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1 Introduction

1.1 Forme générale d’une équation d’évolution

Les équations aux dérivées partielles (EDP) apparaissent naturellement dans la modélisation de nom-
breux problémes en physique, en biologie, en économie ou ailleurs. Sur de nombreux points, elles
semblent généraliser au contexte multi-dimensionnel les équations différentielles ordinaires. Pour au-
tant, leur étude approfondie s’avére délicate, car nécessitant ’apport de nombreuses branches des
mathématiques : géométrie différentielle pour les formules de Stokes, analyse fonctionnelle, etc.

Nous présenterons dans cette section le probléme général que nous serons amenés a étudier. En particu-
lier, il sera détaillé pour différents types d’équation les résultats d’existence et d’unicité, ainsi que les
propriétés importantes qui les caractérisent : continuité par rapport aux données, positivité, principe
du maximum, régularité, etc. Les outils théoriques nécessaires seront soit rappelés au fur et & mesure,
ou s'ils nécessitent un plus long développement, indiqués en annexe. Si plusieurs approches sont pos-
sibles pour un méme type d’EDP, une seule sera détaillée, les autres citées via un lien bibliographique.
Le but étant a terme, de traiter numériquement les problémes exposés, ’approche variationnelle sera
préférée a d’autres méthodes aboutissant a des résultats puissants et généraux, mais peu pratiques
pour une implémentation.

Notations : Dans toute la suite X désigne un espace de Banach et I un intervalle de R. Le plus souvent,
onaura I = [0;T], T > 0 ou I = RT. X sera souvent un espace de Hilbert, auquel cas on le notera
alors H. Q) désigne un ouvert borné de RY (N = 2 ou 3), de frontiére I' = 9Q suffisamment réguliére.

La formulation usuelle d’un probléme d’évolution (équation de la chaleur, de Schrédinger, etc.) nous
ameéne naturellement a distinguer deux types de variables jouant des roles différents : la variable temps
t € [0;T] et la variable d’espace x € 2. Les deux problémes précédents, comme bien d’autres s’écrivent
alors sous la forme : trouver u(t, x) telle que

du

Fy (t,x) + Au(t,z) = f(t,z) sur]0;T] x Q
con dition initiale : u(0,z) = ug(z) sur Q

conditions de bord : Neumann ou Dirichlet par exemple

ou A est un opérateur a préciser, f et ug sont des fonctions & préciser.

Exemples :

1. I’équation de la chaleur avec condition de Dirichlet homogeéne : trouver u(t,z) telle que

%(tvx) — Au(t,z) =0 sur |0;T] x Q

u(0,z) = sin(z) sur
u(t,z) =0 sur |0;T] x 0Q

Ici A= —A, f=0et up(x) =sin(x).

2. L’équation de Schrédinger avec condition de Dirichlet homogéne : trouver u(t, z) telle que

%(t,x) —iAu(t,z) =1 —2? sur]0;T] x Q
u(0,z) =0 sur £

u(t,z) =0 sur |0;T] x O

Iei A= —iA, f(t,z) =1— 2% et ug(x) = 0.



On utilisera la notation classique mais importante u(t) pour désigner la fonction définie sur 'ouvert
Q, a valeurs réelles u(t,.) :  — u(t,z), a t fixé.

On interpréte ainsi la fonction inconnue (¢, ) — u(¢, z) comme une fonction définie sur [0; 7] & valeurs
dans un espace de fonctions :

t— u(t)

. {[O;T] - V()

ot V(Q) est un espace de fonctions définies sur 2 qui devra en outre contenir 'information permettant
de retrouver les conditions aux bords. Dans la pratique, ce sera toujours un espace de Banach, et méme
un espace de Hilbert.

Exemples :
1. C°(0;T; V(£2)), l'ensemble des fonctions continues sur [0;7] & valeurs dans V (), muni de la
norme |lul = sup [u(t)||y (o) est un espace de Banach.
T

3

2. L2(0;T;V(Q2)), ensemble des (classes de) fonctions de carré intégrable sur |0; 7] & valeurs dans
1/2

T
V(£2), muni de la norme ||ul| = (/ ||u(t)H%,(Q) est un espace de Banach.
0
Remarque : On a l'identification L2(0;T; L?(Q)) ~ L2(]0; T[xQ)

La forme générale d’un probléme d’évolution linéaire (en temps fini) avec second membre peut s’écrire
alors : Trouver u telle que

CC%L + Au = f sur [0;T)
u(0) = ug

Remarques :

— Moyennant certaines hypothéses sur 'opérateur A, la théorie de Hille-Yosida permet de traiter
le probléme précédent avec un cadre abstrait trés général. On pourra par exemple consulter
Brézis [1, commentaires du chapitre VII] ou Cazenave-Haraux [1, chapitres 3 et 4].

— On rencontre fréquemment des équations semi-linéaires du type

du
— +Au=F
o T Au=Fu)

ol F' est un opérateur non linéaire de V' (£2) dans lui-méme. Voir par exemple Cazenave-Haraux
[1, chapitre 4] ou chapitre 7.

1.2 Les grands types d’équation d’évolution

1.2.1 Problémes paraboliques du second ordre

Définition : On dit qu’un opérateur L est elliptique (resp. uniformément elliptique) du second
ordre s’il agit sur des fonctions u de la maniére :

N N
Lu = Z a;;(z)0;u + Z bi(x)0iu + c(z)u
ij=1 i=1

avec (a;;(z));; une matrice a coefficients bornés, vérifiant la condition d’ellipticité (resp. d’uniforme
ellipticité) :
N
(Vo € Q)(V&,& €RY) D aji(2)6:& > 0

,j=1



N
resp. (3o > 0)(Va € Q)(VE;, & € RY) D aij(0)6i&; > al¢)?

ij=1

ot |.| désigne la norme euclidienne usuelle sur RY.

Cas particuliers : équations linéaires, semi-linéaires et quasi-linéaires :
Ce sont les problémes d’évolution du type :

d—? — Lu = f (linéaire)
—Ltt — Lu= F(u) (semi-lin¢aire)
ditL — Lu = F(u,Vu) (quasi-linéaire)

ou L est un opérateur elliptique du second ordre. Attention, comme le temps ¢ intervient, la matrice
(aij) dépend aussi de t : a;; = a;;(t, x).

Cas général :

La classe la plus générale est celle des problémes "complétement non linéaires", ou la dépendance en
les 0;;u est non-linéaire, i.e de la forme F(H (u), Vu,u,x) = 0, ot H(u) désigne la matrice Hessienne de
u. La condition d’ellipticité est alors que F'(.,p, z, x) soit monotone par rapport & la matrice Hessienne,
i.e que pour tout p, z,x et toute matrice N définie positive, on ait F(M + N,p,z,z) > F(M,p, z,x).

Remarque : Cette définition coincide avec la définition d’ellipticité dans les cas linéaires et semi-
linéaires.

L’équation parabolique s’écrit alors : trouver u telle que

du _ F(H(u), Vu,u,z) =0
dt
Remarques :
— Le plus souvent, on s’intéresse au cas ou la matrice A(x) = (a;;(x)) est symétrique, auquel cas
la condition d’ellipticité équivaut a dire que la matrice A(x) est définie positive et que sa plus
petite valeur propre, dont nous expliciterons le sens plus tard, est minorée par a.
— On considérera généralement le cas particulier des opérateurs elliptiques écrits sous forme di-

vergence :

N
Lu= )" 0i(a;(z)0;u) = div(AVu)

i,j=1

— Le cas précédent, appliqué & la matrice A = Id et au probléme linéaire se réécrit : % —Au=f,
et nous retrouvons ’équation de la chaleur.

— Si les coefficients a;; de la matrice A(x) sont constants (ne dépendent pas de z), alors on peut,
en changeant de base, se ramener au Laplacien.

— T’é¢tude du probléme stationnaire elliptique correspondant —div(A(x)Vu(x)) = f, apporte de
précieuses informations sur le probléme parabolique initial.

Ainsi, I’étude de I'opérateur elliptique L et des problémes elliptiques linéaires ou semi-linéaires associés
s’avére un préalable indispensable.

Pour traiter le cas d’existence de solutions (et dans quel sens, autrement dit dans quels espaces fonc-
tionnels) des équations linéaires, plusieurs stratégies sont possibles :



— En utilisant des formules de représentation,

— Par des méthodes de dualité, type Lax-Milgram,

— Par la théorie spectrale, Riesz-Fredholm.
Pour le cas des équations non linéaires, on peut utiliser des méthodes de points fixes ou des méthodes
variationnelles (dérivant d’un principe de minimisation d’énergie).

L’unicité pour les équations linéaires est en général facile, difficile et méme parfois en défaut pour les
autres.

Enfin, les équations elliptiques, linéaires ou non linéaires ont des propriétés communes, notamment
la régularité de leurs solutions et l’effet régularisant par rapport aux données initiales de £. Nous
étudierons en détail dans la section suivante de telles propriétés.

1.2.2 Problémes de transport (hyperboliques)
Ce sont les problémes ou apparait un terme de transport —V.(u?) = —div(u?).
Ainsi I’équation d’advection s’écrit :

ou

a(t, x) = —div(u?)

L’équation d’advection-diffusion prend la forme :

ou . L )
a(t, x) = div(D(t, z)Vu) — div(uv) (Fick)
%(t, x) = A(D(t, z)u) — div(ud) (Fokker-Planck)

To be continued...

2 Cas d’école : théorie variationnelle de I’équation de la chaleur

On traite ici le cas modéle de I’équation de la chaleur : trouver u(t, x) telle que

%(tw) — Au(t,x) = f(t,z) sur]0;T] x Q
(1) u(0,z) = ug(x) sur Q

u(t,z) = 0 sur |0; 7] x 02

Remarquons d’emblée que le terme source f n’est pas supposé dépendre de u (cas linéaire). Nous
allons faire quelques hypothéses de régularité sur f et ug : f € L%(0,7T,L*(Q)) et ug € L*(). Pour
simplifier, sans pour autant perdre la généralité de la démarche, on a traité le cas d’une condition
de Dirichlet homogéne. En vue d’'une implémentation future ou il sera nécessaire de discrétiser en
temps et travailler sur des espaces de dimension finie en espace (via la méthode des éléments finis),
nous adopterons la démarche décrite dans le cours Résolution numérique des équations aux dérivées
partielles de Bonnet-Bendhia et Luneville.

2.1 Formulation variationnelle de I’équation de la chaleur

Une solution forte (ou classique) du probléme de Cauchy (1) sur 'ouvert borné 2 est une solution telle
que tous les termes de ’équation sont bien définis au sens classique (donc pas au sens des distributions)



sur [0; 7] x Q. Choisissons f égale & la fonction nulle. On cherche donc des solutions appartenant a

I'espace C2([0; T] x ), espace des fonctions continues sur [0; 7] x €2, et dont les dérivées en espace

jusqu’a 'ordre 2 et la dérivée en temps sont continues sur [0;7] x €.

Remarquons qu’avec la condition de Dirichlet homogéne choisie, des conditions de compatibilité avec

les conditions aux limites ou initiales s’imposent d’elles-mémes :

— Si zg € 99, on a pour tout ¢t €]0;T], u(t,zo) = 0. Faisant tendre ¢ vers 0, on obtient par

continuité de u : ug(zo) = 0. La donnée initiale doit donc vérifier la condition de Dirichlet
homogéne.

ou
— De méme, en évaluant ’équation — (¢, ) —Au(t,x) = 0 en (¢, z¢), on obtient que Au(t,zg) = 0.

Passant encore a la limite en faisant tendre ¢ vers 0, et toujours grace a la continuité de Au, on
obtient Aug(zg) = 0.
De méme, si I’'on part d’une condition de Neumann homogéne sur le bord, la condition de compatibilité

s’écrit % (zog) =0 Vg € 090.

Sous ces conditions nécessaires, ainsi qu’en imposant & ug une régularité supplémentaire (théorie Hol-
dérienne), on peut s’assurer de l'existence et 1'unicité d’une solution forte au probléme (1), méme avec
T = +o0. Moyennant certaines hypothéses (caractére lipschitzien en x), on peut remplacer le terme
source f(z) par un terme non linéaire de la forme f(x,u) et garder le caractére bien posé du pro-
bléme.

Si I’on souhaite affaiblir les hypothéses de régularité sur ug, il existe aussi une théorie WP se basant
sur les espaces de Sobolev.

Nous détaillerons ultérieurement les deux aspects cités précédemment. On peut consulter Roques|1]
ou Vitali-Volpert[1] pour plus de détails.

Abandonnons pour le moment la notion de solution forte au profit de celle de solution faible, i.e de
solution d’un probléme dit variationnel équivalent (il faudra le vérifier) au probléme (1). Supposons
que u(t,x) soit solution de (1). Dans un premier temps, on suppose u suffisamment réguliére afin de
pouvoir utiliser les formules de Green : u € C*(0, T, L*(Q)) N L?(0, T, H3(Q)).

On multiplie la premiére ligne de (1) par une fonction test v € H}(Q) et on intégre sur Q. On a alors :

A %(t,x)v(x)dx—/QAu(t,x x)dr = / ft,z)v

En utilisant une formule de Green, et prenant en compte le fait qu’on ait une condition de Dirichlet
homogene au bord, on a : [, Au(t, z)v(z)dz = — [, Vu(t,z).Vo(t,z)dz, dou :

ou

5 a(tw v ac)d:v—i—/QVu(Lx).VU(t,x)dx = /Qf(tw)v(;v)dx

Mais I’hypothése de régularité sur u : u € CY(0,T;L?(2)) nous permet d’utiliser le théoréme de

dt

d
ﬁ/ﬂu(t,x)v(m)d:ﬂ—&—/QVu(t,x).Vv(t,x)dx:/Qf(t,x)v(x)dx

Supposons maintenant moins de régularité sur u : u € C°(0,T; L(f)). La fonction F définie sur [0; T

0
dérivation sous le signe somme et donc / a—?(t,x)v(m)da& = —/ u(t, z)v(x)dx. Ainsi :
Q Q

par F(t) = / u(t, z)v(x)dx est seulement continue, mais %/ u(t, z)v(z)dx a un sens en tant que

distribution.
On sait en effet que C°([0; 7)) s’injecte contintiment dans D’(]0; T'[) via lapplication 1 : f — 1y, o



T
tout ¢ € D(|0;T[), v¢(¢p) = / f¢. En utilisant plusieurs fois le théoréme de Fubini et une intégration
0

par parties, on prouve alors que

Y € D(0; T)) <;€/Qu(t)v(sc)d:r,\1'> - </le;(t)v(z)da:,\ll>

ou
q Ot
On peut alors énoncer la formulation variationnelle faible du probléme (1) :

Autrement dit, au sens des distributions on a toujours :

d
(t,z)v(z)de = i /., u(t, x)v(x)dx.

Trouver u € C°(0, T, L?(2)) N L2(0, T, H}(Q)) telle que Vv € HE () :
(2) %fﬂ u(t, z)v(z)dz + [, Vu(t,z).Vo(t,z)de = [, f(t, z)v(z)dx Vt €]0;T]

u(0,2) = ug(x) sur Q

La formulation forte (1) et la formulation faible (2) sont équivalentes dans le sens : Toute fonction
u € CH0,T, L3(Q)) N L?(0,T, H*(2)) est solution du probléme (1) au sens des fonctions de L?(2) si
et seulement si elle vérifie la formulation faible (2).

Remarque : Plus généralement, si u € C°(0,T,L*(Q)) N L?(0,T, H2(2)) est solution de (2), alors u
vérifie (1) au sens des distributions sur ]0; T'[x (.

2.2 Existence d’une solution

Nous allons nous baser sur le résultat de décomposition spectrale de 'opérateur A énoncé dans ’annexe
A : Soit © un ouvert borné régulier de RY. Il existe une base Hilbertienne (e,,),>1 de L?(£2) et une
suite croissante A\; < Ag < --- < A, --+ — +00 tels que Vn > 1 e, € H}(Q) NC®(Q) et vérifiant :

—Ae,, = A\pe, sur
(In) B
e, =0 sur 0N

De ce résultat, on peut expliciter précisément (si elle existe) la forme de la solution w du probléme
variationnel (2).

Proposition : Si u est solution du probléme (2), alors on a :
¢

(3) Yt e [0;T] u(t) = Z ((uo,en)e_A"t +/ (f(s),en)e_“(t_s)ds) en
n>1 0

la série étant convergente dans L?(Q2) pour presque tout .

Théoréme (existence) : Si f € L2(0,T,L*(2)) et ug € L?(12), alors le probléme variationnel (2)
admet une unique solution u € C°(0, 7, L2(2)) N L?(0, T, H}(2)).

Démonstration : La proposition précédente nous permet d’affirmer qu’il suffit de prouver la conver-
gence de la série (3) pour tout f € L?(0,T, L*(Q2)) et ug € L*(Q). Elle se fait en trois étapes :

Etape 1 : On commence par se ramener & la résolution d’un probléme en dimension finie.
Posons E,,, = Vect(eq, ..., en) espace vectoriel de dimension finie engendré par les m fonctions propres



em. On remplace alors le probléme continu (2) par le probléme approché :
Trouver uy, : t € [0;T] — un(t) € E,, solution du probléme :

%fﬂ U (t)vdz + [o, Vun (t).Vode = [, f(t)vde Vv € Vi,

Um (0) = ugm = Y ey (uo, €:)e;

(4)

En particularisant les v sous la forme e; on obtient en posant a;(t) = (um(t),e:)r2(q) que

Do)+ M(t) = (1), 1)

(3) = Vi<i<m{dt
@i(0) = (um(0), e:) = (uo, €i)

La formule de Duhamel nous assure alors léexistence et 'unicité d’une solution & chacune de ces

équations donnée par a;(t) = a;(0)e it + / (f(s),es)e =) s,
0

Mais comme u,, (t) = Z(um(t), e;)e;, on obtient que :
i=1
m t
unb(t) = Z ((u07ei)e>\it +/ (f(8)7ei)e>\i(t3)d5> €
i=1 0

On retrouve la somme partielle d’ordre m de la série solution attendue.

Etape 2 : On va prouver que la suite () est une suite de Cauchy dans les espaces de Banach
C%(0, T, L2(2)) et L?(0,T, H} (£2)), et que les limites coincident. C’est la partie la plus technique de la
démonstration.

¢ (uy) est de Cauchy dans C°(0,7, L*(2)) muni de la norme [[u| = sup [Ju(t) 2 :

te[0;T
Soient p > m > 1 des entiers. Comme (e;);>1 est une base orthonormale de L?({)), on a en utilisant
I’égalité de Parseval que :

p t 271/2
lup(t) — U (t)]| £2() = l Z ((uo,ei)e_kit—&-/o (f(s),ei)e_ki(t_s)ds> 1

1=m-+1

En vertu de l'inégalité triangulaire dans RP~™ (muni de la norme euclidienne), le terme de droite est

inférieur ou égal & :
P P t 211/2
[ D (ug,e)?e M > ( / (f(s>7ei>e*i<”>ds) ]
i=m+1 /0

1=m-+1

1/2
_|_

De plus, l'inégalité de Cauchy-Schwarz dans L?(€) nous assure que :
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Utilisant le fait que Vt € [0; T] e=2** < 1, on obtient :

1/2
_|_

12 T 1/2
T > [ v ds]

1=m-+1

(5)  sup [lup(t) — um(t)]L2() < [ Y (ug.ei)’

te[0;T) i—mt1

En vertu de 1’égalité de Parseval, et du fait que ug € L%(£2), on a

luoll32) = D _ (1o, €:)* < 400
i>1

De méme, f € L?(0,T, L?(2)), d’otl

T
Z/ (f(t), €:)dt < +o0
i>170

Ainsi, chacun des termes de droite de (5) tend vers 0 quand m et p tendent vers +o0o. D’ot le résultat
annonce.

. 1/2
¢ (uy) est de Cauchy dans L?(0, T, H{(£2)) muni de la norme |jul| = (/ ||u(t)||§{o(9)> :
0 1

Rappelons que puisque €2 est borné, I'inégalité de Poincaré nous permet d’affirmer que la semi-norme

1/2
lu| = </ Vu2> est en fait une norme sur Hg (€2).
Q

On a pour tout v € H& 9 / Ve;.Vudx = )\i/ e;vdx . On en déduit que pour presque tout ¢ € [0; T
Q Q

on a :

[ 190 - Ve = 3 ([ (up(t)—um(t))eidx>2

1=m-+1

Y (e /Ot<f<8>’€i>ew_3)ds>

i=m-+1

2

To be continued...

2.3 Propriétés de I’équation de la chaleur
2.4 Principe du maximum

2.5 Estimation d’énergie

3 Comportement asymptotique de solutions : problémes ellip-
tiques

Lorsque le temps d’observation T tend vers +00, il est fréquent de voir s’installer un régime stationnaire.

Le terme e d’un probléme parabolique disparait alors de I’équation et nous obtenons un probléme



elliptique (linéaire ou pas) ou la variable temps ¢ n’intervient plus. Nous rappelons dans cette section
des résultats et méthodes usuels sur les équations elliptiques, que nous retrouverons plus tard dans
le cas parabolique (par exemple la méthode d’itération monotone, 1'utilisation des valeurs propres du
Laplacien et notamment de sa valeur propre principale). Dans la section sur les Travelling Waves (ondes
progressives), nous justifierons plus en détail cette idée de comportement en temps grand, et de l'utilité
d’avoir des résultats sur les problémes elliptiques pour en gagner sur les problémes paraboliques.

3.1 Probléme linéaire

Dans la suite, Q désigne un ouvert borné régulier de RN (N > 1); L est un opérateur elliptique du
second ordre , sans terme d’ordre 0, i.e de la forme

N N
Lu = Z a;j(z)0u + Z bi(x)0;u
ij=1 i=1

On suppose que a;j,b; € C*(Q2) N L>(2). On suppose de plus que les fonctions a;; sont symétriques et
N

vérifient la condition d’uniforme ellipticité usuelle : (3u > 0)(Va € Q)(VE € RY) Z aij(z)&€ > plél.
ij=1

On posera enfin £ = L 4 ¢ 'opérateur elliptique du second ordre avec terme d’ordre 0 :

N N
Lu = Z a;j(x)0;u + Z bi(x)0iu + c(z)u
ij=1 i=1

Cette distinction entre L et £ est capitale comme nous le verrons par la suite car le signe du terme de
réaction ¢ a un roéle essentiel.

Principes du min/max (faible et fort) et principes de comparaison

Observation initiale importante :
— Si Lu > 0 dans €2, alors on n’a pas de maximum local dans €2
— Si Lu < 0 dans {2, alors on n’a pas de minimum local dans (2

Théoréme : on suppose Q borné et u € C°(2) N C?(Q).

1. Si Lu > 0 dans €2, alors maxu = max u (principe du maximum faible)

2. Si Lu < 0 dans €2, alors minu = Ig}lnu (principe du minimum faible)

Q
Le but est maintenant de préciser sous quelle(s) condition(s) on peut remplacer L par £ := L + c.
Posons M := maxu = maxwu et m := minu = min u.
Q oQ Q ]
Proposition :

— Siec<0et M >0, alors le principe du maximum faible reste vrai pour £
— Si M =0, alors le principe du maximum faible reste vrai pour £, quelque soit le signe de c.

Ce dernier résultat nous permet en particulier d’obtenir un principe de comparaison elliptique pour
une condition de Dirichlet, qui entraine lui-méme 'unicité au probléme de Dirichlet.

Théoréme (comparaison pour le probléme linéaire avec condition de Dirichlet) : On suppose que 2
est borné et que ¢ < 0.
Si :

—Lu > —Lv sur ()

u > v sur O



alors u > v partout dans ).

Le cas de la condition de Neumann demande un peu de théorie supplémentaire. Enongons pour cela le :

Lemme de Hopf :
Si
Lu >0 dans €2 borné

(Fzo € 0Q)(Vz € Q) u(x) < u(zo)
Q vérifie la CSI : il existe une boule ouverte B telle que B C Q et xg € 02

ou
alors 5(950) > 0.

Remarque : Ce résultat reste vrai pour £ si ¢ <0 et si u(xg) >0

Théoréme : 2 est borné ou Q = RY.
1. Si Lu > 0 sur € et si u atteint son maximum M en xq € 2, alors u = M (principe du maximum
fort a lintérieur)
2. Si Lu < 0 sur § et si u atteint son minimum m en xy € 2, alors « = m (principe du minimum
fort a I'intérieur)

Remarque : Le principe du maximum fort reste vrai pour £ si ¢ <0 et si M > 0.

Théoréme (comparaison pour le probléme linéaire avec condition de Neumann) : on suppose €2 borné,

c<0etc#0.

Sic:
—Lu > —Lv sur ()
ou _ Ov
P
e sur 0f)

alors u > v partout dans ).

Théoréme (principe du maximum fort sans hypothése de signe sur ¢) :
Sic:

—Lu >0 sur

u >0 sur 9N

alors :
1. Si u(xg) = 0 pour un xg € £, alors u =0
ou

2. Siu#0, alors (Vg € 09) oy

<0

Remarque : Ici, nous n’avons pas d’hypothése sur le signe de ¢, mais en revanche nous disposons d’une
information sur u : u > 0 sur €.

Résolution du probléme linéaire

Estimations elliptiques a priori

Ces outils sont fondamentaux pour prouver 'existence de solutions pour des problémes elliptiques. La
démonstration des résultats mentionnés ci-aprés est néanmoins délicate. On pourra consulter Vitali-
Volpert[1] pour plus de détails. Deux cadres se dégagent :

— le cadre Héldérien, ol nous disposons des estimations a priori de Schauder

— le cadre Sobolev, oit nous disposons des estimations a priori de Agman-Douglas-Niremberg
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On s’intéresse au probléme :

Lu=f sur Q
(P) - /
u=0 sur o2

avec I'hypothése que tous les coefficients de £ sont dans C°+*(Q) pour un « €]0;1] et que ¢ < 0.

Les résultats fondamentaux sur les espaces de Holder et de Sobolev dont nous aurons besoin sont rap-
pelés en annexe. Remarquons cependant que nous possédons un lien entre ces deux catégories d’espaces
grace au théoréme suivant.

Théoréme (de Sobolev-Morrey) : 2 est un ouvert borné régulier ou Q = RV,

N
Si p > N (inégalité stricte), alors W*? — Ck=1: (injection continue), ott v = 1 — —.
p

Enoncons-les estimations en question :

1. Il existe une constante C' indépendante de f telle que pour toute solution u du probléme de
Dirichlet (P), |[ull24a < C||f|la (estimation de Schauder).

2. 1l existe une constante C indépendante de f telle que pour toute solution v du probléme de
Dirichlet (P), ||ullwzr < C||f|lLr (estimation de Agman-Douglas-Niremberg).

Solvabilité du probléme linéaire

Au=f sur Q

Théoréme : (Vf € CO2(Q))(Jlu € C*T*(Q)) tel que
u=0 sur 09

Le but est maintenant de relier L (connu) & £ := L + ¢ (inconnu).
L’idée est de partir de la solution obtenue grace au théoréme précédent et, par homotopie, d’aller vers

Lu=f sur Q
u =0 sur 99

Meéthode : On construit une famille de problémes

() (I1-7)Au+7Lu=f sur Q
T u =0 sur 0f

avec 0 <7 < 1. -

On prouve ensuite que : (3¢ > 0)(Vro € T), [10,70 +¢] C T, ou T := {7 € [0;1[; (Vf € COT*(Q))(3lu €

C?t(Q)) solution de (P,)}.

Remarquons que puisque € est indépendant de 79, on obtient 7" = [0;1].

L’outil majeur est le théoréme du point fixe de Picard.

Théoréme : Soit Q C RY un ouvert borné régulier. Supposons que
— L a ses coefficients dans COT*(Q) et vérifie la condition d’uniforme ellipticité
— ¢<0
Alors
(Vf € CO+e(Q))(3lu € €22 (Q)) tel que {(L Feju=f sur
u=0 sur 9
Donnons l'idée de la démonstration :
— on définit la famille de problémes linéaires (P;)
— On reformule le probleme L;u = f : Pour 1o € T' fixé, on remarque que L,u = f <= L;u =
f=+ (1 —7)(Au— Lu). On pose alors f := f + (7 — 70)(Au — Lu).
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— On définit 'opérateur

2 (1) —s C2Ho(Q)

D, :

: L 0
i u— ®(u) =v solution de {£ o =[f sur

u=0 sur I

et on prouve a l'aide des estimations de Schauder et du fait que [|Aulla, < Cl|ull2+a que cet
opérateur est contractant.
— On conclut a I'aide du théoréme du point fixe de Picard.

Remarques :
— On a un théoréme analogue avec une condition de Neumann, sous réserve que ¢ # 0 et ¢ < 0.
— On a aussi un théoréme analogue dans le cadre de la théorie de Sobolev. Le citer ?
Parler aussi d’estimations intérieures a priori ?

3.2 Probléme non linéaire

La méthode d’itération monotone, qui sera détaillée dans le résultat suivant nous permet de traiter le
cas de problémes semi-linéaires. Présentons le probléme étudié :

{2 est un ouvert régulier borné, 'opérateur L est supposé uniformément elliptique et a coefficients dans
Co*(Q)). On définit :

P) Lu+ f(x,u) =0 dans Q
u=0 dans 0%

On fait 'hypothése que f € COT*(Q) NCY¥ (en fait f lipschitzienne par rapport a u suffirait).

Théoréme : Si on a une sur-solution qui majore une sous-solution, alors il existe une solution du
probléme (P) coincée entre les deux. Plus précisément :

Supposons que vy < ug dans C2(£2) tels que :

vg < 0 dans 9f)
ot {—Luo — f(z,ug) > 0 dans 2

. {—Lvo — f(z,v9) <0 dans
i

ug > 0 dans 0f)

Alors Jug < u < ug dans C?T(Q) solution de (P).

Démonstration : Nous allons détailler ici la méthode d’itération monotone, trés semblable & la notion
de suites adjacentes, mais nécessitant un arsenal technique plus important. Elle se généralise aisément
au cas des problémes paraboliques.

Remarquons qu’aucune hypothése n’est faite sur 9, f qui joue le role de c.
Une solution est un point fixe de 'opérateur :

C?ro(Q) — C*(Q)
o Lv— Kv=—f(z,u) — Ku sur Q

— := v l'uni lution d
u +— ¢(u) := v 'unique solution de {v — 0 sur 90

ot K est choisi assez grand pour que K + 9, f(z,u) > 0, Vz € Q, Yu € [m = minvy, M = max u)
Remarque : (L — K)v = —f(x,u) — Ku € C°*(Q). Comme ¢ = —K < 0, on sait qu'il existe une
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unique solution v € C2+*(Q).
Notre but est donc de construire un point fixe de 'opérateur ¢.

Etapel:‘Simgul <ug < M, alors v1 < v dansQetul;ﬁug‘.

On a par hypothese :
(L—K)v; = —f(z,u1) — Ku; dans Q
vy = 0 sur 0N

{(L — K)vy = —f(x,us) — Kug dans Q
v9 = 0 sur 92

Posons w = v1 — vq.

(L= K)w=—(f(z,u1) — f(x,u2)) — K(u1 — u)
= —(up —u2)0yu f(z,0) — K(u1 — u2), ur <6 < usg
= (i )0 (2,6) + K]
> 0 dans Q (A)
w = 0 sur Of).

D’apreés le principe du maximum fort, si w touche son max M > 0 a l'intérieur, alors w = M et M =0
grace a la condition de bord. Ainsi, w = 0. Par (A), u; = ug, ce qui n’est pas. Donc v; < vy dans Q.

Etape 2: ‘ Si u est une sur-solution qui n’est pas une solution, alors ¢u = v < u dans € |.

—Lu — f(x,u) > 0 dans Q
u > 0 sur 0f2
{(LK)v— —f(z,u) — Ku dans Q

v =0 sur 02
Posons w := v — u.

On a par hypotheése :

(L— K)w > 0 dans Q
w < 0 sur 0N
Comme précédemment, en utilisant le principe du maximum fort (sans hypothése de signe sur ¢) :

(L—K)v>(L—- K)u, dou

1. Soit w # 0. Mais alors u = v. Donc u solution. Absurde.
2. Soit w < 0 dans . Ainsi v < u dans Q.

Etape 3: ‘ On utilise une récurrence ‘

ug sursolution (non solution) —uyp <ugdans Q@ —ug <uy <ug ... Upy1 = O(uy)
# (sinon ug = vg solution) V (par I’étape 1) \Y% \Y
vg sous-solution (non solution) — v > vg dans 2 — Ve >V >V ... Ung1 = O(vn)

On dispose ainsi de deux suites (u,) (sur-solution) et (v,) (sous-solution) telles que :
vo(x) < v (x) < -+ <vp(x) <up(z) < -+ <up(z) < up(r) dans .
Ainsi, pour tout x € Q, (u,(x)) est décroissante et minorée par vg(x).
Donc u(z) := lim wu,(z) existe.
n—+00

Malheureusement, cette convergence simple est insuffisante pour passer a la limite dans :

Unt1 = O(uy,) e {(L — K)upt1 = —f(,up) — Ku, dans Q

qui deviendrait :
Upy1 = 0 sur 0F)
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(L - K)u=—f(z,u) — Ku dans Q
u = 0 sur 0N

Etape 4:

(L — K)upt1(z) := —f(z,un(z)) — Ku,(z) dans Q

On va améliorer la convergence pour passer a la limite dans :
Unt1(x) = 0 sur 9N

D’une part, ngrfw fu(@) = —f(2,u(z)) — Ku(z) Vf€CL(Q) cCl(Q).

D’autre part, Vn € NVz € Q |fn(2)] < |f(z,un(x))] + Klun ()|

Or m < uy(xz) < M, donc :

VYn e NVz € Q |fp(z)| < sup  |f(z,u)|+ K max (|m|,|M|) = constante € LP(Q2) (car Q borné).
ze€Q,m<u<M

Donc par convergence dominée, on a f, — —f(z,u(z)) — Ku(z) dans LP(Q).

En particulier, (f,) est de Cauchy dans LP(9).

Les estimations elliptiques W27 () de Agmon-Douglas-Niremberg assurent alors que : ||ty +1—up+1||w2.r <

”fn - prLF Q)-

Mais alors, Euzl) est de Cauchy dans I'espace de Banach W2P(). Donc il existe w telle que u,, — w
dans W?2P(Q).

D’aprés le théoréme de Sobolev-Morrey, W2P(Q) — C'*%(Q) en prenant p > N.

Donc u,, — w dans C**%(Q). En particulier (u,) converge simplement vers w. D’ott w = u.

Bilan partiel : u,, — u dans C1**(Q) (H).

Effectuons une derniére amélioration :
(L — K)(un+1 — tpy1) = fn — fp dans Q
Up41 — Up+1 = 0 sur 09
(M) implique que f,, — —f(z,u(z)) — Ku(z) dans C%t%(Q) grace aux hypothéses sur f.
En utilisant les estimations de Schauder, on a |[tp+1 — Upt1ll2+a < | fn — folla-
On prouve aisément que (f,,) est de Cauchy dans C°*%(Q), donc (u,) est de Cauchy dans C2+<(Q),
qui est un espace de Banach. Donc (u,,) converge vers une limite qui ne peut étre que w.

Bilan final : u,, — u dans C?>7®(Q) et le passage a la limite devient possible. CQFD.

4 Equations de diffusion-réaction

4.1 Problémes paraboliques généraux

4.1.1 Principes de comparaison parabolique

Notations : Définissons P = L — e ou L est un opérateur elliptique du second ordre , sans terme
N N
d’ordre 0, i.e de la forme Lu = Z a;;(t, x)0;;u + Zbi(t,x)aiu.
ij=1 i=1
N N ou
On posera P = P + ¢, soit Pu = Z a;;(t, x)0;;u + Z bi(t, z)Ou + c(t, x)u — —.
ij=1 i=1 ot

On suppose les fonctions a;; symétriques, vérifiant la condition d’ellipticité usuelle. On pose Qr =
10; T] x Q et on suppose les b; € C(Qr). B
On pose enfin F'L :=]0; T] x 09 (frontiére latérale) et socle = {0} x ).
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La frontiére parabolique est définie par F'P = socle U F'L.
C2(]0; T] x £2), noté aussi C12(]0; T x ) désigne les fonctions de classe C! en temps sur Q7 et de classe
C? en espace sur Q7.

Observation initiale importante : Soit u € C(Qr) N C3(Qr) vérifiant Pu > 0 sur Q7. Alors u n’a
pas de maximum sur Q7.

Théoréme (Principes du maximum parabolique faible) :  est supposé borné.
1. Si Pu >0 dans Qr et u € C(Qr) NC?(Qr). Alors maxu = max u. On notera M ce maximum.

Qr
2. Sous 'hypothese c(t,z) < 0 et M > 0, le résultat précédent reste vrai pour opérateur (avec
terme d’ordre 0) P := P +c.

Nous allons maintenant énoncer deux théorémes de comparaison parabolique : le premier traite du
cas linéaire et le second s’applique au cas non linéaire (version semi-linéaire). Leur point commun est
qu’aucune hypothése de signe n’est exigée sur c. Un des grands avantages des problémes paraboliques
et que nous avons toujours comparaison !

Commengons par définir le probléme parabolique linéaire :

—Pu= f(t,z) sur Qr
0
(1) qu(t,z) =g(z) ou a—g(t,x) =g(z) sur FL
u(0,2) = ug(z) sur {0} x Q (socle)
Définition :
1. Une fonction réguliére u € C?(Qr) vérifiant
—Pu> f(t,z) sur Qr
a(t,z) > g(x) ou %(t,m) >g(z) sur FL
V —
w(0,2) > ug(z) sur {0} x Q (socle)
est appelée sur-solution du probléme linéaire (1).

2. Une fonction réguliére u € CZ(Qr) vérifiant

—Pu < f(t,x) sur Qr

%(t,x) < g(z) sur FL
v

u(0,7) < wup(x) sur {0} x Q (socle)

u(t,x) < g(z) ou

est appelée sous-solution du probléme linéaire (1).

Remarque : Pour trouver des sur et sous-solutions du probléme parabolique, on peut tester
— 0
— Les "grandes" constantes
— ¢ fonction propre principale (cf rappels sur la théorie spectrale en annexe)
— La solution de I'EDO associée (sans L)

Théoréme (Principe de comparaison parabolique linéaire) :

Soient u et v deux fonctions dans C2(]0; 7] x Q) N C([0; T] x Q) vérifiant

(1) —Pu< —Pv sur Qr
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et
(7)) u(0,z) <wv(0,z) sur
On suppose également que
(#i1) u(t,z) <wv(t,x) sur FL
ou que
ou ov
. Ou < v
(iv) £ (t,z) < 8V(t,x) sur F'L

Alors : u < v dans Qr et :
— soit u =v dansQr,
— so0it u < v dans Qr (séparation stricte).

Application : Si f >0, g >0, ug > 0, alors pour toute solution classique u du probléeme (1), on a
u(t,z) > 0 VY(t,z) € Qr.
Définissons maintenant le probléme parabolique semi-linéaire :
—Pu = f(t,z,u) sur Qr
(2) qu(t,r) =g(x) ou @(t,x) =g(z) sur FL

v T
u(0,2) = ug(x) sur {0} x Q (socle)

0 _
On suppose que T > 0 (T peut éventuellement étre infini), que f et a—f appartiennent a C([0; T] x QxR).
u

Théoréme (Principe de comparaison parabolique non linéaire) :

Soient u et v deux fonctions dans CZ(]0; T] x Q) N C([0;T] x Q) vérifiant
(Z) —'Pu—f(t,x,u) < —Pv—f(t,ai,v) sur QT

et

(#7) u(0,2) <v(0,z) sur Q
On suppose également que

(4i1) u(t,z) <wv(t,z) sur FL
ou que

ou ov

i) — < — FL
(iv) % (t,x) < 5 (t,z) sur

Alors : u < v dans Q7 et :
— soit u =v dansQr,
— soit u < v dans Qr (séparation stricte).

Remarque : Comme pour le cas linéaire, nous disposons de la notion de sous-solution et de sur-solution
du probléme semi-linéaire (2).

Nous disposons également d’un lemme de Hopf parabolique. Citons-en un cas particulier mais courant :

Théoréme (Lemme de Hopf parabolique) : Soit T' > 0, ¢(t,x) € C([0,T] x Q) et u(t,z) € CF(]0,T] x
Q) NCi([0,T] x Q) tels que :

0w > DAu+ c(t, z)u, t €]0,T], z € Q
u(t,z) >0,t €[0,T], z€Q

Supposons que u(tg, o) = 0 pour un (tg, zg) €]0,T] x 9. Alors :

— soit u =0 dansQr,

Ju
— soit 22 (tg, o) < 0.
soi aI/(oaco)
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4.1.2 Existence de solutions aux problémes paraboliques

Les principes de comparaison précédents sont de puissants outils pour prouver ’existence de solutions
a des problémes paraboliques linéaires ou non. La technique d’itération monotone qui sera explicitée
plus tard est d’une grande efficacité pour les problémes non-linéaires. Elle est identique & celle vue
dans le cas elliptique.

Nous avons besoin de nous rappeler quelques faits sur la solution fondamentale de 'opérateur de la
chaleur, qui nous seront utiles dans la preuve du théoréme d’existence de solution sur RY, ainsi que
d’expliciter la notion de conditions de compatibilité.

Rappels sur le noyau de la chaleur : N désigne un entier supérieur ou égal a 1

1
On pose G(t,z) = Weﬂxw“ sit>0etzeRN. Alors :
N 8G . 92 .
1. G € C*(]0; +o0o[xR™Y) et i AG (solution de I’équation de la chaleur)
2. G est une unité approchée quand ¢ — 0 i.e
a) G>0
b) Vi / G(t,z)dz = 1
RN
c) Ve >0 lim G(t,z)dz =0

t=0 JRN B(0,¢)
Nous nous intéressons maintenant au probléme :

% = Au sur ]0; +oo[xRY

u(0,7) = up(z) sur RV

On suppose ug € Cyp(RY), I'espace des fonctions continues et bornées sur RY. Posons u(t,z) :=

[G(t,.) * ug](x) (convolution dans l'espace) i.e u(t,z) = /]RN We*“*ylz/“uo(y)dy.

0
Alors u € C*°(]0; +00[xRY) et 8—1; = Aw sur ]0; +oo[ xRV,
De plus, si ug > 0 (ug # 0), alors (V¢ > 0) (Vz € RY) wu(t,z) > 0. De plus, on obtient le principe de
comparaison : si ug < vg, alors a tout temps u < v.
Existence en domaine borné (cas linéaire)

Q est un ouvert borné régulier.

Comme pour le cas elliptique, on dispose d’estimations paraboliques a priori, ot les W2P(§) deviennent
les Wh2P((0,T) x Q) et ot les C2+*(Q) deviennent les C1+/22+([0; T] x Q).

On peut alors "par continuation" comme vu précédemment, relier I’équation de la chaleur & un pro-

bléme parabolique linéaire :

ou

— = Lu sur |0;T[x)

Fy 10; T

u =0 sur |0; T[x9Q

w(0,7) = ug(z) sur {0} x Q
En parabolique, on a toujours comparaison! On a alors le caractére bien posé des problémes parabo-
liques et des estimations paraboliques a priori.

Nous allons considérer deux cas modéles (Dirichlet et Neumann) :
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Pu= f(t,z) sur Qr :=]0;T] x Q (1)
(Pp) S u(t,z) = ¢(t,z) sur FL:=]0;T] x 9Q (2)
w(0,7) = ug(w) sur {0} x Q (3)
Nous devrons alors vérifier les deux conditions de compatibilité (quand ¢ tend vers 0 dans (2) et (3)) :
1. ug(x) = ¢(0,x) sur 0N
2. Z a;;(0, x)@?juo + Z b (0, 2)O;ug + ¢(0, z)ug — f(0,2) = 9;¢(0,x) sur O
i, i
Pour la suite, nous supposerons que la condition d’uniforme ellipticité est valide :

() >0Vt € [0;T) Vo e Tve € RY 3 ayy(t,2)6i8; = ulel?

,J
Nous pouvons maintenant énoncer notre théoréme d’existence :

Théoréme : Supposons la condition (%) vérifiée et que les coefficients a;j, b;, et ¢ appartiennent
a Pespace de Holder C*/2%(Qr). La frontiére du domaine 9 est supposée de classe C%i. Si les
conditions de compatibilité (1) et (2) sont satisfaites, alors pour toute fonction f € C*/*(Qr), ug €

C*te(Q) et ¢ € C1H/22+2(9Q), le probléme (Pp) a une unique solution u € C1+*/22+2(Qr) et on a
I’estimation suivante :

lullersarsasecgry < C (I lcarsagm + 1ollzra@) + 18llcrsarssram )
De méme, nous pouvons traiter le cas d’un probléme de Neumann :

Pu = f(t,z) sur Qr :=]0;T] x Q (1)

%(t,x) = ¢(t,x) sur FL:=]0;T] x 9Q (2)
u(0,7) = up(z) sur {0} x Q (3)

(Pn)

Théoréme : Supposons la condition (%) vérifiée et que les coefficients a;;, b;, et ¢ appartiennent a
I’espace de Holder C*/2%(Qr). La frontiére du domaine 99 est supposée de classe C2+°. Si uq satisfait
3u0
o 7 ST
C*te(Q) et ¢ € C1T/22+2(9Q)), le probléme (Py) a une unique solution u € C'+/22+2(Qr) et on a
I’estimation suivante :

= ¢(0,z) sur FL (condition de compatibilité), alors pour toute fonction f € C*/2%(Qr), uy €

lullervaszzvagm < C (Hf”ca/za(@) + l[uolle2ta g + H¢||c(1+o<>/2,1+a(m))
Existence en domaine borné (cas non linéaire)

Considérons le probléme parabolique semi-linéaire :

Pu=0 sur Qr :=]0;T] x Q (1)
(P) S u(t,x) = ¢(t,x) sur FL:=]0;T] x 002 (2)
u(0,7) = ug(z) sur {0} x Q (3)
N N o
avec Pu := Z a;j(t, z,u)0;;u + Z bi(t, z,u)0u + c(t, z,u) — g

ij=1 i=1
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Théoréme : Supposons que les fonctions a;;, b; et ¢ soient uniformément bornées et continues sur
Qr, v € R, de méme que leurs dérivées premiéres par rapport a n’importe quelle variable t, z,u et

que :
N

v, >0V(tx) € Qr Vu e RVEERN v|¢]? < > ayj(t, x,u)&&; < plé)?

i,7=1

Si la frontiére du domaine OS2 est de classe C2+2, uy € C*+(Q), ¢ € C1+*/2:2+%(Q7) et que I'on a les
conditions de compatibilité :
— wug(x) = ¢(0,2), = € 0N
. Zaij((),x, uo)é‘fjuo + Zbi(O,I, ug)Osug + ¢(0,x,ug) = 9;¢(0,x) sur N
i, i

Alors il existe une unique solution u € C'*+*/22+%(Qr) du probléme P.

Considérons le probléme non linéaire typique :

%(t,x) = Au(t,z) + f(z,u) sur |0; T[xQ

u(t,z) =0 sur |0; T[xIN
u(0,z) = ug(x) sur Q

avec f € C2NCL et up € C?T(Q)

Théoréme (de comparaison et d’existence) : Sous les hypothéses de régularité précédentes, et en
supposant les conditions de compatibilité :

— wup(x) =0 pour x € 02

— Aug(z) + f(2,0) = 0 pour = € 9N
vérifiées, si ’'on dispose de u~ < ut telles que :

1. Ou™ —Au~ — f(z,u™) <0< ut — Aut — f(z,ut) sur (0,T) x Q
2. u~ <0< ut sur (0,7) x 99
3. u” <wug <ut sur

alors il existe une unique solution u € C1Te/2:2+e (Q7) du probléme précédent, et de plus u™ < u < ut.

Remarque : ce théoréme précise le théoréme de comparaison parabolique non linéaire vu avant. Pour
une généralisation, on peut consulter Vitaly-Volpert [2, p128].

Existence en domaine non borné (2 = RY)
Théoréme (cas linéaire) : Supposons que l'opérateur parabolique P vérifie la condition d’uniforme
ellipticité usuelle et que ses coefficients appartiennent a C*/2([0, 7] x RN). Alors :

Vf € C¥/?2([0,T] x RN) et ug € C*+*(RY), le probléme

Pu = f(t,x) sur (0,7) x RN
w(0,z) = ug(w) sur RY

a une unique solution u € C1+*/2:2+([0, T] x RN) et on a :
uller+arzata(oryxryy < C (IIfllcarzaorxrny + luollcza@ny)-

To be continued...
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5 Ondes progressives : Travelling waves
Nous prendrons comme cadre ’équation de réaction diffusion normalisée :
Oru = Au+ f(u)

le premier terme Au exprimant la diffusion et le second terme f(u) la croissance.
La fonction f peut étre de type :

1. Fischer-KPP (monostable) : f(u) = Du (1 - %)
La croissance est meilleure & faible densité (méme avec effet Allee faible).
2. Bistable (Effet Allee fort)

3. Ignition : Bistable aussi. On a un seuil § pour la réaction.

5.1 EDP du type Fisher-KPP
5.1.1 Dans RY, homogéne
Le modéle type est le suivant :
) O = Au+ f(u), t >0, z € RN
uw(0,2) = ug(z), z € RY

Pour simplifier, f(u) = u(1 — u).

On prend comme hypothése que :
— ug € BUC(RY), I'espace vectoriel des fonctions bornées et uniformément continues sur R¥,
muni de la norme du sup.
— 0 S (') S 1
Alors il existe une unique solution globale u(t,z) au sens de Duhamel et 0 < u < 1 (Théoréme de
solvabilité globale).

Question : Quid de u(t, ) quand t — +00 ? (Comportement en temps long du probléme de Cauchy)

O Un cas favorable : 3¢ > 0 Yo € RN ug(x) > e.
Alors la solution de ’EDO
{e’m = F(0(1))

0(0) =€

est sous-solution de (x).
Par le théoréme de solvabilité globale rappelé précédemment, 6(t) < u(t,z) < 1.
La dynamique de 'EDO dit que , li_~n_t1 O(t) =1 (car € > 0).

— T 00

Ainsi, u(t,z) — 1 quand ¢ — +oo uniformément en z. Il y a propagation.
O Supposons la donnée initiale ug a support compact.

Lemme : Soit le probléme

Ou—Au— f(u)=0, t>0, z € RN
uw(0,2) = Y(z), z € RN

Si ¢ vérifie L4 < 0, alors la solution u(¢, ) croit en temps.
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Théoréme : Il y a propagation : pour tout ug a support compact (ug # 0), Vo € RY . ligl u(t,x) =1
—+00

Démonstration : Elle se fait en trois étapes.
1. On prouve que 1 > u(l +t,z) > z(t,z) 1 p(x) quand t — 400
2. p est solution du probléme stationnaire sous-jacent : —Ap = f(p) dans R

5 {Ap f(p) dans R

—p=1
0<p<1 P

Etape 1 : On cherche une solution de Lu = 0 a I’aide d’une fonction propre du Laplacien (Technique
a retenir).

—A¢R = >\R¢R dans BR = B(O,R)
¢r =0 sur OBg
¢r > 0et [[¢r|L~ =1 dans Bg

Du fait de la non-linéarité de f, on calculera L(e¢r) et non L(¢R).

L(epr) = 0ipr — A(edr) — edr(l — ¢r)
= eArOR — €Pr(l — €dR)
= €pr(Ar — 1+ €dr)
<epr(Ar—1/2) dés que 0 < e <1/2
< 0 si R assez grand car Agr | 0 quand R — +00

Lu=0 .
Or , donc par comparaison u > 0,
u(0,2) = o(x) = 0 (up #0)

puis par séparation stricte, u(t,x) > 0 si t > 0. En particulier, u(1,2) > 0 Vo € RV.
On peut donc choisir € > 0 assez petit afin que Vo € RY epr(z) < u(l,z).
On définit donc z(t, ) comme la solution de :

Lz=0z—Az—f(z)=0
2(0,2) = {E¢R(x) six € Br

0 sinon
Par comparaison, on a : 1 > u(l 4+ t,2) > z(t, x).
Or z(0,x) est sous-solution (z(0,z) < u(l,z)) et Lz = 0, donc d’apres le lemme, z(t,z) croit quand ¢
croit.

Comme z(t,z) <1 et p(xz) > 0, on a la convergence simple : z(¢,2) 1 p(x) quand ¢ — +oc.

Etape 2 : Le but est d’améliorer la convergence ponctuelle , 1i$ z(t,z) = p(x) afin de passer a la
—>+00

limite dans ’équation. Mais ce gain de régularité nécessite plusieurs outils théoriques : des estimations
paraboliques intérieures a priori.

On a z(t,r) € C'T*/22+2((0,00) x R).
On définit z,(t,z) := z(t + n,x) = p(x) quand n — +oco.

On a L(z,) =01i.e Oz, — Az = f(zn) sur (0, +00) x R.
—— ——
linéaire considéré comme un membre de droite

Posons wy = (1,2) x (—k,k) CC (0,00) x R pour k € N*.
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D’aprés les estimations paraboliques intérieures :

[znllcr+arzzva@ry < Ck [1f(2n)llcarz.a(0,00)xr) T 120 llcarz.a((0,00)x®)]
< Cremax (|1 loos Livio 1) + 1) l12llearzex((0.00)xmy

< C constante indépendante de n

k=1:w; =(1,2) x (~—1, 1)

[2nllc1+ar2.24a @y < C

Mais on a I'injection compacte C'+/2:2+ (@) — €12 (@y).

Donc il existe une sous-suite (z,,) de (z,) qui converge vers une limite notée z dans C1?(w7), et
nécessairement, z = p.

k=2 : wo = (1,2) x (—2,2)

2n, [ler+arz2ta@g) < Ca et C1Ho/229(@g) — C12(@). Donc il existe une sous-suite (zn,) de (2n,)
telle que z,, — z = p dans C1?(wy).

ete.

Par extraction diagonale, il existe une suite (z,, ) extraite de (z,) avec i lim z,, = pdans Clltf((l7 2) x
—+o0 B
R).

On peut alors passer a la limite dans

8tznk - Aznk = f(znk)
D’ou :
—Ap = f(p)
Etape 3 : On sait que
—Ap=f(p):=p(1—p)sur R
0<p(z)<1
But : Prouver que p = 1.
Par Pabsurde, supposons que p # 1. Par exemple, p(0) < 1.
On sait que
7A¢R = )\RQSR dans BR = B(O,R)
¢r = 0 sur OBRr
¢r > 0 et |pr||L~ = 1 dans Br

—A(epr) — f(edr) = eArdr — €dr(1l — €dr)
= epr(Ar — 1 + €¢Rr)
< edr(Ar —1+p(0))
< epr(Ar — (1 —p(0)))
< 0 quand R assez grand

Posons €* := sup{e > 0;Vz € By epr(z) < p(z)}.

€* existe et appartient a (0, p(0)]. On pose enfin w = €* — p < 0 dans Bg. Par définition de ¢*, w = 0
en un point xg € Br. Ce point zo ¢ OBpr (car les bords sont fixes).

Ainsi, 0> Aw(zo) = e Adn(zo) — Ap(zo) > —f(€*6r)(w0) + f(p)(w0) = 0 car w =0 en .
Remarque : La derniére inégalité est stricte car e*¢pr sous-solution stricte.
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5.1.2 Ondes progressives, lien avec Cauchy

(EDP) : Oiu= Opou+ f(u).

On cherche des solutions voyageant & vitesse constante et gardant leur profil : u(t,z) = ¢(z — ct), ¢
constante.

L’équation devient :

(EDO) : —c¢'(2) = ¢"(2) + f(¢(2)), on z = = — ct.
Définition : Une onde progressive (Travelling Wave, notée TW) est un couple (c, ¢) tel que :

¢" +cd + f(¢) =0sur R
¢(—00) = L;¢(+00) =0
¢>0

Remarque : La solution de :

Lu:=0u—Au— f(u)=0,t>0, z€R
u(0,) = ¢(x)

n’est autre que u(t, ) = ¢(x — ct).

1

— Sict > ¢, alors : u(t,ct) = ¢((¢ct — ¢)t) = ¢(+00) = 0 quand t — +oo.
— Sic™ <calors : u(t,c t) = ¢((¢” — ¢)t) = ¢p(—o0) = 1 quand t — —o0.
c est la vitesse de propagation.

Propriétés : On suppose que (¢, ¢) est une onde progressive. Alors on a :
1.0<op<1
2. ¢'(£o0) =0

1
3. ¢’ € L2(R) et c est du signe de / f(u)du (> 0 pour Fisher-KPP)
0

4. ¢’ <0
Reésultats sur les ondes progressives

On effectue une linéarisation formelle autour de ’équilibre instable ¢ = 0 (i.e x — 400 trés en avant
du front).

¢ +cd + Pp(1 —¢) =0sur R
(c,p) TW < ¢(—0c0) = 1; ¢p(+00) =0 devient ¢” + c¢’ + ¢ = 0 (EDO linéaire du 2éme ordre)
$»>0
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A = ¢? — 4 doit étre positif ou nul. En effet, si A < 0, ¢ s’exprime en cos, sin, et donc on a des
oscillations autour de 0. On perd la propriété ¢ > 0.
Or ¢ > 0, donc ¢ > 2.

Théoréme : 1l existe une onde progressive (¢, @) si et seulement si ¢ > ¢* = 2.
c* est la vitesse minimale des fronts KPP. De plus, pour tout ¢ > ¢*, le profil ¢. est unique (& trans-
lations pres).

u
Généralisation : L’équation dyu = D% u + ru (1 — E) , (t,2) € R? admet des solutions positives

de type front, u(t, z) = ¢.(x — ct), avec ¢p(—00) = K, ¢(+00) = 0 si et seulement si ¢ > ¢* = 2v/rD.
De plus, Ve > ¢*, le profil ¢, est unique (& translations prés), strictement positif et strictement dé-
croissant.

Théoréme : Soit u(t, z) une solution du probléme de Cauchy

u *
(Ph) u = DO? u + ru (1 - ?) , (t,x) e RL xR
w(0,2) = up(x), z € R

avec donnée initiale ug > 0, ug # 0 continue et & support compact (on suppose toujours ug réguliére).
Cette solution converge vers le front de vitesse minimale au sens suivant :

Jim suplu(t, z) = ges (@ = "t +ma (1))] = 0

lim suplu(t, ) — ¢ (—2 — c*t )] =
Jim_suplu(t, #) = ges (—2 = "t + ma(t))] = 0

Les fonctions m;(t), (i = 1,2) décrivant le décalage entre u(t,z) et le front de vitesse minimale sont

3vD

négligeables par rapport a ¢ : m;(t) = ﬁln(t) +C;, i =1,2, C; constante.

Remarque : Ce résultat permet notamment de relier les paramétres r, D du modéle & la vitesse de colo-
nisation. En effet, un observateur qui avancerait vers la droite avec une vitesse supérieure a ¢* = 2v/rD
verrait la densité de population tendre vers 0, alors que s’il se déplacait vers la droite avec une vitesse
comprise entre 0 et ¢*, il verrait la densité de population tendre vers la capacité d’accueil K de ’en-
vironnement (idem vers la gauche). On dit que ¢* est la vitesse asymptotique de propagation de la
solution du probléme de Cauchy (Pb).

O Quid quand la densité de population initiale ug n’est pas & support compact ?

La solution du probléme de Cauchy (Pb) peut converger vers un front de vitesse ¢ > ¢*.
Formellement, posons ug(—o0) = K, ug(+00) = 0, ug(x) ~ Ae™** A, X > 0, avec ug décroissante :
ug(x) ~ Ae™** quand x — +o0
4
u(t,z) ~ Ae= == ou ¢ est a déterminer
Considérons I’équation linéarisée :
Ou= DI u+ru (x>>1)
Cherchons des solutions du type front u(t,r) = ¢.(x — ct), avec ¢.(x) = Ae 2.

On obtient alors : DA2 — e\ +r = 0, d’ott ¢ = D + g En étudiant la fonction ¢(A) = DX + r

A

, on

voit que ¢ atteint son minimum quand A = \* := /r/D.

1. 0 < A < X\*: la vitesse de propagation est égale & DA + g >c=2vVrD

2. X = M : la vitesse de propagation est égale & DX + ; =2vrD =c¢*
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BAS N e ML e,
Par comparaison parabolique en domaine non borné (2 = R), la vitesse de propagation avec
A > A\* est inférieure ou égale a ¢* = 2v/rD (vitesse minimale). D’oi ¢* = 2v/rD.

Formellement, quand A — 400, ug(z) = 0 quand  — +00. On retrouve la donnée a support compact.

Théoréme : Soit u(t, z) la solution du probléme de Cauchy (Pb) avec donnée initiale ug > 0, décrois-
sante, telle que ug(—00) = K, ug(+00) = 0, ug(x) ~ Ae™*® A, X > 0. cette solution converge vers

c=c"=2vrDsiA> X\ =/r/D

c=DA+ 2 six< At

I'unique front de vitesse ¢ vérifiant : {
A

La convergence a lieu au sens suivant :

tiigrnoo itel%u(t, x) — ¢z —ct+m(t)+¢)|=0

ot ¢ >0, m(t) =o(t) en + co et m(t) =0 quand A < \*.

Remarque : Plus la donnée initiale est & décroissance rapide, plus le front sélectionné est lent, jusqu’au

seuil \* & partir duquel la vitesse de propagation ne dépend plus de la vitesse de décroissance de ug,
et est égale a la vitesse que 'on obtiendrait avec ug & support compact. En gros, pour Fisher-KPP,
la linéarisation autour de v = 0 dit tout! En particulier, les queues de la condition initiale uq sélec-
tionnent la vitesse de propagation.

Pour les phénomeénes d’accélération, on peut consulter Roques|1,p82-84]

5.2 EDP avec effet Allee

Considérons le modéle en dimension 1 d’espace et dans un milieu homogéne non borné :

(P) Ou = Dd? u+ru (1 - %) (w—p), (t,z) € R?

avec r, K > 0 et p €]0, K.

5.3 Equation hétérogéne en domaine borné

On transforme f(u) = u(1 — u) cas modéle pour Fisher-KPP en f(x,u) = u(r(z) — y(x)u), ou r(x)
est le taux de croissance intrinséque dépendant de la position. Cette quantité est donc positive ou
négative. y(z) est un terme de compétition dépendant de la position. Il est toujours positif.

On regarde I’équation :

Oru = DAu +u(r(z) — y(z)u), t >0, 2 € Q
(¥) < Condition de Dirichlet ou de Neumann
u(0,2) = up(x) > 0, bornée, = € Q

fz,u)

Remarque : le taux de croissance per capita = r(x) — y(x)u est une fonction strictement dé-

U
croissante de u, et atteint son maximum quand u = 0 i.e situation de Fisher-KPP.

Hypotheses de régularité : r,y € Lip(Q). Par compacité de Q, v > Ymin > 0.
ug € C*+2(Q) + conditions de compatibilité.

— 0 est sous-solution de (%)
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[17[loc

min
Un théoréme de comparaison rappelé précédemment nous assure alors de l'existence d’une unique so-
lution u € C([0,T] x ). En fait, cette solution appartient a C([0,00) x Q) car on a pas "explosion".
De plus, 0 < u < Grande constante.

— La grande constante (positive) max ( ) ||u0|oo> est sur-solution de ().

Question : Quid de v quand t — +o0 ?

Etats stationnaires

—DAp — p(r(xz) —y(x)p) =0 sur Q
But : trouver p = p(x) > 0 solution de Op
p:00u5:05ur8§2

p = 0 convient. Y a-t-il d’autres solutions (ce sont les candidats pour décrire u(t, z) quand ¢ tend vers
+00) 7
La réponse est donnée par le signe de la valeur propre principale du linéarisé autour de
p=0.

Ici LY := —DAY — r(z).

Notons (A1, ) le couple valeur propre principale, fonction propre associée a L.
Théoréme : Si A} < 0, alors il existe p(x) > 0, p(z) # 0 état stationnaire.

Théoréme : Si \; > 0, alors p = 0 est le seul état stationnaire positif.

6 La théorie des semi-groupes pour les EDP semi-linéaires

6.1 Opérateurs m-dissipatifs

(X, ||.Il) désigne un espace de Banach.

6.1.1 Définitions et propriétés de base
Définition : Un opérateur A : D(A) C X — X est dit dissipatif si :

YA > 0Ve € D(A) ||z — Ax| > ||z

Remarque : Soit f € X. S’il existe € D(A) solution de  — AAz = f, alors A dissipatif nous dit que
[zl < [LfIl-

Définition : Un opérateur A est dit m-dissipatif si :

1. A est dissipatif

2.VA>0VfeX3dxeD(A) x —AAx = fieVA >0, I — A A: D(A) — X surjectif.
Lemme et définition :

1. Si A: D(A) € X — X est m-dissipatif, alors VA > 0 Vf € X 'équation z — AAx = f a une
unique solution u telle que ||ul|] < || f]|-

2. L’application

I X — D(A)
A f — u unique solution de u — Au = f

est une contraction sur X, linéaire, bijective de X sur D(A). On posera | Jy := (I —AA)~!|.
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Proposition : Si A est m-dissipatif, alors le graphe de A, G(A) est fermé dans X x X.

Corollaire : Soit A un opérateur m-dissipatif et uw € D(A). On pose
— Jlullpay = lull + [ Aul] (norme du graphe)
— Il == |Ju — Aul| = ||(I — A)u|| (intermédiaire utile)

- |-llpay est une norme sur D(A) et (D(A), ||.| pca)) est un espace de Banach.
(D(A): [-peay) = (X, 111D

M~ 11 pcay-

4. Jy isomorphisme de (X, |.||) sur (D(A),].|[pca))-

w o

Quand on parlera de D(A), on sous-entendra désormais ’espace de Banach (D(A), ||.||D(A)).
Corollaire : VA > 0, Jy € L(X,D(A)).

Définition : Soit A un opérateur m-dissipatif et A > 0.
1
)

On pose | A (Jx —I)|. Ay s’appelle ’approximée de Yosida de A.

Lemme :

Ve e X, Axz = A(Jxx)

Vz € D(A), Axz = Jx(Ax)

Ay € L(X) et ||Ax] <2/

x4y € LID(A)) et [|Jxpayll <1

RANC R

A est m-dissipatif
Remarque : Si A est m-dissipatif et X est réflexif, alors D(A) est dense dans X.

Proposition : Soit A m-dissipatif, (Ay),., et on suppose que D(A) est dense dans X (pour la norme
de X). Alors :

1. VA>0Vz € D(A) ||Jax — x| < A||Az||

2. Vx € X ||Jax — || = 0 quand A — 0

3. Vo € D(A) ||Axz —z|| = 0 quand A — 0

4. Yz € D(A) [[Jxz — z|[pca)y — 0 quand A — 0

Proposition (trés utile) : Supposons que A est dissipatif. Alors :
A est m-dissipatif si et seulement si il existe Ag > 0 tel que Vf € X, x — A\gAx = f est résoluble.

Remarque technique : Cette derniére proposition nous permet de chercher un "bon A" qui résout
x — Mz = f pour tout f € X pour conclure a la m-dissipativité de A.

Corollaire : Si A € £(X) et si A est dissipatif, alors A est m-dissipatif.

Corollaire (trés utile) : Soient A et B deux opérateurs linéaires non bornés. Supposons que :
1. B est dissipatif
2. G(A) Cc G(B)
3. RU-A) =X

Alors A = B et A est m-dissipatif.

Corollaire : Soient A et B deux opérateurs m-dissipatifs tels que G(A) = G(B). Alors A = B.
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6.1.2 Restriction et extrapolation

Théoréme : Soit A un opérateur m-dissipatif, de domaine dense.
Posons X1 = (D(A), ||.|[pca)). A1 est I'opérateur linéaire sur X; défini par :

D(A))={z € X1; Az € X1} C D(A) = X3
Ajx = Ax Vx € D(Al)

Alors A; est un opérateur m-dissipatif et D(A;) est dense dans X;.

Remarque : On a restreint I'opérateur non borné A en un opérateur A; dont le domaine D(A;) est
constitué des éléments de D(A) stables par A.

On peut continuer 'opération de restriction précédente en définissant :

D(Ag) = {J? S D(Al),Al' (S D(Al)}
AQIE = A(AI‘) Vo € D(Ag)

De maniére générale,

{D(An) ={z € D(An_1); Az € D(A,_1)}

Anx = A""1(Az) Vo € D(A,)

Théoréme : Soit A un opérateur m-dissipatif, de domaine dense. Alors il existe un espace de Banach
X_1 et un opérateur A_; sur X_; tel que :
X < X_; avec injection dense
Ve e X |z|x_, = |1zl
A_ est m-dissipatif dans X_;
D(A1)=X
Vo € D(A) A_jz = Ax

Remarque : on a extrapolé I'opérateur non borné A en un opérateur A_; de domaine D(A_;) = X.

Fr ;s wo =

De méme, on peut construire X — X 1 — X _o...
Restriction et extrapolation commutent :

(X1)_ =X =(X1),

6.1.3 Cas des espaces de Hilbert

(X, (.,.)) est un espace de Hilbert réel de norme associée |.|

Lemme (utile) : Soit A un opérateur linéaire sur X. A est dissipatif si et seulement si Vo € D(A) (Az,z) <
0.

Lemme : Si A est m-dissipatif, alors D(A) est dense dans X.

Remarque : tous les espaces de restriction et d’extrapolation X, (n € Z) sont des espaces de Hilbert.
Exemple :

— X1 (I’y)Xl = (z7y)X + (Avay)X

- X—l : (xﬁy)X—l = (levt]ly)X

Lorsqu’un opérateur A est m-dissipatif, alors D(A) est dense dans X. On peut donc alors définir sans
probléme son adjoint A* :
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— D(A") :={x € X;3C > 0 vy € D(4) |(z, Ay)| < Clly[|}
— Yu € D(A) Yv € D(A*) (A*v,u) = (v, Au)

G(A*) est fermé dans X x X.
Si B € L(X), alors (A+ B)* = A* + B*.

Proposition : (A)J_ = {v e D(A*); A*v = 0}.

Théoréme (utile) : Soit A un opérateur linéaire dissipatif dans X, de domaine dense . Alors A est
m-dissipatif si et seulement si A* est dissipatif et G(A) fermé.

Définition : Soit A un opérateur linéaire dans X, de domaine dense. On dit que A est auto-adjoint
(resp. anti-adjoint) si A* = A (resp. si A* = —A).

Corollaire : Si A est un opérateur auto-adjoint dans X et si A <0 (i.e (Au,u) <0 Vu € D(A)), alors
A est m-dissipatif.

Corollaire : Si A est un opérateur anti-adjoint dans X, alors A et —A sont m-dissipatifs.

Corollaire : Soit A un opérateur linéaire dans X, de domaine dense tel que G(A) C G(A*) et A <0)
(i.e A dissipatif). Alors : A est m-dissipatif si et seulement si A est auto-adjoint.

Corollaire : SoitA un opérateur linéaire dans X, de domaine dense. Alors A et — A sont m-dissipatifs
si et seulement si A est anti-adjoint.

Proposition : Soit A un opérateur m-dissipatif. Alors :
1. A* est m-dissipatif
2. (I =AAN)"L=[(I - )A)~ Y
3. (A%)x = (AN)*

Cas des espaces de Hilbert complexes

Dans ce paragraphe, on suppose que X est un espace de Hilbert complexe i.e qu’il existe une forme
R-bilinéaire continue b: X x X — C telle que :

— b(iu,v) = ib(u,v) Y(u,v) € X x X

— b(v,u) = b(u,v)

— b(u,u) = ||lu||* Vu € X
Dans ce cas, (u,v) := Re (b(u,v)) définit un produit scalaire réel sur X qui fait de X un espace de
Hilbert réel.

Soit A un opérateur linéaire sur ’espace de Hilbert réel X. Si A est C-linéaire, on peut définir iA
comme un opérateur linéaire sur ’espace de Hilbert réel X.

Proposition : Supposons que D(A) est dense dans X. Alors A* est C-linéaire et on a (1A)* = —iA*.

Corollaire : Si A est auto-adjoint, alors i A est anti-adjoint.

6.2 Théoréme de Hille-Yosida-Phillips

Rappels : Soit X un espace de Banach et A € L(X).
Définition : ¢t = 3 =A™,

n!
n>0
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On a convergence normale dans £(X) et ||e| < el4l. De plus, si A et B commutent, on a eA+5 =
A B
etel.

Enfin, pour tout A fixé, t — e!4 € C®(R, L(X)) et %(em) = et A = Aeth.

Proposition : Soit A € L£(X). Pour tout T > 0 et pour tout z € X, il existe une unique solution
u € C1([0,T],X) du probléme :
u/'(t) = Au(t) Vt € [0,T]
u(0) ==z
Cette solution est u(t) = et“x.

6.2.1 Semi-groupe engendré par un opérateur m-dissipatif

Soit X un espace de Banach et A un opérateur m-dissipatif de domaine dense. Pour A > 0 on considére
les opérateurs Jy et Ay définis a la section précédente :

Jy = (I— /\A)_l
1
A)\ - X(J)\ - I)

et on pose Th(t) = et Vvt > 0.

Théoréme :

1. Vz € X la suite de fonctions uy(t) = Th(t)x converge uniformément sur tout intervalle fermé
borné [0,7] vers une fonction u € C([0,7],X) quand A tend vers 0. On pose alors T'(¢t)x =
u(t) Ve € X Wt >0

2. ()T e L(X)etVE>0 T <1
(i) T(0) =1
(i) T(t+s) =T)T(s) Vs, t >0

3. De plus, Vo € D(A) u(t) est 'unique solution du probléme :
'(t) = Au(t) ¥t > 0
u € CL([0, 50), D(A)) N C1([0, 00), X) avec 4 & 1) = Ault) vt =
u(0) ==z
4. Enfin, Vo € D(A) Vt >0 T(t)Az = AT (t)x

Dans ce qui suit, on suppose que X est un espace de Hilbert réel. Le résultat qui suit précise le théo-
réme précédent.

Théoréme : On suppose que A est auto-adjoint < 0. Soit € X et u(t) = T'(¢t)x. Alors u est 'unique
solution du probléme : trouver

u € C([0,00), X)NC((0,00), D(A)) NC((0,00), X)

u'(t) = Au(t) Ve > 0

u(0) =z

De plus on a :

: 1
(i) [[Au(®)]] < ﬁllxll

) 1,
(it) —(Au(t), u(t)) < 5 ||

(iii) Si @ € D(A), alors ||Au(t)]|? < f%(Aa:,x)
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Remarque : T'(t) a un effet régularisant sur la donnée initiale. En effet, méme si « ¢ D(A), on a
T(t)xr € D(A) vt > 0.

Théoréme : On suppose que A est anti-adjoint. Alors T'(¢) s’étend & un groupe & un paramétre
T(t): R — L(X) tel que :

1. Ve e X T(t)x € C(R, X)

2. Vx e XVt e R ||T(t)z| = |||

3. T(0)=1

4. Y(s,t) eRET(t+s) =T(s)T(t)

5. Vz € D(A) u(t) = T(t)z vérifie u € C(R, D(A)) NCH(R, X) et u/(t) = Au(t) Vt € R
Corollaire : Avec les notations du théoréme précédent, on a : (T(t))" = T(—t) Vt € R.

6.2.2 Semi-groupes de contraction et leurs générateurs

Avant de définir la notion de semi-groupes de contraction, touchons un mot sur la notion de solutions
: . ) 1 uw'(t) = Au(t) vt > 0
faibles au probléme u € C'([0, 00), D(A)) N C*([0, ), X) avec 0)
u(0) =z

On a vu précédemment que pour tout x € D(A), on a défini u(t) = T'(¢t)z comme 'unique solution de
ce probléme.

Lorsque X est un espace de Hilbert et A un opérateur auto-adjoint, T'(¢)x est encore la solution du
probléme : trouver

u € C([0,00), X) NC((0,00), D(A)) N C((0,0), X)
u'(t) = Au(t) Vt > 0
u(0) ==z

Cependant, lorsque = ¢ D(A), T(t)x n’est pas différentiable a valeurs dans X et ne peut satisfaire
u'(t) = Au(t) Vt > 0. Heureusement, la notion d’extrapolation permet d’identifier T'(t)z. Nous nous
replagons donc dans ce cadre et notons T'(t) et S(t) les semi-groupes associés a A et & B.

Lemme : Pour tout z € X et t >0, on a : T'(¢t)x = S(t)x.
Corollaire : Soit € X. Alors u(t) = T(t)x est I'unique solution du probléme :

u € C([0,00), X) NCY([0,00),Y)
u/'(t) = Bu(t) Vt > 0
u(0) =z

Définition : Une famille & un parameétre {T'(¢) };>¢ d’opérateurs linéaires continus est dite semi-groupe
de contractions sur X si :

L|T@®)|=1vt>0
2.T0)=1
3. T(t+s)=T1H)T(s) Vs,t >0
4. Vo e X T(t)x € C([0,00[, X)
Définition : Le générateur infinitésimal de T'(¢) est U'opérateur L défini par :

T(h)x —

D(L) ={z € X; ~ a une limite dans X quand h | 0}
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Proposition : Soit 7'(¢t) un semi-groupe de contractions sur X, et L son générateur. Alors L est m-
dissipatif et D(L) est dense.

Théoréme (de Hille-Yosida-Philips) : Un opérateur linéaire A est le générateur infinitésimal d’un
semi-groupe de contractions si et seulement si A est m-dissipatif, de domainde dense.

Proposition : Soit A un opérateur m-dissipatif, de domaine dense. Supposons que A est le généra-
teur d’un semi-groupe S(t) de contractions. Alors S(t) est le semi-groupe associé & A par le premier
théoréme de cette section.

Définition : Une famille & un parameétre {T'(¢)};cg d’opérateurs linéaires continus est dite groupe
d’isométries sur X si :

T ()| = ||z|| pour tout x € X et t € R,
2. T(0) = I,

3. T(t+s) =T(t)T(s) pour tous s,t € R,
4. T(t)x € C(R, X) pour tout = € X.

Proposition : Soit A un opérateur m-dissipatif de domaine dense, et soit T'(t) le semi-groupe de
contractions engendré par A. Alors {T(t)};cr+ est la restriction & RT d’un groupe d’isométries si et
seulement si —A est m-dissipatif.

—_

6.3 Problémes semi-linéaires abstraits

Dans cette section, X est un espace de Banach et A un opérateur m-dissipatif, de domaine dense.
On note T'(t) le semi-groupe de contractions engendré par A.

6.3.1 Equations non-homogénes

Soit T'> 0. Pour « € X et f:[0,7] — X donnés, on veut résoudre le probléme :

u€C([O,T],D(A))ﬂCl([O,T],X) (1)
u'(t) = Au(t) + f(t), Vi € [0,T] (2)
u(0) =z (3)

On dispose comme pour les équations différentielles de la formule de Duhamel (variation de la constante).

Lemme (formule de Duhamel) : Soit € D(A) et f € C([0,T],X). On considére une solution u €
C([0,T], D(A))NC*([0,T], X) du probléme précédent. Alors on a :

u(t) =T(t)x +/0 T(t—s)f(s)ds, Vte[0,T] (4)

Corollaire : Pour tout € D(A) et f € C([0,T7], X), le probléme (1) —(3) posséde au plus une solution.

Remarque : la formule de Duhamel définit une fonction u € C(][0,7T], X). Cherchons des conditions
suffisantes pour que cette fonction soit solution du probléme (1) — (3).
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6.4 Applications a I’équation de la chaleur semi-linéaire
6.5 Solutions globales

6.6 Un peu de systémes dynamiques
7 Equations avec transport

7.1 Interlude théorique
7.2 Modéles d’advection - diffusion

7.3 Modéles d’advection - diffusion - réaction

8 Systémes A’EDP

Nous étudierons a terme les systémes d’EDP du type :

Oup =71 (1— “ ;;UQ up — V.(DVuy) — 01.Vug — c(ug, uz, R)
Oug =19 | 1 — % uz — V.(DVug) — v3.Vug — ¢(uy, uz, R)

U1 + U
K
de diffusion, —v;.Vu; le terme d’advection pour I'espéce i et —c(u1, uz, R) un terme source, R désignant
la ressource du milieu.

our; | 1— u; représente le terme de réaction, K la capacité du milieu, —V.(DVu;) le terme

8.1 couplages A’EDP
8.2 Systémes de Turing
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9 Annexes

9.1 Espaces de Hilbert - Théorie des opérateurs - Théorie spectrale
9.1.1 Généralités sur les Hilbert - Bases Hilbertiennes

On suppose connue la définition d’un espace de Hilbert, I'inégalité de Cauchy-Schwarz et le théoréme
de projection sur un convexe fermé. On pourra par exemple consulter Brézis[1] ou Hirsch-Lacombel[1].

Dans toute la suite, H désigne un espace de Hilbert muni du produit scalaire (., .), de norme associée |.|.

Théoréme de représentation de Riesz : Soit ¢ € H'. Il existe un unique f € H tel que
Yoe H (¢,v)=(fv)
De plus, on a [f| = ||| a-

Remarque : Ainsi, toute forme linéaire continue sur H peut se représenter a ’aide du produit scalaire.
L’application ¢ — f est un isomorphisme isométrique qui permet donc d’identifier H et H'.

Presque toujours cette identification sera effectuée, mais pas tout le temps! Comme nous ’apprend
Brézis[1, chapitre 5], Si V' désigne un autre espace de Hilbert, muni de son propre produit scalaire
((.,.)), de norme ||.|| tel que V. C H,on a V. C H = H' C V' (injections canoniques continues et
denses). On ne peut alors identifier V' a V’. Le choix de 'identification de H et H' est le plus courant.
On dit que H est I'espace pivot.

Le théoréme suivant est de grande utilité pour résoudre des équations aux dérivées partielles linéaires
elliptiques. Il contient de plus un résultat de minimisation d’une fonctionnelle.

Théoréme de Lax-Milgram : Soit a(u,v) une forme bilinéaire sur H x H qui est
— continue : il existe un réel M > 0 tel que pour tout w,v € H |a(u,v)| < M|ul|v|.
— coercive : il existe un réel a > 0 tel que pour tout u € H |a(u, u)| > aful?.
Alors, pour tout ¢ € H', il existe un unique u € H tel que Vv € H a(u,v) = ($,v).
De plus, si a est symétrique, alors u est caractérisé par la propriété :

1 1
ue H et ia(u,u) — (¢, u) = Minyepn {2a(v,v) — {9, U>}
Définition : Soit (E,),>1 une suite de sous-espaces fermés de H. On dit que H est somme Hilber-
tienne des (E,,), et on note H = @, F,, si:
1. Yue B, Yve E,, (im#n) (u,v)=0
2. L’espace vectoriel engendré (au sens algébrique) par les (E,) est dense dans H.

Proposition : On suppose que H est somme Hilbertienne des (E,,). Soit v € H et u, = Pg, u la
projection orthogonale de u sur E,,. Alors :

“+o00 k
1. u= Up l.e u = lim Up,«
> un Jim
n=1 n—=
“+ o0
2. |ul* = Z |u,|? (6galité de Bessel-Parseval)
n=1
+o00
Réciproquement, si une suite (u,,) d’éléments de H est telle que Vn u,, € E, et Z [, |? < +o00, alors
n=1
+oo +o0
la série Z u, est convergente et u = Z uy, vérifie u,, = Pg_u.
n=1 n=1
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Définition : On appelle base Hilbertienne une suite (e, ) d’éléments de H telle que :
1. Vn ley| =1 et Vm,n (m #n) (em,en) = 0.
2. L’espace vectoriel engendré par les e,, est dense dans H.

11 résulte en particulier de la proposition précédente que si (e,,) est une base Hilbertienne de H, alors
tout u € H s’écrit :

—+oo +oo
u = Z u, avec |ul? = Z |(u, en)|?
n=1 n=1

Théoréme : Tout espace de Hilbert séparable admet une base Hilbertienne.
C’est le cas par exemple des espaces L2(2) et H! ().

9.1.2 Théorie des opérateurs

La majorité des résultats énoncés ici sont tirés des ouvrages de Brézis[1] ou de Cazenave-Haraux|1].
IIs sont cependant essentiels pour la théorie de Hille-Yosida.

Définition : E et F' désignent deux espaces de Banach.

1. On appelle opérateur linéaire non borné de F dans F' toute application linéaire A : D(A) C
E — F, définie sur un sous-espace vectoriel D(A) C E, a valeurs dans F.

D(A) s’appelle le domaine de A.

On dit que A est borné s’il existe un réel ¢ > 0 tel que pour tout u € D(A) ||Au|| < cl|u]|.
Le graphe de A, noté G(A) est {(u, Au);u € D(A)}.

On dit que 'opérateur A est fermé si G(A) est fermé dans F x F.

L’image de A est notée R(A)

Remarques :

SN

1. Si A est borné, c’est la restriction & D(A) d’un opérateur A € L(E, F) ot E est un sous-espace
vectoriel fermé de E contenant D(A).

2. Si D(A) = E, le théoréme du graphe fermé nous assure que A € L(E,F) si et seulement si
G(A) est fermé dans F x F.

Point technique : Pour prouver qu’un opérateur A est fermé dans E x F, on prend (u,) une suite
d’éléments de D(A) C E telle que w,, — u et Au,, — f, et on prouve alors que :

1. uwe D(A)
2. Au=f

Définition : Soient E et F' deux espaces de Banach. Un opérateur linéaire continu 7' € L(E, F) est
dit compact si T(Bg) est d’adhérence compacte.

Proposition : Soient E, F, G et H des espaces de Banach. Supposons T' € L(F,G) compact. Si
UeL(E,F)etV e L(G,H), alors : VIU € L(E, H) est compact.
9.1.3 Théorie spectrale - Propriétés spectrales du Laplacien

Nous rappelons d’abord quelques résultats généraux sur les opérateurs autoadjoints compacts.

Définition : Un opérateur linéaire continu A € L(H) d’un espace de Hilbert H est dit autoadjoint si
A*=AieVYu,v € H (Au,v) = (u, Av).

Le résultat suivant généralise le théoréeme de diagonalisation des endomorphismes symétriques en di-
mension finie.
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Théoréme : On suppose que l'espace de Hilbert H est séparable. Soit 7" un opérateur autoadjoint
compact. Alors :
— H admet une base Hilbertienne (e,,),>1 formée de vecteurs propres de T' : Te,, = A\pe, Vn > 1.

— Chaque valeur propre A,, est de multiplicité finie et lim M, = 0.
n——+00

— Si de plus T est défini positif : Ve £ 0 € H (Tz,x) > 0, alors Vn > 1, A, > 0.
Q) désigne un ouvert borné de RY et £ = div(A(x)V) un opérateur elliptique sous forme divergence.
On se place sous les hypothéses :

1. (Jag, o1 > 0)(Vz € Q)(V&;, & € RY) a8 < 307 aij (2)6:&5 < anléf

2. Les fonctions a;; sont bornées sur 2 et vérifient a;; = a;;

Soit ¢ une fonction continue définie sur 2.

Théoréme : I existe une base Hilbertienne (e, ),>1 de L?(Q) et une suite croissante A\; < Ay < --- <
Ap - = +00 tels que Vn > 1 e, € HE(Q) et vérifiant :

(L) —div(A(z)Ve,,) — cep = Ape,, sur
" e, =0 sur 99

Si de plus ¢(z) < 0 Vz € Q, alors ¥n > 1 A, > 0.
Ce théoréme est trés pratique car il permet de décrire les solutions de certains problémes d’évolution.
En particularisant le résultat précédent au cas du Laplacien i.e la matrice A(x) est égale a I'identiteé,

on obtient le résultat suivant :

Proposition : Soit  un domaine borné de RY. Il existe une base Hilbertienne (e, ),>1 de L?(£) et
une suite croissante Ay < Ay <--- <\, --- > oo telsque Vn > 1 e, € H& (Q) et vérifiant :

—Ae,, = A\pe, sur Q)
(In) B
e, =0 sur 09

De plus, chaque valeur propre A, est de multiplicité finie et ( ‘n ) est une base Hilbertienne de
Vv )\" n>1

Hy ().

Propriétés :

1. Si © est un domaine borné régulier de R, alors Vn > 1, e, € C=(Q).

2. A1 > 0, premiére valeur propre de —A (avec Dirichlet homogene) est telle que

AlMin{/Qvu2//Qu2;ueHg(Q) etu;é()}

3. A1 est valeur propre simple i.e Ker(—A — A1Id) = Reg, et donc 0 < A; < Ag < A3 < ---

IN
2>
IN

4. On ae; >0 (ou e; <0) et ceci caractérise A;.

Définition : \; est appelée valeur propre principale de —A.
Généralisons le résultat précédent...

Théoréme de Krein-Rutman : Supposons ¢ lipschitzienne sur Q. 1l existe un unique couple \; € R
(valeur propre principale de £) et ¢ € C?>(Q) (fonction propre principale de £) vérifiant :
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1. Cas Dirichlet :
—DA¢ — c(x)¢p = A1 ¢ dans

¢(z) = 0 sur 0Q
¢ > 0 dans €2 et maxg¢op =1

La valeur propre A; est la plus petite valeur propre de 'opérateur £ := —DA — ¢(z) avec
condition de Dirichlet. De plus, on a la formule de Rayleigh suivante :

= Min 2(z) — e(z)y?(x))dx 2(z)dx; o
A =M {/Q(DWJI() (W(>)d//9w<)d,weH1<ﬂ>,w¢0}

2. Cas Neumann :
—DA¢ — c(x)¢p = A1 ¢ dans Q

¢(z) = 0 sur 00
¢ > 0 dans €2 et maxg¢ =1

La valeur propre A; est la plus petite valeur propre de lopérateur £ := —DA — ¢(x) avec
condition de Neumann. De plus, on a la formule de Rayleigh suivante :

w=Min{ [ (DIV0P(0) = cla?)ia/ [ W arass v € )0 20

Remarque : Comme le min pour Neumann est pris sur H;(£2) et non plus sur HY(Q), on a nécessaire-
ment A (Neumann) < Ay (Dirichlet).

9.2 Espaces de fonctions continues et espaces de Holder
9.2.1 Définition et propriétés utiles

Remarque importante : La topologie d’'un espace normé X (plus généralement d’un espace métri-
sable) est entiérement déterminée par ses suites convergentes (topologie séquentielle). Soit (Y, ©) un
espace topologique, pas nécessairement normé ou métrisable.

Une application f: (X,|.]|x) — (Y, ©) est continue en x € X si pour toute suite (x,,) de X conver-
geant vers x dans X (i.e |z, — z||x — 0), la suite (f(x,)) converge vers f(z) dans Y. Ce résultat
reste valable pour n’importe quel espace topologique X dont la topologie est définie par ses suites
convergentes.

Définition :
1. Pour tout entier naturel m, C™(Q) = {¢ € C(Q);V|a| < m, DY € C(Q)}. On a C°(Q) = C(Q).
2. C*(Q) = () C"(Q)
meN
3. Co(Q) ={¢ € C(Q); Supp ¢ est compact dans Q}

On note D(Q2) = C3°(Q).

Nous allons préciser maintenant quelques propriétés de I'espace C(X), espace des fonctions continues
sur X a valeurs dans K =R ou C, ou (X, dx) est un espace métrique compact. Un outil trés utile sera
explicité : le théoréme d’Arzela-Ascoli.

Théoréme (de prolongement des applications uniformément continues) : Soit ¢ € C(X) bornée et

uniformément continue sur €. Alors ¢ posséde une unique extension bornée et continue sur Q. On la
notera encore ¢.
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Définition : Fixons un réel o tel que 0 < o < 1.

O Q) == {u eC(Q);H, := SUPM < OO}

On le munit de la norme :
[ulleo.a @) = lullcoqm + Ha

Notation : On notera aussi s’il n’y a pas risque de confusion C°T(2) pour C%*(Q).
Proposition : (COJ”J“( ) - ||C0+Q(Q)> est un espace de Banach.

Proposition : Si Q) est borné, on a :
Gy (2) € ™) = Lip(Q) C C*T(Q2) c C°(Q)
Grosso modo, entre les fonctions Lipschitziennes et les fonctions continues, il y a les espaces de Hélder.
Définition : Par récurrence, on définit les C*+(Q) par :
CHr(Q) = {u € C*(Q); D'u € C°F*(Q); Vi tel que |i| = k}
muni de la norme 4
lullgrsamy = lllery + D Ha(D'u)
li|=k
Proposition : (C***(Q), [.[lcr+a(my) est un espace de Banach.
Notation : On écrira [|ul|kta pour [[ullcrsa g

Un outil utile : le théoréme d’Arzela-Ascoli.

Dans la suite (X, d) désigne un espace métrique compact et H C C(X). En particulier, X est séparable
et précompact.

Définition :
1. H C C(X) est dite équicontinue en zy € X si :
VYe>03n>0Ve € X d(zg,x) <n=VheH|h(x)— h(z)| <e¢
2. H est dite équicontinue si elle est équicontinue en tout point de X.
3. H est dite uniformément équicontinue si :

Ve>03dn>0Ve,ye X d(z,y) <n=VYheH |h(z)— h(y)| <e

Proposition : Une partie de C(X) est équicontinue si et seulement si elle est uniformément équicon-
tinue.

Exemples :
1. Toute partie finie de C(X) est équicontinue.
2. Toute partie d’une partie équicontinue est équicontinue.

3. Toute union finie de parties équicontinues est équicontinue.
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4. Une suite uniformément convergent de fonctions de C(X) forme une partie équicontinue de

C(Xx).

5. Si C' > 0, alors I'ensemble des fonctions lipschitziennes de X dans K, de rapport C, est équi-
continu.

Proposition : Soient (f,) une suite équicontinue de C(X) et D une partie dense de X. Si Vo € D,
la suite (f,(x)) converge, alors la suite de fonctions (f,) converge uniformément vers une fonction

fec(Xx).

Théoréme d’Arzela-Ascoli : Une partie de C(X) est relativement compacte (i.e d’adhérence com-
pacte) dans C(X) si et seulement si :

— Elle est bornée

— Elle est équicontinue

Remarque : Soit H C C(X) une partie équicontinue. Les propositions suivantes sont équivalentes :
1. H est bornée.
2. Tl existe D C X dense telle que Y € D, {f(x)}sen est une partie bornée de K.

9.2.2 Estimations dans les espaces de Hélder

Proposition : () est supposé borné.
1. Si0 < a<B<1,alors COHP(Q) — CO+(Q) i.e IC > 0 Vu € COTA(Q) |Julla < Clluls.

2. 810 < a < B <1, alors I'injection précédente est compacte, i.e de toute suite bornée de COTA(Q),
on peut extraire une sous-suite convergente dans CO+((Q).

Théoréme (d’injections) : Soit k e N*et 0 < v < f < 1.
1. C*B(Q) — C*(Q), avec injection compacte si Q borné.

2. CFA(Q) — C*+*(Q), avec injection compacte si €2 borné.
Si €2 est convexe, on a aussi :

3. CF1(Q) — C**(Q), avec injection compacte si 2 borné.

9.3 Espaces de Sobolev
9.3.1 Définitions et propriétés utiles

On rappelle de maniére succinte des résultats sur les espaces de Sobolev que nous pouvons trouver
dans Adams[1], Kavian[1], Hirsch-Lacombe[1] ou encore Zuily[1].

) désigne un ouvert de RN et1<i<N.

Définition : Une fonction u € L] () a une i-éme dérivée faible dans L (2) s’il existe une fonction

fi € LL,.(Q2) telle que pour tout ¢ € C°(£2) on ait :

loc
/Quam - —/Q fid
ou

Avec f; donnée par la relation ci-dessus, on pose 0;u :=

fi-

6xi =

Pour un multi-indice & = (aj,a2,...,ax) € NV on pose |a| = a; + az + -+ + ay et 9% =
(o5 Fale ) N
011057 ... O u.
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Définition : Pour 1 < p < oo, on pose
W™P(Q) := {u € LP(Q);Va € NV |a| < m, 0% € LP(Q)}

que 'on munit de la norme

1/p
lllmp o= | > N0%ull
la] <m
avec
1/p
full = ey = { [ )
Q

Proposition :

1. W™P(Q) est un espace de Banach
2. Si 0 < m < n, linjection W™P(Q) C W™P(Q) est continue.
1/p

3. En posant || D™ul|, := Z [0%ul| , on obtient une semi-norme sur W™ (),et lorsque
|al=m

2 est suffisamment régulier, u — ||ul|, + ||D™ul|, définit une norme équivalente & ||. || p.

Remarque : on note couramment H™ () 'espace W™2(Q), I'espace des énergies, que I'on peut égale-
ment définir pour des exposants m non entiers & l’aide de la transformée de Fourier.

Notations : Pour une fonction u quelconque, on note u* = max(u,0) et v~ = max(—u,0), de sorte
queu=ut—u" et |ul =ut +u".

1 1
Proposition : Soient p et p’ des exposants conjugués i.e tels que — + — = 1. Alors :
p p

L w=mr = (W)
2. H™™ = (Hy)
Proposition :
1. Soit u € W1P(Q), p < oo. Si le support de u est compact dans Q, alors u € Wol’p(Q).
2. Siue WhP(Q)NC(Q) et upg = 0, alors u € Wy ?(Q).

) 1, . u sur € .
3. Soit u € WP (Q) et 4 = {0 sur RN\ {0} Alors 4 € WP(RY).

Proposition (Composition) : Soit F' € C}(R,R) avec F(0) =0 et s%p\F/| <oo 1<p<oo.
1. Siue WhP(Q), alors F(u) € WHP(Q) et VF(u) = F'(u)Vu pp.
2. Si p < oo, alors u + F(u) continue de W1P(Q) dans WP (Q).
3. Sip < oo et ue W,P(Q), alors F(u) € WyP(Q).
Théoréme :
1. Siue WHP(Q), alors si u™ € WHP(Q).

Vusiu>0 . :
2. Ona Vut = {0 0 <0 . Si p < oo, alors u — ut est continue.
siu <

3. Sip < oo et siue WP(Q), alors ut € WiP(Q).

Remarques : On a des résultats analogues pour u™ et |u] :
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1 Yu- — —Vusiu<0
O0siu<O

—Vusiu<0
2. Vjul=10siu<0
Vusiu>0
En particulier, |V|u|| = |Vul.

Corollaire : Soient 1 < p < 0o, v € Wy, u € W2, Si [u| < |v], alors u € W™,

Corollaire : Soient 1 <p < oo, M € Ll (), VM € L?(Q), M~ < L*(Q).
Vu—VMsiu>M

1. Siue WHP(Q), alors (u — M)t € WLP(Q) et V(u— M)" = .
Osiu< M

(u — M)T continue

Si M~ e Wy et siue WP alors (u— M)t e Wy*

Remarque : On peut appliquer ce résultat avec M constante positive ou nulle.

2. Sip < o0, alors {

9.3.2 Estimations dans les espaces de Sobolev

Théoréme (d’injection de Sobolev) : Soit m > 1 un entier et 1 < p < co.
pN

1. Si mp < N, on pose p*™ := —
N —mp

. Alors on a une injection continue de W™P(RY) dans

LP"" (RN) : il existe une constante C(m,p, N) > 0 telle que ||ul|,=m < C(m,p, N)||D™ul|,.
2. Si mp = N, pour tout ¢ > p il existe une constante C(m,q, N) > 0 telle que pour tout

u € W™P(RN) on ait |ull, < C(m,q, N)|[ulmp-

N
3. Simp > N, en posant a := 1 — —, on a W™P(RY) C Cg’a(RN) et il existe une constante
mp

C(m,p, N) telle que pour tout u € W™P(RM) on ait I'inégalité de Sobolev-Morrey :
Va,y € RY, u(z) = u(y)| < C(m,p, N)|[ullmplz —y|*

4. Si Q est un ouvert de classe C™ a frontiére bornée, les propriétés 2 et 3 sont vraies en remplacant
RY par Q et la constante C' par une constante C(m, p,2), alors que si mp < N, il existe une

constante C(m, p, Q) telle que :

[llpm < C(m,p, D)|[tt]|m.p,0

Les derniéres inégalités entrainent ’existence d’injections continues des espaces de Soboloev WP ()

dans des espaces L4(2) ou des espaces de Holder C%.

Théoréme (Inégalités de Gagliardo-Nirenberg) : Soient  un ouvert de RV, 1 <p < Net 1 <7 < oo.

Il existe une constante C(p, 6, N) telle que pour tout u € W () N L™(Q) on ait :
lully < Cllullz= IIVully

oul<f#<1l,avecd >0sip=N>2,et:

1_0 1 1 +1—9
q_ p N r

On rappelle que Wj"?(Q2) := C(Q2) dans W™P((Q).

Théoréme (de Rellich-Kondrachov) : Soient 2 un ouvert borné de RY et p > 1.
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N
1. Sip < N, alors pour tout g > 1 tel que g < p* := NP;’ I'injection de Wol’p(Q) dans L9(02) est
-p
compacte.

2. Si p = N, alors pour tout ¢ < oo, I'injection de Wol’N(Q) dans L?(Q)) est compacte.

3.S8ip>NetO<a<1-— %, alors I'injection de W, (€2) dansC%*(Q) est compacte.

4. Lorsque ) est un ouvert borné de classe C', les résultats ci-dessus sont vrais en remplacant
Wy'P () par WP (Q)

5. Lorsque N = 1, l'injection de W11(Q) dans C(f) est continue et non compacte, mais toute

suite bornée (uy), contient une sous-suite (u,,); telle que pour tout = € €2, la suite (u,,(x));
est convergente.

Théoréme (Inégalité de Poincaré) : On suppose que 2 est un ouvert borné au moins dans une direction.
Alors il existe une constante C' > 0 telle que pour tout u € W, "* () :

[ull, < ClIVullp
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