disposons de la notion de sous-solution et de sur-solution
du problème semi-linéaire (2).

Nous disposons également d’un lemme de Hopf parabolique. Citons-en un cas particulier mais courant :

Théorème (Lemme de Hopf parabolique) : Soit T > 0, c(t, x) ∈ C([0, T ]× Ω) et u(t, x) ∈ C2
1(]0, T ]×

Ω) ∩ C1
0([0, T ]× Ω) tels que :{

∂tu ≥ D∆u+ c(t, x)u, t ∈]0, T ], x ∈ Ω

u(t, x) ≥ 0, t ∈ [0, T ], x ∈ Ω

Supposons que u(t0, x0) = 0 pour un (t0, x0) ∈]0, T ]× ∂Ω. Alors :

— soit u ≡ 0 dansQT ,

— soit
∂u

∂ν
(t0, x0) < 0.
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4.1.2 Existence de solutions aux problèmes paraboliques

Les principes de comparaison précédents sont de puissants outils pour prouver l’existence de solutions
à des problèmes paraboliques linéaires ou non. La technique d’itération monotone qui sera explicitée
plus tard est d’une grande efficacité pour les problèmes non-linéaires. Elle est identique à celle vue
dans le cas elliptique.
Nous avons besoin de nous rappeler quelques faits sur la solution fondamentale de l’opérateur de la
chaleur, qui nous seront utiles dans la preuve du théorème d’existence de solution sur RN , ainsi que
d’expliciter la notion de conditions de compatibilité.

Rappels sur le noyau de la chaleur : N désigne un entier supérieur ou égal à 1

On pose G(t, x) =
1

(4πt)N/2
e−|x|

2/4t si t > 0 et x ∈ RN . Alors :

1. G ∈ C∞(]0; +∞[×RN ) et
∂G

∂t
= ∆G (solution de l’équation de la chaleur)

2. G est une unité approchée quand t→ 0 i.e
a) G ≥ 0

b) ∀t
∫
RN

G(t, x)dx = 1

c) ∀ε > 0 lim
t→0

∫
RNrB(0,ε)

G(t, x)dx = 0

Nous nous intéressons maintenant au problème :
∂u

∂t
= ∆u sur ]0; +∞[×RN

u(0, x) = u0(x) sur RN

On suppose u0 ∈ Cb(RN ), l’espace des fonctions continues et bornées sur RN . Posons u(t, x) :=

[G(t, .) ∗ u0](x) (convolution dans l’espace) i.e u(t, x) =

∫
RN

1

(4πt)N/2
e−|x−y|

2/4tu0(y)dy.

Alors u ∈ C∞(]0; +∞[×RN ) et
∂u

∂t
= ∆u sur ]0; +∞[×RN .

De plus, si u0 ≥ 0 (u0 6= 0), alors (∀t > 0) (∀x ∈ RN ) u(t, x) > 0. De plus, on obtient le principe de
comparaison : si u0 ≤ v0, alors à tout temps u ≤ v.

Existence en domaine borné (cas linéaire)

Ω est un ouvert borné régulier.

Comme pour le cas elliptique, on dispose d’estimations paraboliques a priori, où lesW 2,p(Ω) deviennent
les W 1,2,p((0, T )× Ω) et où les C2+α(Ω) deviennent les C1+α/2,2+α([0;T ]× Ω).

On peut alors "par continuation" comme vu précédemment, relier l’équation de la chaleur à un pro-
blème parabolique linéaire : 

∂u

∂t
= Lu sur ]0;T [×Ω

u = 0 sur ]0;T [×∂Ω

u(0, x) = u0(x) sur {0} × Ω

En parabolique, on a toujours comparaison ! On a alors le caractère bien posé des problèmes parabo-
liques et des estimations paraboliques a priori.

Nous allons considérer deux cas modèles (Dirichlet et Neumann) :
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(PD)


Pu = f(t, x) sur QT :=]0;T ]× Ω (1)

u(t, x) = φ(t, x) sur FL :=]0;T ]× ∂Ω (2)

u(0, x) = u0(x) sur {0} × Ω (3)

Nous devrons alors vérifier les deux conditions de compatibilité (quand t tend vers 0 dans (2) et (3)) :
1. u0(x) = φ(0, x) sur ∂Ω

2.
∑
i,j

aij(0, x)∂2
iju0 +

∑
i

bi(0, x)∂iu0 + c(0, x)u0 − f(0, x) = ∂tφ(0, x) sur ∂Ω

Pour la suite, nous supposerons que la condition d’uniforme ellipticité est valide :

(?) ∃µ > 0 ∀t ∈ [0;T ] ∀x ∈ Ω ∀ξ ∈ RN
∑
i,j

aij(t, x)ξiξj ≥ µ|ξ|2

Nous pouvons maintenant énoncer notre théorème d’existence :

Théorème : Supposons la condition (?) vérifiée et que les coefficients aij , bi, et c appartiennent
à l’espace de Hölder Cα/2,α(QT ). La frontière du domaine ∂Ω est supposée de classe C2+α. Si les
conditions de compatibilité (1) et (2) sont satisfaites, alors pour toute fonction f ∈ Cα/2,α(QT ), u0 ∈
C2+α(Ω) et φ ∈ C1+α/2,2+α(∂Ω), le problème (PD) a une unique solution u ∈ C1+α/2,2+α(QT ) et on a
l’estimation suivante :

‖u‖C1+α/2,2+α(QT ) ≤ C
(
‖f‖Cα/2,α(QT ) + ‖u0‖C2+α(Ω) + ‖φ‖C1+α/2,2+α(∂Ω)

)
De même, nous pouvons traiter le cas d’un problème de Neumann :

(PN )


Pu = f(t, x) sur QT :=]0;T ]× Ω (1)
∂u

∂ν
(t, x) = φ(t, x) sur FL :=]0;T ]× ∂Ω (2)

u(0, x) = u0(x) sur {0} × Ω (3)

Théorème : Supposons la condition (?) vérifiée et que les coefficients aij , bi, et c appartiennent à
l’espace de Hölder Cα/2,α(QT ). La frontière du domaine ∂Ω est supposée de classe C2+α. Si u0 satisfait
∂u0

∂ν
= φ(0, x) sur FL (condition de compatibilité), alors pour toute fonction f ∈ Cα/2,α(QT ), u0 ∈

C2+α(Ω) et φ ∈ C1+α/2,2+α(∂Ω), le problème (PN ) a une unique solution u ∈ C1+α/2,2+α(QT ) et on a
l’estimation suivante :

‖u‖C1+α/2,2+α(QT ) ≤ C
(
‖f‖Cα/2,α(QT ) + ‖u0‖C2+α(Ω) + ‖φ‖C(1+α)/2,1+α(∂Ω)

)
Existence en domaine borné (cas non linéaire)

Considérons le problème parabolique semi-linéaire :

(P)


Pu = 0 sur QT :=]0;T ]× Ω (1)

u(t, x) = φ(t, x) sur FL :=]0;T ]× ∂Ω (2)

u(0, x) = u0(x) sur {0} × Ω (3)

avec Pu :=

N∑
i,j=1

aij(t, x, u)∂iju+

N∑
i=1

bi(t, x, u)∂iu+ c(t, x, u)− ∂u

∂t
.
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Théorème : Supposons que les fonctions aij , bi et c soient uniformément bornées et continues sur
QT , u ∈ R, de même que leurs dérivées premières par rapport à n’importe quelle variable t, x, u et
que :

∃ν, µ > 0 ∀(t, x) ∈ QT ∀u ∈ R ∀ξ ∈ RN ν|ξ|2 ≤
N∑

i,j=1

aij(t, x, u)ξiξj ≤ µ|ξ|2

Si la frontière du domaine ∂Ω est de classe C2+α, u0 ∈ C2+α(Ω), φ ∈ C1+α/2,2+α(QT ) et que l’on a les
conditions de compatibilité :

— u0(x) = φ(0, x), x ∈ ∂Ω

—
∑
i,j

aij(0, x, u0)∂2
iju0 +

∑
i

bi(0, x, u0)∂iu0 + c(0, x, u0) = ∂tφ(0, x) sur ∂Ω

Alors il existe une unique solution u ∈ C1+α/2,2+α(QT ) du problème P.

Considérons le problème non linéaire typique :
∂u

∂t
(t, x) = ∆u(t, x) + f(x, u) sur ]0;T [×Ω

u(t, x) = 0 sur ]0;T [×∂Ω

u(0, x) = u0(x) sur Ω

avec f ∈ Cαx ∩ C1
u et u0 ∈ C2+α(Ω)

Théorème (de comparaison et d’existence) : Sous les hypothèses de régularité précédentes, et en
supposant les conditions de compatibilité :

— u0(x) = 0 pour x ∈ ∂Ω
— ∆u0(x) + f(x, 0) = 0 pour x ∈ ∂Ω

vérifiées, si l’on dispose de u− ≤ u+ telles que :
1. ∂tu− −∆u− − f(x, u−) ≤ 0 ≤ ∂tu+ −∆u+ − f(x, u+) sur (0, T )× Ω

2. u− ≤ 0 ≤ u+ sur (0, T )× ∂Ω

3. u− ≤ u0 ≤ u+ sur Ω

alors il existe une unique solution u ∈ C1+α/2,2+α(QT ) du problème précédent, et de plus u− ≤ u ≤ u+.

Remarque : ce théorème précise le théorème de comparaison parabolique non linéaire vu avant. Pour
une généralisation, on peut consulter Vitaly-Volpert [2, p128].

Existence en domaine non borné (Ω = RN)

Théorème (cas linéaire) : Supposons que l’opérateur parabolique P vérifie la condition d’uniforme
ellipticité usuelle et que ses coefficients appartiennent à Cα/2,α([0, T ]× RN ). Alors :
∀f ∈ Cα/2,α([0, T ]× RN ) et u0 ∈ C2+α(RN ), le problème{

Pu = f(t, x) sur (0, T )× RN

u(0, x) = u0(x) sur RN

a une unique solution u ∈ C1+α/2,2+α([0, T ]× RN ) et on a :
‖u‖C1+α/2,2+α([0,T ]×RN ) ≤ C

(
‖f‖Cα/2,α([0,T ]×RN ) + ‖u0‖C2+α(RN )

)
.

To be continued...
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5 Ondes progressives : Travelling waves
Nous prendrons comme cadre l’équation de réaction diffusion normalisée :

∂tu = ∆u+ f(u)

le premier terme ∆u exprimant la diffusion et le second terme f(u) la croissance.
La fonction f peut être de type :

1. Fischer-KPP (monostable) : f(u) = Du
(

1− u

K

)
.

La croissance est meilleure à faible densité (même avec effet Allee faible).
2. Bistable (Effet Allee fort)
3. Ignition : Bistable aussi. On a un seuil θ pour la réaction.

5.1 EDP du type Fisher-KPP
5.1.1 Dans RN , homogène

Le modèle type est le suivant :

(?)

{
∂tu = ∆u+ f(u), t > 0, x ∈ RN

u(0, x) = u0(x), x ∈ RN

Pour simplifier, f(u) = u(1− u).

On prend comme hypothèse que :
— u0 ∈ BUC(RN ), l’espace vectoriel des fonctions bornées et uniformément continues sur RN ,

muni de la norme du sup.
— 0 ≤ u0 ≤ 1

Alors il existe une unique solution globale u(t, x) au sens de Duhamel et 0 ≤ u ≤ 1 (Théorème de
solvabilité globale).

Question : Quid de u(t, x) quand t→ +∞ ? (Comportement en temps long du problème de Cauchy)

� Un cas favorable : ∃ε > 0 ∀x ∈ RN u0(x) ≥ ε.
Alors la solution de l’EDO {

θ′(t) = f(θ(t))

θ(0) = ε

est sous-solution de (?).
Par le théorème de solvabilité globale rappelé précédemment, θ(t) ≤ u(t, x) ≤ 1.
La dynamique de l’EDO dit que lim

t→+∞
θ(t) = 1 (car ε > 0).

Ainsi, u(t, x)→ 1 quand t→ +∞ uniformément en x. Il y a propagation.

� Supposons la donnée initiale u0 à support compact.

Lemme : Soit le problème {
∂tu−∆u− f(u) = 0, t > 0, x ∈ RN

u(0, x) = ψ(x), x ∈ RN

Si ψ vérifie Lψ ≤ 0, alors la solution u(t, x) croît en temps.
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Théorème : Il y a propagation : pour tout u0 à support compact (u0 6= 0), ∀x ∈ RN lim
t→+∞

u(t, x) = 1

Démonstration : Elle se fait en trois étapes.
1. On prouve que 1 ≥ u(1 + t, x) ≥ z(t, x) ↑ p(x) quand t→ +∞
2. p est solution du problème stationnaire sous-jacent : −∆p = f(p) dans R

3.

{
−∆p = f(p) dans R
0 ≤ p ≤ 1

=⇒ p ≡ 1

Étape 1 : On cherche une solution de Lu = 0 à l’aide d’une fonction propre du Laplacien (Technique
à retenir). 

−∆φR = λRφR dans BR := B(0, R)

φR = 0 sur ∂BR
φR > 0 et ‖φR‖L∞ = 1 dans BR

Du fait de la non-linéarité de f , on calculera L(εφR) et non L(φR).

L(εφR) = ∂tφR −∆(εφR)− εφR(1− φR)

= ελRφR − εφR(1− εφR)

= εφR(λR − 1 + εφR)

≤ εφR(λR − 1/2) dès que 0 < ε ≤ 1/2

≤ 0 si R assez grand car λR ↓ 0 quand R→ +∞

Or

{
Lu = 0

u(0, x) = u0(x) ≥ 0 (u0 6= 0)
, donc par comparaison u ≥ 0,

puis par séparation stricte, u(t, x) > 0 si t > 0. En particulier, u(1, x) > 0 ∀x ∈ RN .
On peut donc choisir ε > 0 assez petit afin que ∀x ∈ RN εφR(x) ≤ u(1, x).
On définit donc z(t, x) comme la solution de :

Lz = ∂tz −∆z − f(z) = 0

z(0, x) =

{
εφR(x) si x ∈ BR
0 sinon

Par comparaison, on a : 1 ≥ u(1 + t, x) ≥ z(t, x).
Or z(0, x) est sous-solution (z(0, x) ≤ u(1, x)) et Lz = 0, donc d’après le lemme, z(t, x) croît quand t
croît.
Comme z(t, x) ≤ 1 et p(x) > 0, on a la convergence simple : z(t, x) ↑ p(x) quand t→ +∞.

Étape 2 : Le but est d’améliorer la convergence ponctuelle lim
t→+∞

z(t, x) = p(x) afin de passer à la
limite dans l’équation. Mais ce gain de régularité nécessite plusieurs outils théoriques : des estimations
paraboliques intérieures a priori.

On a z(t, x) ∈ C1+α/2,2+α((0,∞)× R).
On définit zn(t, x) := z(t+ n, x)→ p(x) quand n→ +∞.
On a L(zn) = 0 i.e ∂tzn −∆zn︸ ︷︷ ︸

linéaire

= f(zn)︸ ︷︷ ︸
considéré comme un membre de droite

sur (0,+∞)× R.

Posons wk = (1, 2)× (−k, k) ⊂⊂ (0,∞)× R pour k ∈ N?.
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D’après les estimations paraboliques intérieures :

‖zn‖C1+α/2,2+α(ωk) ≤ Ck
[
‖f(zn)‖Cα/2,α((0,∞)×R) + ‖zn‖Cα/2,α((0,∞)×R)

]
≤ Ck max

(
‖f‖∞,Lip[0,1]f + 1

)
‖z‖Cα/2,α((0,∞)×R)

≤ C̃k constante indépendante de n

k=1 : w1 = (1, 2)× (−1, 1)
‖zn‖C1+α/2,2+α(ω1) ≤ C̃1

Mais on a l’injection compacte C1+α/2,2+α(ω1) ↪→ C1,2(ω1).
Donc il existe une sous-suite (zn1) de (zn) qui converge vers une limite notée z dans C1,2(ω1), et
nécessairement, z = p.
k=2 : w2 = (1, 2)× (−2, 2)
‖zn1
‖C1+α/2,2+α(ω2) ≤ C̃2 et C1+α/2,2+α(ω2) ↪→ C1,2(ω2). Donc il existe une sous-suite (zn2

) de (zn1
)

telle que zn2
→ z ≡ p dans C1,2(ω2).

etc.

Par extraction diagonale, il existe une suite (znk) extraite de (zn) avec lim
k→+∞

znk = p dans C1,2
loc ((1, 2)×

R).
On peut alors passer à la limite dans

∂tznk −∆znk = f(znk)

D’où :
−∆p = f(p)

Étape 3 : On sait que {
−∆p = f(p) := p(1− p) sur R
0 < p(x) ≤ 1

But : Prouver que p ≡ 1.
Par l’absurde, supposons que p 6= 1. Par exemple, p(0) < 1.
On sait que 

−∆φR = λRφR dans BR := B(0, R)

φR = 0 sur ∂BR
φR > 0 et ‖φR‖L∞ = 1 dans BR

−∆(εφR)− f(εφR) = ελRφR − εφR(1− εφR)

= εφR(λR − 1 + εφR)

≤ εφR(λR − 1 + p(0))

≤ εφR(λR − (1− p(0)))

< 0 quand R assez grand

Posons ε? := sup{ε > 0;∀x ∈ BR εφR(x) ≤ p(x)}.
ε? existe et appartient à (0, p(0)]. On pose enfin w = ε? − p ≤ 0 dans BR. Par définition de ε?, w = 0
en un point x0 ∈ BR. Ce point x0 /∈ ∂BR (car les bords sont fixes).
Ainsi, 0 ≥ ∆w(x0) = ε?∆φR(x0)−∆p(x0) > −f(ε?φR)(x0) + f(p)(x0) = 0 car w = 0 en x0.
Remarque : La dernière inégalité est stricte car ε?φR sous-solution stricte.
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5.1.2 Ondes progressives, lien avec Cauchy

(EDP ) : ∂tu = ∂xxu+ f(u).
On cherche des solutions voyageant à vitesse constante et gardant leur profil : u(t, x) = φ(x − ct), c
constante.
L’équation devient :
(EDO) : −cφ′(z) = φ′′(z) + f(φ(z)), où z = x− ct.

Définition : Une onde progressive (Travelling Wave, notée TW) est un couple (c, φ) tel que :
φ′′ + cφ′ + f(φ) = 0 sur R
φ(−∞) = 1;φ(+∞) = 0

φ ≥ 0

Remarque : La solution de :{
Lu := ∂tu−∆u− f(u) = 0, t > 0, x ∈ R
u(0, x) = φ(x)

n’est autre que u(t, x) = φ(x− ct).

— Si c+ > c, alors : u(t, c+t) = φ((c+ − c)t)→ φ(+∞) = 0 quand t→ +∞.
— Si c− < c, alors : u(t, c−t) = φ((c− − c)t)→ φ(−∞) = 1 quand t→ −∞.

c est la vitesse de propagation.

Propriétés : On suppose que (c, φ) est une onde progressive. Alors on a :
1. 0 < φ < 1

2. φ′(±∞) = 0

3. φ′ ∈ L2(R) et c est du signe de
∫ 1

0

f(u)du (> 0 pour Fisher-KPP)

4. φ′ < 0

Résultats sur les ondes progressives
On effectue une linéarisation formelle autour de l’équilibre instable φ ≡ 0 (i.e x → +∞ très en avant
du front).

(c, φ) TW


φ′′ + cφ′ + φ(1− φ) = 0 sur R
φ(−∞) = 1;φ(+∞) = 0

φ ≥ 0

devient φ′′ + cφ′ + φ = 0 (EDO linéaire du 2ème ordre)
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∆ = c2 − 4 doit être positif ou nul. En effet, si ∆ < 0, φ s’exprime en cos, sin, et donc on a des
oscillations autour de 0. On perd la propriété φ ≥ 0.
Or c > 0, donc c ≥ 2.

Théorème : Il existe une onde progressive (c, φ) si et seulement si c ≥ c? = 2.
c? est la vitesse minimale des fronts KPP. De plus, pour tout c ≥ c?, le profil φc est unique (à trans-
lations près).

Généralisation : L’équation ∂tu = D∂2
xxu + ru

(
1− u

K

)
, (t, x) ∈ R2 admet des solutions positives

de type front, u(t, x) = φc(x− ct), avec φ(−∞) = K, φ(+∞) = 0 si et seulement si c ≥ c? = 2
√
rD.

De plus, ∀c ≥ c?, le profil φc est unique (à translations près), strictement positif et strictement dé-
croissant.

Théorème : Soit u(t, x) une solution du problème de Cauchy

(Pb)

{
∂tu = D∂2

xxu+ ru
(

1− u

K

)
, (t, x) ∈ R?+ × R

u(0, x) = u0(x), x ∈ R

avec donnée initiale u0 ≥ 0, u0 6= 0 continue et à support compact (on suppose toujours u0 régulière).
Cette solution converge vers le front de vitesse minimale au sens suivant :

lim
t→+∞

sup
x≥0
|u(t, x)− φc?(x− c?t+m1(t))| = 0

lim
t→+∞

sup
x≤0
|u(t, x)− φc?(−x− c?t+m2(t))| = 0

Les fonctions mi(t), (i = 1, 2) décrivant le décalage entre u(t, x) et le front de vitesse minimale sont

négligeables par rapport à t : mi(t) =
3
√
D

2
√
r
ln(t) + Ci, i = 1, 2, Ci constante.

Remarque : Ce résultat permet notamment de relier les paramètres r,D du modèle à la vitesse de colo-
nisation. En effet, un observateur qui avancerait vers la droite avec une vitesse supérieure à c? = 2

√
rD

verrait la densité de population tendre vers 0, alors que s’il se déplaçait vers la droite avec une vitesse
comprise entre 0 et c?, il verrait la densité de population tendre vers la capacité d’accueil K de l’en-
vironnement (idem vers la gauche). On dit que c? est la vitesse asymptotique de propagation de la
solution du problème de Cauchy (Pb).

� Quid quand la densité de population initiale u0 n’est pas à support compact ?

La solution du problème de Cauchy (Pb) peut converger vers un front de vitesse c > c?.
Formellement, posons u0(−∞) = K, u0(+∞) = 0, u0(x) ∼ Ae−λx A, λ > 0, avec u0 décroissante :
u0(x) ∼ Ae−λx quand x→ +∞
⇓
u(t, x) ∼ Ae−λ(x−ct) où c est à déterminer

Considérons l’équation linéarisée :
∂tu = D∂2

xxu+ ru (x >> 1)
Cherchons des solutions du type front u(t, x) = φc(x− ct), avec φc(x) = Ae−λx.
On obtient alors : Dλ2 − cλ + r = 0, d’où c = Dλ +

r

λ
. En étudiant la fonction c(λ) = Dλ +

r

λ
, on

voit que c atteint son minimum quand λ = λ? :=
√
r/D.

1. 0 < λ < λ? : la vitesse de propagation est égale à Dλ+
r

λ
> c? = 2

√
rD

2. λ = λ? : la vitesse de propagation est égale à Dλ+
r

λ
= 2
√
rD = c?

24



3. λ > λ? : e−λx ≤ e−λ?x.
Par comparaison parabolique en domaine non borné (Ω = R), la vitesse de propagation avec
λ > λ? est inférieure ou égale à c? = 2

√
rD (vitesse minimale). D’où c? = 2

√
rD.

Formellement, quand λ→ +∞, u0(x) ≡ 0 quand x→ +∞. On retrouve la donnée à support compact.

Théorème : Soit u(t, x) la solution du problème de Cauchy (Pb) avec donnée initiale u0 ≥ 0, décrois-
sante, telle que u0(−∞) = K, u0(+∞) = 0, u0(x) ∼ Ae−λx A, λ > 0. cette solution converge vers

l’unique front de vitesse c vérifiant :

{
c = c? = 2

√
rD si λ ≥ λ? =

√
r/D

c = Dλ+
r

λ
si λ < λ?

La convergence a lieu au sens suivant :

lim
t→+∞

sup
x∈R
|u(t, x)− φc(x− ct+m(t) + c)| = 0

où c > 0, m(t) = o(t) en +∞ et m(t) ≡ 0 quand λ < λ?.

Remarque : Plus la donnée initiale est à décroissance rapide, plus le front sélectionné est lent, jusqu’au
seuil λ? à partir duquel la vitesse de propagation ne dépend plus de la vitesse de décroissance de u0,
et est égale à la vitesse que l’on obtiendrait avec u0 à support compact. En gros, pour Fisher-KPP,
la linéarisation autour de u ≡ 0 dit tout ! En particulier, les queues de la condition initiale u0 sélec-
tionnent la vitesse de propagation.

Pour les phénomènes d’accélération, on peut consulter Roques[1,p82-84]

5.2 EDP avec effet Allee
Considérons le modèle en dimension 1 d’espace et dans un milieu homogène non borné :

(P) ∂tu = D∂2
xxu+ ru

(
1− u

K

)
(u− ρ), (t, x) ∈ R2

avec r,K > 0 et ρ ∈]0,K[.

5.3 Équation hétérogène en domaine borné
On transforme f(u) = u(1 − u) cas modèle pour Fisher-KPP en f(x, u) = u(r(x) − γ(x)u), où r(x)
est le taux de croissance intrinsèque dépendant de la position. Cette quantité est donc positive ou
négative. γ(x) est un terme de compétition dépendant de la position. Il est toujours positif.

On regarde l’équation :

(?)


∂tu = D∆u+ u(r(x)− γ(x)u), t ≥ 0, x ∈ Ω

Condition de Dirichlet ou de Neumann
u(0, x) = u0(x) ≥ 0, bornée, x ∈ Ω

Remarque : le taux de croissance per capita
f(x, u)

u
= r(x) − γ(x)u est une fonction strictement dé-

croissante de u, et atteint son maximum quand u ≡ 0 i.e situation de Fisher-KPP.

Hypothèses de régularité : r, γ ∈ Lip(Ω). Par compacité de Ω, γ > γmin > 0.
u0 ∈ C2+α(Ω) + conditions de compatibilité.

— 0 est sous-solution de (?)
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— La grande constante (positive) max

(
‖r‖∞
γmin

, ‖u0‖∞
)

est sur-solution de (?).

Un théorème de comparaison rappelé précédemment nous assure alors de l’existence d’une unique so-
lution u ∈ C([0, T ] × Ω). En fait, cette solution appartient à C([0,∞) × Ω) car on a pas "explosion".
De plus, 0 ≤ u ≤ Grande constante.

Question : Quid de u quand t→ +∞ ?

États stationnaires

But : trouver p = p(x) ≥ 0 solution de

−D∆p− p(r(x)− γ(x)p) = 0 sur Ω

p = 0 ou
∂p

∂ν
= 0 sur ∂Ω

p ≡ 0 convient. Y a-t-il d’autres solutions (ce sont les candidats pour décrire u(t, x) quand t tend vers
+∞) ?
La réponse est donnée par le signe de la valeur propre principale du linéarisé autour de
p ≡ 0.

Ici Lψ := −D∆ψ − r(x)ψ.
Notons (λ1, ψ) le couple valeur propre principale, fonction propre associée à L.

Théorème : Si λ1 < 0, alors il existe p(x) ≥ 0, p(x) 6= 0 état stationnaire.

Théorème : Si λ1 ≥ 0, alors p ≡ 0 est le seul état stationnaire positif.

6 La théorie des semi-groupes pour les EDP semi-linéaires

6.1 Opérateurs m-dissipatifs
(X, ‖.‖) désigne un espace de Banach.

6.1.1 Définitions et propriétés de base

Définition : Un opérateur A : D(A) ⊂ X → X est dit dissipatif si :

∀λ > 0 ∀x ∈ D(A) ‖x− λAx‖ ≥ ‖x‖

Remarque : Soit f ∈ X. S’il existe x ∈ D(A) solution de x− λAx = f , alors A dissipatif nous dit que
‖x‖ ≤ ‖f‖.

Définition : Un opérateur A est dit m-dissipatif si :
1. A est dissipatif
2. ∀λ > 0 ∀f ∈ X ∃x ∈ D(A) x− λAx = f i.e ∀λ > 0, I − λA : D(A)→ X surjectif.

Lemme et définition :
1. Si A : D(A) ⊂ X → X est m-dissipatif, alors ∀λ > 0 ∀f ∈ X l’équation x − λAx = f a une

unique solution u telle que ‖u‖ ≤ ‖f‖.
2. L’application

Jλ :

{
X → D(A)

f 7→ u unique solution de u− λAu = f

est une contraction sur X, linéaire, bijective de X sur D(A). On posera Jλ := (I − λA)−1 .
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Proposition : Si A est m-dissipatif, alors le graphe de A, G(A) est fermé dans X ×X.

Corollaire : Soit A un opérateur m-dissipatif et u ∈ D(A). On pose
— ‖u‖D(A) := ‖u‖+ ‖Au‖ (norme du graphe)
— |‖.‖| := ‖u−Au‖ = ‖(I −A)u‖ (intermédiaire utile)

1. ‖.‖D(A) est une norme sur D(A) et
(
D(A), ‖.‖D(A)

)
est un espace de Banach.

2.
(
D(A), ‖.‖D(A)

)
↪→ (X, ‖.‖)

3. |‖.‖| ∼ ‖.‖D(A).

4. J1 isomorphisme de (X, ‖.‖) sur
(
D(A), ‖.‖D(A)

)
.

Quand on parlera de D(A), on sous-entendra désormais l’espace de Banach
(
D(A), ‖.‖D(A)

)
.

Corollaire : ∀λ > 0, Jλ ∈ L(X,D(A)).

Définition : Soit A un opérateur m-dissipatif et λ > 0.

On pose Aλ :=
1

λ
(Jλ − I) . Aλ s’appelle l’approximée de Yosida de A.

Lemme :
1. ∀x ∈ X, Aλx = A(Jλx)

2. ∀x ∈ D(A), Aλx = Jλ(Ax)

3. Aλ ∈ L(X) et ‖Aλ‖ ≤ 2/λ

4. Jλ|D(A) ∈ L(D(A)) et ‖Jλ|D(A)‖ ≤ 1

5. Aλ est m-dissipatif
Remarque : Si A est m-dissipatif et X est réflexif, alors D(A) est dense dans X.

Proposition : Soit A m-dissipatif, (Aλ)λ>0 et on suppose que D(A) est dense dans X (pour la norme
de X). Alors :

1. ∀λ > 0 ∀x ∈ D(A) ‖Jλx− x‖ ≤ λ‖Ax‖
2. ∀x ∈ X ‖Jλx− x‖ → 0 quand λ→ 0

3. ∀x ∈ D(A) ‖Aλx− x‖ → 0 quand λ→ 0

4. ∀x ∈ D(A) ‖Jλx− x‖D(A) → 0 quand λ→ 0

Proposition (très utile) : Supposons que A est dissipatif. Alors :
A est m-dissipatif si et seulement si il existe λ0 > 0 tel que ∀f ∈ X, x− λ0Ax = f est résoluble.

Remarque technique : Cette dernière proposition nous permet de chercher un "bon λ" qui résout
x− λAx = f pour tout f ∈ X pour conclure à la m-dissipativité de A.

Corollaire : Si A ∈ L(X) et si A est dissipatif, alors A est m-dissipatif.

Corollaire (très utile) : Soient A et B deux opérateurs linéaires non bornés. Supposons que :
1. B est dissipatif
2. G(A) ⊂ G(B)

3. R(I −A) = X

Alors A = B et A est m-dissipatif.

Corollaire : Soient A et B deux opérateurs m-dissipatifs tels que G(A) = G(B). Alors A = B.
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6.1.2 Restriction et extrapolation

Théorème : Soit A un opérateur m-dissipatif, de domaine dense.
Posons X1 = (D(A), ‖.‖D(A)). A1 est l’opérateur linéaire sur X1 défini par :{

D(A1) = {x ∈ X1;Ax ∈ X1} ⊂ D(A) = X1

A1x = Ax ∀x ∈ D(A1)

Alors A1 est un opérateur m-dissipatif et D(A1) est dense dans X1.

Remarque : On a restreint l’opérateur non borné A en un opérateur A1 dont le domaine D(A1) est
constitué des éléments de D(A) stables par A.

On peut continuer l’opération de restriction précédente en définissant :{
D(A2) = {x ∈ D(A1);Ax ∈ D(A1)}
A2x = A(Ax) ∀x ∈ D(A2)

De manière générale, {
D(An) = {x ∈ D(An−1);Ax ∈ D(An−1)}
Anx = An−1(Ax) ∀x ∈ D(An)

Théorème : Soit A un opérateur m-dissipatif, de domaine dense. Alors il existe un espace de Banach
X−1 et un opérateur A−1 sur X−1 tel que :

1. X ↪→ X−1 avec injection dense
2. ∀x ∈ X ‖x‖X−1 = ‖J1x‖
3. A−1 est m-dissipatif dans X−1

4. D(A−1) = X

5. ∀x ∈ D(A) A−1x = Ax

Remarque : on a extrapolé l’opérateur non borné A en un opérateur A−1 de domaine D(A−1) = X.

De même, on peut construire X ↪→ X−1 ↪→ X−2 . . .
Restriction et extrapolation commutent :

(X1)−1 = X = (X−1)1

6.1.3 Cas des espaces de Hilbert

(X, (., .)) est un espace de Hilbert réel de norme associée |.|

Lemme (utile) : SoitA un opérateur linéaire surX.A est dissipatif si et seulement si ∀x ∈ D(A) (Ax, x) ≤
0.

Lemme : Si A est m-dissipatif, alors D(A) est dense dans X.

Remarque : tous les espaces de restriction et d’extrapolation Xn (n ∈ Z) sont des espaces de Hilbert.
Exemple :

— X1 : (x, y)X1
= (x, y)X + (Ax,Ay)X

— X−1 : (x, y)X−1 = (J1x, J1y)X

Lorsqu’un opérateur A est m-dissipatif, alors D(A) est dense dans X. On peut donc alors définir sans
problème son adjoint A? :

28



— D(A?) := {x ∈ X;∃C > 0 ∀y ∈ D(A) |(x,Ay)| ≤ C‖y‖}
— ∀u ∈ D(A) ∀v ∈ D(A?) (A?v, u) = (v,Au)

G(A?) est fermé dans X ×X.
Si B ∈ L(X), alors (A+B)? = A? +B?.

Proposition : R(A)
⊥

= {v ∈ D(A?);A?v = 0}.

Théorème (utile) : Soit A un opérateur linéaire dissipatif dans X, de domaine dense . Alors A est
m-dissipatif si et seulement si A? est dissipatif et G(A) fermé.

Définition : Soit A un opérateur linéaire dans X, de domaine dense. On dit que A est auto-adjoint
(resp. anti-adjoint) si A? = A (resp. si A? = −A).

Corollaire : Si A est un opérateur auto-adjoint dans X et si A ≤ 0 (i.e (Au, u) ≤ 0 ∀u ∈ D(A)), alors
A est m-dissipatif.

Corollaire : Si A est un opérateur anti-adjoint dans X, alors A et −A sont m-dissipatifs.

Corollaire : Soit A un opérateur linéaire dans X, de domaine dense tel que G(A) ⊂ G(A?) et A ≤ 0)
(i.e A dissipatif). Alors : A est m-dissipatif si et seulement si A est auto-adjoint.

Corollaire : SoitA un opérateur linéaire dans X, de domaine dense. Alors A et −A sont m-dissipatifs
si et seulement si A est anti-adjoint.

Proposition : Soit A un opérateur m-dissipatif. Alors :
1. A? est m-dissipatif
2. (I − λA?)−1 = [(I − λA)−1]?

3. (A?)λ = (Aλ)?

Cas des espaces de Hilbert complexes

Dans ce paragraphe, on suppose que X est un espace de Hilbert complexe i.e qu’il existe une forme
R-bilinéaire continue b : X ×X → C telle que :

— b(iu, v) = ib(u, v) ∀(u, v) ∈ X ×X
— b(v, u) = b(u, v)
— b(u, u) = ‖u‖2 ∀u ∈ X

Dans ce cas, (u, v) := Re (b(u, v)) définit un produit scalaire réel sur X qui fait de X un espace de
Hilbert réel.

Soit A un opérateur linéaire sur l’espace de Hilbert réel X. Si A est C-linéaire, on peut définir iA
comme un opérateur linéaire sur l’espace de Hilbert réel X.

Proposition : Supposons que D(A) est dense dans X. Alors A? est C-linéaire et on a (iA)? = −iA?.

Corollaire : Si A est auto-adjoint, alors iA est anti-adjoint.

6.2 Théorème de Hille-Yosida-Phillips
Rappels : Soit X un espace de Banach et A ∈ L(X).

Définition : eA :=
∑
n≥0

1

n!
An.
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On a convergence normale dans L(X) et ‖eA‖ ≤ e‖A‖. De plus, si A et B commutent, on a eA+B =
eAeB .
Enfin, pour tout A fixé, t 7→ etA ∈ C∞(R,L(X)) et

d

dt
(etA) = etAA = AetA.

Proposition : Soit A ∈ L(X). Pour tout T > 0 et pour tout x ∈ X, il existe une unique solution
u ∈ C1([0, T ], X) du problème :{
u′(t) = Au(t) ∀t ∈ [0, T ]

u(0) = x

Cette solution est u(t) = etAx.

6.2.1 Semi-groupe engendré par un opérateur m-dissipatif

Soit X un espace de Banach et A un opérateur m-dissipatif de domaine dense. Pour λ > 0 on considère
les opérateurs Jλ et Aλ définis à la section précédente :Jλ = (I − λA)−1

Aλ =
1

λ
(Jλ − I)

et on pose Tλ(t) = etAλ ∀t ≥ 0.

Théorème :
1. ∀x ∈ X la suite de fonctions uλ(t) = Tλ(t)x converge uniformément sur tout intervalle fermé

borné [0, T ] vers une fonction u ∈ C([0, T ], X) quand λ tend vers 0. On pose alors T (t)x =
u(t) ∀x ∈ X ∀t ≥ 0

2. (i) T (t) ∈ L(X) et ∀t ≥ 0 ‖T (t)‖ ≤ 1
(ii) T (0) = I

(iii) T (t+ s) = T (t)T (s) ∀s, t ≥ 0

3. De plus, ∀x ∈ D(A) u(t) est l’unique solution du problème :

u ∈ C1([0,∞), D(A)) ∩ C1([0,∞), X) avec

{
u′(t) = Au(t) ∀t ≥ 0

u(0) = x

4. Enfin, ∀x ∈ D(A) ∀t ≥ 0 T (t)Ax = AT (t)x

Dans ce qui suit, on suppose que X est un espace de Hilbert réel. Le résultat qui suit précise le théo-
rème précédent.

Théorème : On suppose que A est auto-adjoint ≤ 0. Soit x ∈ X et u(t) = T (t)x. Alors u est l’unique
solution du problème : trouver

u ∈ C([0,∞), X) ∩ C((0,∞), D(A)) ∩ C1((0,∞), X)

u′(t) = Au(t) ∀t > 0

u(0) = x

De plus on a :

(i) ‖Au(t)‖ ≤ 1

t
√

2
‖x‖

(ii) −(Au(t), u(t)) ≤ 1

2t
‖x‖2

(iii) Si x ∈ D(A), alors ‖Au(t)‖2 ≤ − 1

2t
(Ax, x)
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Remarque : T (t) a un effet régularisant sur la donnée initiale. En effet, même si x /∈ D(A), on a
T (t)x ∈ D(A) ∀t > 0.

Théorème : On suppose que A est anti-adjoint. Alors T (t) s’étend à un groupe à un paramètre
T (t) : R→ L(X) tel que :

1. ∀x ∈ X T (t)x ∈ C(R, X)

2. ∀x ∈ X ∀t ∈ R ‖T (t)x‖ = ‖x‖
3. T (0) = I

4. ∀(s, t) ∈ R2 T (t+ s) = T (s)T (t)

5. ∀x ∈ D(A) u(t) = T (t)x vérifie u ∈ C(R, D(A)) ∩ C1(R, X) et u′(t) = Au(t) ∀t ∈ R
Corollaire : Avec les notations du théorème précédent, on a : (T (t))

?
= T (−t) ∀t ∈ R.

6.2.2 Semi-groupes de contraction et leurs générateurs

Avant de définir la notion de semi-groupes de contraction, touchons un mot sur la notion de solutions

faibles au problème u ∈ C1([0,∞), D(A)) ∩ C1([0,∞), X) avec

{
u′(t) = Au(t) ∀t ≥ 0

u(0) = x
.

On a vu précédemment que pour tout x ∈ D(A), on a défini u(t) = T (t)x comme l’unique solution de
ce problème.
Lorsque X est un espace de Hilbert et A un opérateur auto-adjoint, T (t)x est encore la solution du
problème : trouver 

u ∈ C([0,∞), X) ∩ C((0,∞), D(A)) ∩ C1((0,∞), X)

u′(t) = Au(t) ∀t > 0

u(0) = x

Cependant, lorsque x /∈ D(A), T (t)x n’est pas différentiable à valeurs dans X et ne peut satisfaire
u′(t) = Au(t) ∀t > 0. Heureusement, la notion d’extrapolation permet d’identifier T (t)x. Nous nous
replaçons donc dans ce cadre et notons T (t) et S(t) les semi-groupes associés à A et à B.

Lemme : Pour tout x ∈ X et t ≥ 0, on a : T (t)x = S(t)x.

Corollaire : Soit x ∈ X. Alors u(t) = T (t)x est l’unique solution du problème :
u ∈ C([0,∞), X) ∩ C1([0,∞), Y )

u′(t) = Bu(t) ∀t > 0

u(0) = x

Définition : Une famille à un paramètre {T (t)}t≥0 d’opérateurs linéaires continus est dite semi-groupe
de contractions sur X si :

1. ‖T (t)‖ = 1 ∀t ≥ 0

2. T (0) = I

3. T (t+ s) = T (t)T (s) ∀s, t ≥ 0

4. ∀x ∈ X T (t)x ∈ C([0,∞[, X)

Définition : Le générateur infinitésimal de T (t) est l’opérateur L défini par :

D(L) = {x ∈ X;
T (h)x− x

h
a une limite dans X quand h ↓ 0}
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Lx = lim
h↓0

T (h)x− x
h

, ∀x ∈ D(L)

Proposition : Soit T (t) un semi-groupe de contractions sur X, et L son générateur. Alors L est m-
dissipatif et D(L) est dense.

Théorème (de Hille-Yosida-Philips) : Un opérateur linéaire A est le générateur infinitésimal d’un
semi-groupe de contractions si et seulement si A est m-dissipatif, de domainde dense.

Proposition : Soit A un opérateur m-dissipatif, de domaine dense. Supposons que A est le généra-
teur d’un semi-groupe S(t) de contractions. Alors S(t) est le semi-groupe associé à A par le premier
théorème de cette section.

Définition : Une famille à un paramètre {T (t)}t∈R d’opérateurs linéaires continus est dite groupe
d’isométries sur X si :

1. ‖T (t)x‖ = ‖x‖ pour tout x ∈ X et t ∈ R,
2. T (0) = I,
3. T (t+ s) = T (t)T (s) pour tous s, t ∈ R,
4. T (t)x ∈ C(R, X) pour tout x ∈ X.

Proposition : Soit A un opérateur m-dissipatif de domaine dense, et soit T (t) le semi-groupe de
contractions engendré par A. Alors {T (t)}t∈R+ est la restriction à R+ d’un groupe d’isométries si et
seulement si −A est m-dissipatif.

6.3 Problèmes semi-linéaires abstraits
Dans cette section, X est un espace de Banach et A un opérateur m-dissipatif, de domaine dense.

On note T (t) le semi-groupe de contractions engendré par A.

6.3.1 Équations non-homogènes

Soit T > 0. Pour x ∈ X et f : [0, T ]→ X donnés, on veut résoudre le problème :


u ∈ C([0, T ], D(A)) ∩ C1([0, T ], X) (1)

u′(t) = Au(t) + f(t), ∀t ∈ [0, T ] (2)

u(0) = x (3)

On dispose comme pour les équations différentielles de la formule de Duhamel (variation de la constante).

Lemme (formule de Duhamel) : Soit x ∈ D(A) et f ∈ C([0, T ], X). On considère une solution u ∈
C([0, T ], D(A)) ∩ C1([0, T ], X) du problème précédent. Alors on a :

u(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds, ∀t ∈ [0, T ] (4)

Corollaire : Pour tout x ∈ D(A) et f ∈ C([0, T ], X), le problème (1)−(3) possède au plus une solution.

Remarque : la formule de Duhamel définit une fonction u ∈ C([0, T ], X). Cherchons des conditions
suffisantes pour que cette fonction soit solution du problème (1)− (3).
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6.4 Applications à l’équation de la chaleur semi-linéaire

6.5 Solutions globales

6.6 Un peu de systèmes dynamiques

7 Équations avec transport

7.1 Interlude théorique

7.2 Modèles d’advection - diffusion

7.3 Modèles d’advection - diffusion - réaction

8 Systèmes d’EDP
Nous étudierons à terme les systèmes d’EDP du type :

∂tu1 = r1

(
1− u1 + u2

K

)
u1 −∇.(D∇u1)− ~v1.∇u1 − c(u1, u2, R)

∂tu2 = r2

(
1− u1 + u2

K

)
u2 −∇.(D∇u2)− ~v2.∇u2 − c(u1, u2, R)

où ri
(

1− u1 + u2

K

)
ui représente le terme de réaction, K la capacité du milieu, −∇.(D∇ui) le terme

de diffusion, −~vi.∇ui le terme d’advection pour l’espèce i et −c(u1, u2, R) un terme source, R désignant
la ressource du milieu.

8.1 couplages d’EDP

8.2 Systèmes de Turing
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9 Annexes

9.1 Espaces de Hilbert - Théorie des opérateurs - Théorie spectrale
9.1.1 Généralités sur les Hilbert - Bases Hilbertiennes

On suppose connue la définition d’un espace de Hilbert, l’inégalité de Cauchy-Schwarz et le théorème
de projection sur un convexe fermé. On pourra par exemple consulter Brézis[1] ou Hirsch-Lacombe[1].

Dans toute la suite, H désigne un espace de Hilbert muni du produit scalaire (., .), de norme associée |.|.

Théorème de représentation de Riesz : Soit φ ∈ H ′. Il existe un unique f ∈ H tel que

∀v ∈ H 〈φ, v〉 = (f, v)

De plus, on a |f | = ‖φ‖H′

Remarque : Ainsi, toute forme linéaire continue sur H peut se représenter à l’aide du produit scalaire.
L’application φ 7→ f est un isomorphisme isométrique qui permet donc d’identifier H et H ′.
Presque toujours cette identification sera effectuée, mais pas tout le temps ! Comme nous l’apprend
Brézis[1, chapitre 5], Si V désigne un autre espace de Hilbert, muni de son propre produit scalaire
((., .)), de norme ‖.‖ tel que V ⊂ H, on a V ⊂ H = H ′ ⊂ V ′ (injections canoniques continues et
denses). On ne peut alors identifier V à V ′. Le choix de l’identification de H et H ′ est le plus courant.
On dit que H est l’espace pivot.

Le théorème suivant est de grande utilité pour résoudre des équations aux dérivées partielles linéaires
elliptiques. Il contient de plus un résultat de minimisation d’une fonctionnelle.

Théorème de Lax-Milgram : Soit a(u, v) une forme bilinéaire sur H ×H qui est
— continue : il existe un réel M > 0 tel que pour tout u, v ∈ H |a(u, v)| ≤M |u||v|.
— coercive : il existe un réel α > 0 tel que pour tout u ∈ H |a(u, u)| ≥ α|u|2.

Alors, pour tout φ ∈ H ′, il existe un unique u ∈ H tel que ∀v ∈ H a(u, v) = 〈φ, v〉.
De plus, si a est symétrique, alors u est caractérisé par la propriété :

u ∈ H et
1

2
a(u, u)− 〈φ, u〉 = Minv∈H

{
1

2
a(v, v)− 〈φ, v〉

}
.

Définition : Soit (En)n≥1 une suite de sous-espaces fermés de H. On dit que H est somme Hilber-
tienne des (En), et on note H = ⊕nEn si :

1. ∀u ∈ Em, ∀v ∈ En, (m 6= n) (u, v) = 0

2. L’espace vectoriel engendré (au sens algébrique) par les (En) est dense dans H.

Proposition : On suppose que H est somme Hilbertienne des (En). Soit u ∈ H et un = PEnu la
projection orthogonale de u sur En. Alors :

1. u =

+∞∑
n=1

un i.e u = lim
k→+∞

k∑
n=1

un.

2. |u|2 =

+∞∑
n=1

|un|2 (égalité de Bessel-Parseval)

Réciproquement, si une suite (un) d’éléments de H est telle que ∀n un ∈ En et
+∞∑
n=1

|un|2 < +∞, alors

la série
+∞∑
n=1

un est convergente et u =

+∞∑
n=1

un vérifie un = PEnu.
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Définition : On appelle base Hilbertienne une suite (en) d’éléments de H telle que :
1. ∀n |en| = 1 et ∀m,n (m 6= n) (em, en) = 0.
2. L’espace vectoriel engendré par les en est dense dans H.

Il résulte en particulier de la proposition précédente que si (en) est une base Hilbertienne de H, alors
tout u ∈ H s’écrit :

u =

+∞∑
n=1

un avec |u|2 =

+∞∑
n=1

|(u, en)|2

Théorème : Tout espace de Hilbert séparable admet une base Hilbertienne.

C’est le cas par exemple des espaces L2(Ω) et H1(Ω).

9.1.2 Théorie des opérateurs

La majorité des résultats énoncés ici sont tirés des ouvrages de Brézis[1] ou de Cazenave-Haraux[1].
Ils sont cependant essentiels pour la théorie de Hille-Yosida.

Définition : E et F désignent deux espaces de Banach.
1. On appelle opérateur linéaire non borné de E dans F toute application linéaire A : D(A) ⊂
E → F , définie sur un sous-espace vectoriel D(A) ⊂ E, à valeurs dans F .

2. D(A) s’appelle le domaine de A.
3. On dit que A est borné s’il existe un réel c ≥ 0 tel que pour tout u ∈ D(A) ‖Au‖ ≤ c‖u‖.
4. Le graphe de A, noté G(A) est {(u,Au);u ∈ D(A)}.
5. On dit que l’opérateur A est fermé si G(A) est fermé dans E × F .
6. L’image de A est notée R(A)

Remarques :
1. Si A est borné, c’est la restriction à D(A) d’un opérateur Ã ∈ L(Ẽ, F ) où Ẽ est un sous-espace

vectoriel fermé de E contenant D(A).
2. Si D(A) = E, le théorème du graphe fermé nous assure que A ∈ L(E,F ) si et seulement si
G(A) est fermé dans E × F .

Point technique : Pour prouver qu’un opérateur A est fermé dans E × F , on prend (un) une suite
d’éléments de D(A) ⊂ E telle que un → u et Aun → f , et on prouve alors que :

1. u ∈ D(A)

2. Au = f

Définition : Soient E et F deux espaces de Banach. Un opérateur linéaire continu T ∈ L(E,F ) est
dit compact si T (BE) est d’adhérence compacte.

Proposition : Soient E, F , G et H des espaces de Banach. Supposons T ∈ L(F,G) compact. Si
U ∈ L(E,F ) et V ∈ L(G,H), alors : V TU ∈ L(E,H) est compact.

9.1.3 Théorie spectrale - Propriétés spectrales du Laplacien

Nous rappelons d’abord quelques résultats généraux sur les opérateurs autoadjoints compacts.

Définition : Un opérateur linéaire continu A ∈ L(H) d’un espace de Hilbert H est dit autoadjoint si
A∗ = A i.e ∀u, v ∈ H (Au, v) = (u,Av).

Le résultat suivant généralise le théorème de diagonalisation des endomorphismes symétriques en di-
mension finie.
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Théorème : On suppose que l’espace de Hilbert H est séparable. Soit T un opérateur autoadjoint
compact. Alors :

— H admet une base Hilbertienne (en)n≥1 formée de vecteurs propres de T : Ten = λnen ∀n ≥ 1.
— Chaque valeur propre λn est de multiplicité finie et lim

n→+∞
λn = 0.

— Si de plus T est défini positif : ∀x 6= 0 ∈ H (Tx, x) > 0, alors ∀n ≥ 1, λn > 0.

Ω désigne un ouvert borné de RN et L = div(A(x)∇) un opérateur elliptique sous forme divergence.
On se place sous les hypothèses :

1. (∃α0, α1 > 0)(∀x ∈ Ω)(∀ξi, ξj ∈ RN ) α0|ξ|2 ≤
∑N
i,j=1 aij(x)ξiξj ≤ α1|ξ|2

2. Les fonctions aij sont bornées sur Ω et vérifient aij = aji

Soit c une fonction continue définie sur Ω.

Théorème : Il existe une base Hilbertienne (en)n≥1 de L2(Ω) et une suite croissante λ1 ≤ λ2 ≤ · · · ≤
λn · · · → +∞ tels que ∀n ≥ 1 en ∈ H1

0 (Ω) et vérifiant :

(In)

{
−div(A(x)∇en)− cen = λnen sur Ω

en = 0 sur ∂Ω

Si de plus c(x) ≤ 0 ∀x ∈ Ω, alors ∀n ≥ 1 λn > 0.

Ce théorème est très pratique car il permet de décrire les solutions de certains problèmes d’évolution.
En particularisant le résultat précédent au cas du Laplacien i.e la matrice A(x) est égale à l’identité,
on obtient le résultat suivant :

Proposition : Soit Ω un domaine borné de RN . Il existe une base Hilbertienne (en)n≥1 de L2(Ω) et
une suite croissante λ1 ≤ λ2 ≤ · · · ≤ λn · · · → +∞ tels que ∀n ≥ 1 en ∈ H1

0 (Ω) et vérifiant :

(In)

{
−∆en = λnen sur Ω

en = 0 sur ∂Ω

De plus, chaque valeur propre λn est de multiplicité finie et
(

en√
λn

)
n≥1

est une base Hilbertienne de

H1
0 (Ω).

Propriétés :
1. Si Ω est un domaine borné régulier de RN , alors ∀n ≥ 1, en ∈ C∞(Ω).
2. λ1 > 0, première valeur propre de −∆ (avec Dirichlet homogène) est telle que

λ1 = Min
{∫

Ω

∇u2/

∫
Ω

u2 ; u ∈ H1
0 (Ω) et u 6= 0

}
3. λ1 est valeur propre simple i.e Ker(−∆− λ1Id) = Re1, et donc 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn ≤
. . .

4. On a e1 > 0 (ou e1 < 0) et ceci caractérise λ1.

Définition : λ1 est appelée valeur propre principale de −∆.

Généralisons le résultat précédent...

Théorème de Krein-Rutman : Supposons c lipschitzienne sur Ω. Il existe un unique couple λ1 ∈ R
(valeur propre principale de L) et φ ∈ C2(Ω) (fonction propre principale de L) vérifiant :
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1. Cas Dirichlet : 
−D∆φ− c(x)φ = λ1φ dans Ω

φ(x) = 0 sur ∂Ω

φ > 0 dans Ω et maxΩ φ = 1

La valeur propre λ1 est la plus petite valeur propre de l’opérateur L := −D∆ − c(x) avec
condition de Dirichlet. De plus, on a la formule de Rayleigh suivante :

λ1 = Min
{∫

Ω

(D|∇ψ|2(x)− c(x)ψ2(x))dx/

∫
Ω

ψ2(x)dx; ψ ∈ H0
1 (Ω), ψ 6= 0

}
2. Cas Neumann : 

−D∆φ− c(x)φ = λ1φ dans Ω

φ(x) = 0 sur ∂Ω

φ > 0 dans Ω et maxΩ φ = 1

La valeur propre λ1 est la plus petite valeur propre de l’opérateur L := −D∆ − c(x) avec
condition de Neumann. De plus, on a la formule de Rayleigh suivante :

λ1 = Min
{∫

Ω

(D|∇ψ|2(x)− c(x)ψ2(x))dx/

∫
Ω

ψ2(x)dx; ψ ∈ H1(Ω), ψ 6= 0

}
Remarque : Comme le min pour Neumann est pris sur H1(Ω) et non plus sur H0

1 (Ω), on a nécessaire-
ment λ1(Neumann) ≤ λ1(Dirichlet).

9.2 Espaces de fonctions continues et espaces de Hölder
9.2.1 Définition et propriétés utiles

Remarque importante : La topologie d’un espace normé X (plus généralement d’un espace métri-
sable) est entièrement déterminée par ses suites convergentes (topologie séquentielle). Soit (Y,Θ) un
espace topologique, pas nécessairement normé ou métrisable.
Une application f : (X, ‖.‖X) −→ (Y,Θ) est continue en x ∈ X si pour toute suite (xn) de X conver-
geant vers x dans X (i.e ‖xn − x‖X → 0), la suite (f(xn)) converge vers f(x) dans Y . Ce résultat
reste valable pour n’importe quel espace topologique X dont la topologie est définie par ses suites
convergentes.

Définition :
1. Pour tout entier naturel m, Cm(Ω) = {φ ∈ C(Ω);∀|α| ≤ m,Dαφ ∈ C(Ω)}. On a C0(Ω) = C(Ω).

2. C∞(Ω) =
⋂
m∈N
Cm(Ω)

3. C0(Ω) = {φ ∈ C(Ω); Supp φ est compact dans Ω}
On note D(Ω) = C∞0 (Ω).

Nous allons préciser maintenant quelques propriétés de l’espace C(X), espace des fonctions continues
sur X à valeurs dans K = R ou C, où (X, dX) est un espace métrique compact. Un outil très utile sera
explicité : le théorème d’Arzela-Ascoli.

Théorème (de prolongement des applications uniformément continues) : Soit φ ∈ C(X) bornée et
uniformément continue sur Ω. Alors φ possède une unique extension bornée et continue sur Ω. On la
notera encore φ.
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Définition : Fixons un réel α tel que 0 < α ≤ 1.

C0,α(Ω) :=

{
u ∈ C(Ω);Hα := sup

x 6=y

|u(x)− u(y)|
|x− y|α

<∞

}
On le munit de la norme :

‖u‖C0,α(Ω) := ‖u‖C0(Ω) +Hα

Notation : On notera aussi s’il n’y a pas risque de confusion C0+α(Ω) pour C0,α(Ω).

Proposition :
(
C0+α(Ω), ‖.‖C0+α(Ω)

)
est un espace de Banach.

Proposition : Si Ω est borné, on a :

C1
b (Ω) ⊂ C0+1(Ω) = Lip(Ω) ⊂ C0+α(Ω) ⊂ C0(Ω)

Grosso modo, entre les fonctions Lipschitziennes et les fonctions continues, il y a les espaces de Hölder.

Définition : Par récurrence, on définit les Ck+α(Ω) par :

Ck+α(Ω) =
{
u ∈ Ck(Ω);Diu ∈ C0+α(Ω);∀i tel que |i| = k

}
muni de la norme

‖u‖Ck+α(Ω) := ‖u‖Ck(Ω) +
∑
|i|=k

Hα(Diu)

Proposition : (Ck+α(Ω), ‖.‖Ck+α(Ω)) est un espace de Banach.

Notation : On écrira ‖u‖k+α pour ‖u‖Ck+α(Ω)

Un outil utile : le théorème d’Arzela-Ascoli.

Dans la suite (X, d) désigne un espace métrique compact et H ⊂ C(X). En particulier, X est séparable
et précompact.

Définition :
1. H ⊂ C(X) est dite équicontinue en x0 ∈ X si :

∀ε > 0 ∃η > 0 ∀x ∈ X d(x0, x) < η ⇒ ∀h ∈ H |h(x)− h(x0)| < ε

2. H est dite équicontinue si elle est équicontinue en tout point de X.
3. H est dite uniformément équicontinue si :

∀ε > 0 ∃η > 0 ∀x, y ∈ X d(x, y) < η ⇒ ∀h ∈ H |h(x)− h(y)| < ε

Proposition : Une partie de C(X) est équicontinue si et seulement si elle est uniformément équicon-
tinue.

Exemples :
1. Toute partie finie de C(X) est équicontinue.
2. Toute partie d’une partie équicontinue est équicontinue.
3. Toute union finie de parties équicontinues est équicontinue.
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4. Une suite uniformément convergent de fonctions de C(X) forme une partie équicontinue de
C(X).

5. Si C > 0, alors l’ensemble des fonctions lipschitziennes de X dans K, de rapport C, est équi-
continu.

Proposition : Soient (fn) une suite équicontinue de C(X) et D une partie dense de X. Si ∀x ∈ D,
la suite (fn(x)) converge, alors la suite de fonctions (fn) converge uniformément vers une fonction
f ∈ C(X).

Théorème d’Arzela-Ascoli : Une partie de C(X) est relativement compacte (i.e d’adhérence com-
pacte) dans C(X) si et seulement si :

— Elle est bornée
— Elle est équicontinue

Remarque : Soit H ⊂ C(X) une partie équicontinue. Les propositions suivantes sont équivalentes :
1. H est bornée.
2. Il existe D ⊂ X dense telle que ∀x ∈ D, {f(x)}f∈H est une partie bornée de K.

9.2.2 Estimations dans les espaces de Hölder

Proposition : Ω est supposé borné.
1. Si 0 < α ≤ β ≤ 1, alors C0+β(Ω) ↪→ C0+α(Ω) i.e ∃C > 0 ∀u ∈ C0+β(Ω) ‖u‖α ≤ C‖u‖β .
2. Si 0 < α < β ≤ 1, alors l’injection précédente est compacte, i.e de toute suite bornée de C0+β(Ω),

on peut extraire une sous-suite convergente dans C0+α(Ω).
Théorème (d’injections) : Soit k ∈ N? et 0 < α < β ≤ 1.

1. Ck+β(Ω) ↪→ Ck(Ω), avec injection compacte si Ω borné.
2. Ck+β(Ω) ↪→ Ck+α(Ω), avec injection compacte si Ω borné.

Si Ω est convexe, on a aussi :
3. Ck+1(Ω) ↪→ Ck+α(Ω), avec injection compacte si Ω borné.

9.3 Espaces de Sobolev
9.3.1 Définitions et propriétés utiles

On rappelle de manière succinte des résultats sur les espaces de Sobolev que nous pouvons trouver
dans Adams[1], Kavian[1], Hirsch-Lacombe[1] ou encore Zuily[1].

Ω désigne un ouvert de RN et 1 ≤ i ≤ N .

Définition : Une fonction u ∈ L1
loc(Ω) a une i-ème dérivée faible dans L1

loc(Ω) s’il existe une fonction
fi ∈ L1

loc(Ω) telle que pour tout φ ∈ C∞c (Ω) on ait :∫
Ω

u∂iφ = −
∫

Ω

fiφ

Avec fi donnée par la relation ci-dessus, on pose ∂iu :=
∂u

∂xi
:= fi.

Pour un multi-indice α = (α1, α2, . . . , αN ) ∈ NN , on pose |α| = α1 + α2 + · · · + αN et ∂αu =
∂α1

1 ∂α2
2 . . . ∂αNN u.
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Définition : Pour 1 ≤ p ≤ ∞, on pose

Wm,p(Ω) := {u ∈ Lp(Ω);∀α ∈ NN , |α| ≤ m, ∂αu ∈ Lp(Ω)}

que l’on munit de la norme

‖u‖m,p :=

 ∑
|α|≤m

‖∂αu‖pp

1/p

avec

‖u‖p := ‖u‖Lp(Ω) =

(∫
Ω

|u|p
)1/p

Proposition :
1. Wm,p(Ω) est un espace de Banach
2. Si 0 ≤ m ≤ n, l’injection Wn,p(Ω) ⊂Wm,p(Ω) est continue.

3. En posant ‖Dmu‖p :=

 ∑
|α|=m

‖∂αu‖pp

1/p

, on obtient une semi-norme sur Wm,p(Ω),et lorsque

Ω est suffisamment régulier, u 7→ ‖u‖p + ‖Dmu‖p définit une norme équivalente à ‖.‖m,p.

Remarque : on note couramment Hm(Ω) l’espace Wm,2(Ω), l’espace des énergies, que l’on peut égale-
ment définir pour des exposants m non entiers à l’aide de la transformée de Fourier.

Notations : Pour une fonction u quelconque, on note u+ = max(u, 0) et u− = max(−u, 0), de sorte
que u = u+ − u− et |u| = u+ + u−.

Proposition : Soient p et p′ des exposants conjugués i.e tels que
1

p
+

1

p′
= 1. Alors :

1. W−m,p
′

= (Wm,p
0 )

′

2. H−m = (Hm
0 )
′

Proposition :
1. Soit u ∈W 1,p(Ω), p <∞. Si le support de u est compact dans Ω, alors u ∈W 1,p

0 (Ω).
2. Si u ∈W 1,p(Ω) ∩ C(Ω) et u|∂Ω = 0, alors u ∈W 1,p

0 (Ω).

3. Soit u ∈W 1,p
0 (Ω) et ũ =

{
u sur Ω

0 sur RN \ {0}
. Alors ũ ∈W 1,p(RN ).

Proposition (Composition) : Soit F ∈ C1(R,R) avec F (0) = 0 et sup
R
|F
′
| <∞ 1 ≤ p ≤ ∞.

1. Si u ∈W 1,p(Ω), alors F (u) ∈W 1,p(Ω) et ∇F (u) = F ′(u)∇u pp.
2. Si p <∞, alors u 7→ F (u) continue de W 1,p(Ω) dans W 1,p(Ω).
3. Si p <∞ et u ∈W 1,p

0 (Ω), alors F (u) ∈W 1,p
0 (Ω).

Théorème :
1. Si u ∈W 1,p(Ω), alors si u+ ∈W 1,p(Ω).

2. On a ∇u+ =

{
∇u si u > 0

0 si u ≤ 0
. Si p <∞, alors u 7→ u+ est continue.

3. Si p <∞ et si u ∈W 1,p
0 (Ω), alors u+ ∈W 1,p

0 (Ω).
Remarques : On a des résultats analogues pour u− et |u| :
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1. ∇u− =

{
−∇u si u < 0

0 si u ≤ 0
.

2. ∇|u| =


−∇u si u < 0

0 si u ≤ 0

∇u si u > 0

.

En particulier, |∇|u|| = |∇u|.

Corollaire : Soient 1 ≤ p <∞, v ∈W 1,p
0 , u ∈W 1,p. Si |u| ≤ |v|, alors u ∈W 1,p

0 .

Corollaire : Soient 1 ≤ p <∞, M ∈ Lploc(Ω), ∇M ∈ Lp(Ω), M− ∈ Lp(Ω).

1. Si u ∈W 1,p(Ω), alors (u−M)+ ∈W 1,p(Ω) et ∇(u−M)+ =

{
∇u−∇M si u > M

0 si u ≤M

2. Si p <∞, alors

{
(u−M)+ continue
Si M− ∈W 1,p

0 et si u ∈W 1,p
0 alors (u−M)+ ∈W 1,p

0

Remarque : On peut appliquer ce résultat avec M constante positive ou nulle.

9.3.2 Estimations dans les espaces de Sobolev

Théorème (d’injection de Sobolev) : Soit m ≥ 1 un entier et 1 ≤ p <∞.

1. Si mp < N , on pose p∗m :=
pN

N −mp
. Alors on a une injection continue de Wm,p(RN ) dans

Lp
∗m

(RN ) : il existe une constante C(m, p,N) > 0 telle que ‖u‖p∗m ≤ C(m, p,N)‖Dmu‖p.
2. Si mp = N , pour tout q ≥ p il existe une constante C(m, q,N) > 0 telle que pour tout
u ∈Wm,p(RN ) on ait ‖u‖q ≤ C(m, q,N)‖u‖m,p.

3. Si mp > N , en posant α := 1 − N

mp
, on a Wm,p(RN ) ⊂ C0,α

0 (RN ) et il existe une constante

C(m, p,N) telle que pour tout u ∈Wm,p(RN ) on ait l’inégalité de Sobolev-Morrey :

∀x, y ∈ RN , |u(x)− u(y)| ≤ C(m, p,N)‖u‖m,p|x− y|α

4. Si Ω est un ouvert de classe Cm à frontière bornée, les propriétés 2 et 3 sont vraies en remplaçant
RN par Ω et la constante C par une constante C(m, p,Ω), alors que si mp < N , il existe une
constante C(m, p,Ω) telle que :

‖u‖p∗m ≤ C(m, p,Ω)‖u‖m,p,Ω

Les dernières inégalités entraînent l’existence d’injections continues des espaces de Soboloev Wm,p(Ω)
dans des espaces Lq(Ω) ou des espaces de Hölder C0,α.

Théorème (Inégalités de Gagliardo-Nirenberg) : Soient Ω un ouvert de RN , 1 ≤ p ≤ N et 1 ≤ r ≤ ∞.
Il existe une constante C(p, θ,N) telle que pour tout u ∈W 1,p

0 (Ω) ∩ Lr(Ω) on ait :

‖u‖q ≤ C‖u‖1−θr ‖∇u‖θp
où 0 ≤ θ ≤ 1, avec θ > 0 si p = N ≥ 2, et :

1

q
= θ

(
1

p
− 1

N

)
+

1− θ
r

On rappelle que Wm,p
0 (Ω) := C∞c (Ω) dans Wm,p(Ω).

Théorème (de Rellich-Kondrachov) : Soient Ω un ouvert borné de RN et p ≥ 1.
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1. Si p < N , alors pour tout q ≥ 1 tel que q < p∗ :=
pN

N − p
, l’injection de W 1,p

0 (Ω) dans Lq(Ω) est

compacte.
2. Si p = N , alors pour tout q <∞, l’injection de W 1,N

0 (Ω) dans Lq(Ω) est compacte.

3. Si p > N et 0 < α < 1− p

N
, alors l’injection de W 1,p

0 (Ω) dansC0,α(Ω) est compacte.

4. Lorsque Ω est un ouvert borné de classe C1, les résultats ci-dessus sont vrais en remplaçant
W 1,p

0 (Ω) par W 1,p(Ω)

5. Lorsque N = 1, l’injection de W 1,1(Ω) dans C(Ω) est continue et non compacte, mais toute
suite bornée (un)n contient une sous-suite (unj )j telle que pour tout x ∈ Ω, la suite (unj (x))j
est convergente.

Théorème (Inégalité de Poincaré) : On suppose que Ω est un ouvert borné au moins dans une direction.
Alors il existe une constante C > 0 telle que pour tout u ∈W 1,p

0 (Ω) :

‖u‖p ≤ C‖∇u‖p
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