
Yannick Le Bastard

sous la direction de Christian Le Merdy

DIAGONALES DANS UNE ALGEBRE UNITALE
ET PRODUIT DE HAAGERUP

8 juillet 2008



Table des matières

1 Produits tensoriels 4
1.1 Produit tensoriel d’espaces vectoriels . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Produit tensoriel projectif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Produit de Haagerup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Diagonales dans une algèbre unitale 10
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3.1 Algèbres possédant une diagonale . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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INTRODUCTION :

Le présent mémoire a pour but d’étudier la notion de diagonale dans une algèbre unitale ainsi
que quelques propriétés particulières du produit tensoriel de Haagerup. Ces deux notions d’abord
définies séparément, seront confrontées dans la dernière partie de ce travail.

La première partie de ce mémoire est essentiellement algébrique. On établit quelques résultats
sur les diagonales dans une algèbre unitale, donnant des conditions suffisantes d’existence comme
des contre-exemples : toutes les algèbres unitales de dimension finie n’ont pas nécessairement
de diagonales. Nous obtenons en résultat principal la description de toutes les algèbres unitales
admettant (au moins) une diagonale.

La seconde partie de ce travail repose sur la notion de produit tensoriel de Haagerup. Après
avoir défini une norme sur le produit tensoriel de Haagerup de deux espaces d’opérateurs, on
étudie quelques unes de ses propriétés et on définit la notion de h-diagonale. On obtient alors
l’analogue d’un des théorèmes obtenus dans la première partie (cette fois-ci, algèbre et topologie
étant intimement mêlés).
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Chapitre 1

Produits tensoriels

Dans ce chapitre, nous abordons les bases nécessaires à l’ étude des diagonales dans une algèbre
unitale A. Nous définissons d’abord la notion purement algébrique de produit tensoriel de deux
espaces vectoriels et nous étudions brièvement ses principales propriétés. La propriété universelle
à la base de sa construction est le pivot de nombreux résultats obtenus ultérieurement. Nous
définissons également le produit tensoriel projectif, que nous mettrons en confrontation avec le
produit de Haagerup, lequel, comme nous le verrons au cours de cette étude, possède des pro-
priétés particulières.

1.1 Produit tensoriel d’espaces vectoriels

Théorème-définition 1-1-1 : Soient E, F et G trois K−espaces vectoriels (K = R ou C). Il
existe un espace vectoriel X et une application bilinéaire Θ : E×F → X (i) telle que pour toute
application bilinéaire B : E × F → G, il existe une unique application linéaire f : X → G telle
que f ◦ Θ = B (ii). Le couple (X,Θ) vérifiant la propriété universelle précédente : (i) et (ii) est
unique à un isomorphisme près, dans le sens où si (X,Θ) et (X ′,Θ′) vérifient (i) et (ii), alors il
existe un isomorphisme α de X sur X’ tel que α ◦Θ = Θ′.
On appelle produit tensoriel de E et F tout couple (X,Θ) vérifiant (i) et (ii). On note X = E⊗F
et Θ = ⊗.

remarque 1-1-2 : Ainsi X = E ⊗ F est défini à isomorphisme près. Selon le contexte, on
en choisira une réalisation commode.

Proposition 1-1-3 : Si E et F sont deux K−espaces vectoriels de bases respectives (ei)i∈I et
(fj)j∈J , alors (ei ⊗ fj)(i,j)∈I×J est une base de E ⊗ F

Proposition 1-1-4 : E ⊗ F possède les propriétés suivantes :
(1) { x⊗ y ; x ∈ E ; y ∈ F } engendre E ⊗ F .
(2) Pour tout λ ∈ K et pour tout (x, y) ∈ E × F , on a λ(x⊗ y) = (λx)⊗ y = x⊗ (λy)

(3) Tout élément de E ⊗ F est de la forme σ =
n∑
k=1

xk ⊗ yk, où xk et yk appartiennent respecti-

vement à E et F.

Définition 1-1-5 : Les éléments de E⊗F s’appellent des tenseurs. Un élément de la forme a⊗ b
s’appelle un tenseur élémentaire.
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remarque 1-1-6 : Si dim E = n et dim F = p, alors dim (E ⊗ F ) = np
Pour la démonstration des résultats précédents, on pourra consulter [ABM,77, p135-142]

Une réalisation commode du produit tensoriel de deux espaces vectoriels est donnée par la
construction suivante :

Proposition 1-1-7 : Soient E et F deux espaces vectoriels sur K. On note E† le dual algébrique
de E. Alors E ⊗ F s’identifie à un sous-espace de L(E†, F ), l’espace des applications linéaires de

E† vers F, via l’injection Ψ :


E ⊗ F −→ L(E†, F )
n∑
k=1

xk ⊗ yk 7−→ u
où pour tout forme linéaire ϕ sur E, on a

u(ϕ) =
n∑
k=1

ϕ(xk)yk.

Corollaire 1-1-8 : (1) Soit σ =
n∑
k=1

xk ⊗ yk ∈ E ⊗ F . Alors σ = 0 si et seulement si

n∑
k=1

ϕ(xk)yk = 0 pour tout ϕ ∈ E†

(2) De même σ = 0 si et seulement si
n∑
k=1

ϕ(xk)ψ(yk) = 0 pour tout ϕ ∈ E† et ψ ∈ F †

remarque 1-1-9 : Le résultat précédent a une formulation plus précise si E et F sont munis
d’une structure topologique. Plus exactement :
Soient E et F deux espaces de Banach . On note E∗ le dual topologique de E. Alors E ⊗ F
s’identifie à un sous-espace de B(E∗, F ), l’espace des applications linéaires continues de E∗ vers

F, via l’injection Ψ :


E ⊗ F −→ B(E∗, F )
n∑
k=1

xk ⊗ yk 7−→ u
où pour tout ϕ ∈ E∗, on a u(ϕ) =

n∑
k=1

ϕ(xk)yk.

En fait, Im(Ψ) est constitué du sous-espace RF∗(E
∗, F ) des applications linéaires de rang fini qui

sont continues de E∗ muni de la topologie préfaible sur F muni de la topologie de la norme. [LM,07]

La propriété universelle du produit tensoriel permet d’obtenir des identifications très utiles en
pratique. En voici trois :

Proposition 1-1-10 : (1) Soient E1 et F1 des sous-espaces de E et F. Alors on peut réaliser
E1 ⊗ F1 comme un sous-espace de E ⊗ F .
(2) Si E = E1 ⊕ E2 et F = F1 ⊕ F2, alors :

E ⊗ F = (E1 ⊗ F1)⊕ (E1 ⊗ F2)⊕ (E2 ⊗ F1)⊕ (E2 ⊗ F2)

résultat qui se généralise aisément par récurrence.
(3) Soient S ∈ B(E,E ′) et T ∈ B(F, F ′). D’après la propriété universelle du produit tensoriel, il
existe une unique application linéaire S ⊗ T : E ⊗ F −→ E ′ ⊗ F ′ telle que pour tout x ∈ E et
pour tout y ∈ F , (S ⊗ T )(x⊗ y) = S(x)⊗ T (y).

Lemme 1-1-11 : (1) Soit u ∈ X⊗Y . Posons u =
n∑
i=1

xi⊗yi. Alors on peut écrire u sous la forme
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u =
m∑
i=1

x′i ⊗ y′i, où les familles {x′i} et {y′i} sont libres.

(2) Si de plus, u =

p∑
j=1

x̃j ⊗ ỹj et que les familles {x̃j, 1 6 j 6 p} et {ỹj, 1 6 j 6 p} sont libres

alors :
< {x̃j, 1 6 j 6 p} >=< {x′i, 1 6 i 6 m} >

et
< {ỹj, 1 6 j 6 p} >=< {y′i, 1 6 i 6 m} >

Démonstration : (1) Soit E =< {x1, · · · , xn} > et F =< {y1, · · · , yn} >. Quitte à réordonner
les yi, on peut supposer que pour un k 6 n {y1, · · · , yk} est une base de F. Après avoir exprimé
yk+1, · · · , yn comme combinaison linéaire de y1, · · · , yk, on peut réécrire u sous la forme u =
k∑
i=1

x′i ⊗ yi, avec x′i ∈ E. Quitte à réindexer, on peut supposer que {x′1, · · · , x′m} est une base

de < {x′1, · · · , x′k} >. u se réécrit alors u =
m∑
i=1

x′i ⊗ y′i. On vérifie aisément que les familles

{x′1, · · · , x′m} et {y′1, · · · , y′m} sont libres.

(2) La famille {x′i, 1 6 i 6 m} étant libre, il existe m formes linéaires fi : X −→ C telles que

fi(x
′
j) = δij, i, j = 1 · · ·m. Soit fi⊗ 1 : X ⊗ Y −→ Y . On a (fi⊗ 1)(u) =

p∑
k=1

fi(x̃k)ỹk. Il s’ensuit

que y′i ∈< {ỹ1, · · · , ỹp} >. Les autres cas se traitent de la même manière.

Définition 1-1-12 : De ce qui précède, on en déduit m = p. m s’appelle le rang de u.

1.2 Produit tensoriel projectif

Proposition-Définition 1-2-1 : Soient E et F deux espaces de Banach et σ ∈ E ⊗ F . Il

existe des familles finies (xk) de E et (yk) de F telles que σ =
n∑
k=1

xk ⊗ yk.

On pose ||σ||∧ = inf
{ ∑

k

||xk|| · ||yk|| ; σ =
n∑
k=1

xk ⊗ yk, xk ∈ E, yk ∈ F
}

. Alors || · ||∧ est une

norme sur E ⊗ F , appelée norme tensorielle projective.

Démonstration : cf exercice 5 du chapitre 4 [LM,07]

Définition 1-2-2 : Soit E⊗̂F le complété de E ⊗ F pour || · ||∧. C’est par définition le produit
tensoriel projectif de E et F.

Proposition 1-2-3 : ∀(x, y) ∈ E × F, ||x⊗ y||∧ = ||x||∧ · ||y||∧

Proposition 1-2-4 : Soient S : E −→ E ′ et T : F −→ F ′ des opérateurs. Alors il existe un
unique opérateur S⊗̂T : E⊗̂F −→ E ′⊗̂F ′ tel que (S⊗̂T )(x⊗ y) = S(x)⊗ T (y) pour tout x ∈ E
et y ∈ F . De plus, ||S⊗̂T || = ||S|| · ||T ||.
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remarque 1-2-5 : La norme du produit tensoriel projectif ”passe très mal” aux sous-espaces.
Dit autrement, si W est un sous-espace de l’espace de Banach E, de sorte que W ⊗ F est un
sous-espace de E⊗F , alors la norme induite sur W ⊗F par la norme || · ||∧, n’est pas en général,
la norme projective sur W ⊗ F . Pour plus, de détails, cf [R,02, p18].

Ces limitations peuvent être contournées en introduisant une nouvelle norme sur E⊗F , plus faible
que la norme tensorielle projective et jouissant de propriétés spéciales, inhérentes à elle-même.
Nous y reviendrons en détail dans le chapitre 4.

1.3 Produit de Haagerup

Proposition-Définition 1-3-1 : Soient E et F deux espaces d’opérateurs et σ ∈ E ⊗ F .

Il existe des familles finies (xk) de E et (yk) de F telles que σ =
∑
k

xk ⊗ yk.

On pose ||σ||h = inf
{ ∥∥∥∑

k

xkx
∗
k

∥∥∥ 1
2 ·
∥∥∥∑

k

y∗kyk

∥∥∥ 1
2

; σ =
∑
k

xk ⊗ yk, xk ∈ E, yk ∈ F
}

. Alors

|| · ||h est une norme sur E ⊗ F , appelée norme tensorielle de Haagerup.

Lemme 1-3-1-1 : Soient a, b deux réels positifs. a
1
2 b

1
2 =

1

2
inf {λa+ λ−1b, λ > 0}

Demonstration : Si a = 0 ou b = 0, le résultat est clair. Si a, b > 0, λa + λ−1b − 2
√
ab =

λ−1(λ
√
a −
√
b)2 > 0, ceci pour tout λ > 0. D’où a

1
2 b

1
2 6

1

2
inf {λa + λ−1b, λ > 0}. Choisissant

λ =

√
b

a
, on obtient l’égalité voulue.

Démonstration (du 1-3-1) :

Il est clair que pour tout λ ∈ C et pour tout u ∈ E ⊗ F on a ‖λu‖h = |λ|‖u‖h

Soient u et v deux éléments de E ⊗ F . Soit ε > 0 fixé. Par définition de ‖ · ‖h, il existe des

représentations de u et de v : u =
∑
j

xj ⊗ yj et v =
∑
k

zk ⊗ wk telles que :

∥∥∥∑
j

xjx
∗
j

∥∥∥ 1
2
∥∥∥∑

j

y∗j yj

∥∥∥ 1
2 − ε

2
6 ‖u‖h 6

∥∥∥∑
j

xjx
∗
j

∥∥∥ 1
2
∥∥∥∑

j

y∗j yj

∥∥∥ 1
2

(1)

et ∥∥∥∑
k

zkz
∗
k

∥∥∥ 1
2
∥∥∥∑

k

w∗kwk

∥∥∥ 1
2 − ε

2
6 ‖v‖h 6

∥∥∥∑
k

zkz
∗
k

∥∥∥ 1
2
∥∥∥∑

k

w∗kwk

∥∥∥ 1
2

(1′)

D’après le lemme 1-3-1-1, il existe λ > 0 et µ > 0 tels que :

1

2

{
λ
∥∥∥∑

j

xjx
∗
j

∥∥∥+ λ−1
∥∥∥∑

j

y∗j yj

∥∥∥}− ε

2
6
∥∥∥∑

j

xjx
∗
j

∥∥∥ 1
2
∥∥∥∑

j

y∗j yj

∥∥∥ 1
2

(2)

et
1

2

{
µ
∥∥∥∑

k

zkz
∗
k

∥∥∥+ µ−1
∥∥∥∑

k

w∗kwk

∥∥∥}− ε

2
6
∥∥∥∑

k

zkz
∗
k

∥∥∥ 1
2
∥∥∥∑

k

w∗kwk

∥∥∥ 1
2

(2′)
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Combinant (1) et (2) on obtient :

1

2

{
λ
∥∥∥∑

j

xjx
∗
j

∥∥∥+ λ−1
∥∥∥∑

j

y∗j yj

∥∥∥} 6 ‖u‖h + ε (3)

De même on a avec (1’) et (2’) :

1

2

{
µ
∥∥∥∑

k

zkz
∗
k

∥∥∥+ µ−1
∥∥∥∑

k

w∗kwk

∥∥∥} 6 ‖v‖h + ε (3′)

Remarquons à présent que

u+ v =
∑
j

(
√
λxj)⊗ (

1√
λ
yj) +

∑
k

(
√
µzk)⊗ (

1
√
µ
wk)

D’où

‖u+ v‖h 6
∥∥∥λ∑

j

xjx
∗
j + µ

∑
k

zkz
∗
k

∥∥∥ 1
2
∥∥∥λ−1

∑
j

y∗j yj + µ−1
∑
k

w∗kwk

∥∥∥ 1
2

Or pour a, b > 0
√
ab 6

1

2
(a+ b), d’où :

‖u+ v‖h 6
1

2

{∥∥∥λ∑
j

xjx
∗
j + µ

∑
k

zkz
∗
k

∥∥∥+
∥∥∥λ−1

∑
j

y∗j yj + µ−1
∑
k

w∗kwk

∥∥∥}
D’où

‖u+ v‖h 6
1

2

{
λ
∥∥∥∑

j

xjx
∗
j

∥∥∥+ λ−1
∥∥∥∑

j

y∗j yj

∥∥∥}+
1

2

{
µ
∥∥∥∑

k

zkz
∗
k

∥∥∥+ µ−1
∥∥∥∑

k

w∗kwk

∥∥∥}
Soit, utilisant (3) et (3’) :

‖u+ v‖h 6 ‖u‖h + ‖v‖h + 2ε

ε étant arbitraire, l’inégalité triangulaire est démontrée.

Soit u ∈ E⊗F tel que ‖u‖h = 0. u s’écrit u =
∑
k

xk⊗yk (somme finie). Soient φ ∈ E∗ et ψ ∈ F ∗.

Par Cauchy-Schwarz, ∣∣∣∑
k

φ(xk)ψ(yk)
∣∣∣ 6 (∑

k

|φ(xk)|2
) 1

2
(∑

k

|ψ(yk)|2
) 1

2

Mais φ est une forme linéaire continue, donc est complètement bornée, avec ‖φ‖cb = ‖φ‖. Idem
pour ψ. Il s’ensuit que :(∑

k

|φ(xk)|2
) 1

2
6 ‖φ‖

∥∥∥∑
k

xkx
∗
k

∥∥∥ 1
2

et
(∑

k

|ψ(yk)|2
) 1

2
6 ‖ψ‖

∥∥∥∑
k

y∗kyk

∥∥∥ 1
2

Par conséquent, ∣∣∣∑
k

φ(xk)ψ(yk)
∣∣∣ 6 ‖φ‖‖ψ‖∥∥∥∑

k

xkx
∗
k

∥∥∥ 1
2
∥∥∥∑

k

y∗kyk

∥∥∥ 1
2
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Passant à l’inf sur l’ensemble des représentations de u, et se servant du fait que ‖u‖h = 0, on en

déduit que
∑
k

φ(xk)ψ(yk) = 0 pour tous φ ∈ E∗ et ψ ∈ F ∗. D’où u = 0 d’après le corollaire

1-1-8. Ce qui achève la preuve. �

Définition 1-3-2 : Soit E ⊗h F le complété de E ⊗ F pour la norme || · ||h. C’est par définition
le produit de Haagerup de E et F.

Notation : Si l’on note x = (x1, ..., xn) et y = (y1, ..., yn), on a :

||σ||h = inf
{
||x||

1
2 · ||ty||

1
2 ; σ =

n∑
k=1

xk ⊗ yk, xk ∈ E, yk ∈ F, n ∈ N∗
}

Identifiant x un vecteur ligne à une matrice X de M1,n(E) et ty à une matrice Y de Mn,1(F ) ce
qui précède se réécrit :

||σ||h = inf
{
||X||

1
2 · ||Y ||

1
2 ; σ =

n∑
k=1

xk ⊗ yk, xk ∈ E, yk ∈ F, n ∈ N∗
}

les xk et yk désignant les composantes respectives de X et Y .
On écrira σ = X � Y pour plus de lisibilité.

remarque 1-3-4 : (1) Contrairement au produit tensoriel projectif, si E1 ⊂ E et F1 ⊂ F , la
norme d’un élément dans E1⊗F1 cöıncide avec sa norme induite dans E⊗F . Supposons que E et
F sont des espaces d’opérateurs sur le même espace de Hilbert H, on peut regarder E⊗hF comme
un sous-espace de B(H)⊗hB(H). [S, p165] Cette injection est une isométrie [ASM, 93, p113]. On
dit que || · ||h est injective.
(2) on peut remarquer que B(H)⊗h B(H) est une algèbre de Banach pour l’une quelconque des
multiplications suivantes : (a⊗ b)(c⊗ d) = ac⊗ bd, ac⊗ db, ca⊗ bd, ca⊗ db.

Proposition 1-3-5 : La norme du produit tensoriel projectif est plus forte que celle du produit
de Haagerup.
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Chapitre 2

Diagonales dans une algèbre unitale

Ici commence l’étude plus précise de la notion d’algèbre unitale et de diagonale. Le cadre bien
que purement algébrique, est néanmoins suffisant pour obtenir des résultats importants, liés à
la notion de dérivation. Le lien étroit entre diagonale dans une algèbre unitale et le fait qu’elle
soit de dimension finie sera abordé au chapitre suivant. Nous définissons ici la notion de dia-
gonale et en donnons quelques exemples. Il apparâıt que toutes les algèbres unitales, même de
dimension finie, n’ont pas de diagonale. Le fait qu’une algèbre unitale admette une diagonale est
donc une propriété particulière qui, nous le verrons, caractérise les C?−algèbres de dimension finie.

2.1 Diagonales

Définition 2-1 : Soit A une algèbre unitale (on notera 1 l’unité de A). On note p : A⊗A −→ A

l’unique application linéaire induite par la multiplication, i.e. p
(∑

k

ak ⊗ bk
)

=
∑
k

akbk, pour

tout
∑
k

ak ⊗ bk ∈ A ⊗ A (la somme étant finie). Etant donné u =
∑
k

ak ⊗ bk ∈ A ⊗ A et

c ∈ A, on note cu =
∑
k

(cak)⊗ bk et uc =
∑
k

ak ⊗ (bkc). Par définition, une diagonale sur A

est un élément u ∈ A⊗ A tel que p(u) = 1 et cu = uc pour tout c ∈ A.

2.2 Isomorphismes et diagonales

Proposition 2-2 : Soient A et B deux algèbres unitales isomorphes. Si A admet une diagonale,
alors B en admet une également.

Démonstration : Soit Φ un isomorphisme de A sur B. C’est un isomorphisme d’algèbres unitales,

donc ∀(a, b) ∈ A × A, Φ(ab) = Φ(a)Φ(b) et Φ(1) = 1. Soit u =
n∑
k=1

ak ⊗ bk une diagonale sur A,

(ak, bk ∈ A). Posons v =
n∑
k=1

Φ(ak) ⊗ Φ(bk) ∈ B ⊗ B. Notant toujours p l’application linéaire

induite par la multiplication, p(v) =
n∑
k=1

Φ(ak)Φ(bk) =
n∑
k=1

Φ(akbk) = Φ
( n∑
k=1

akbk

)
= Φ(1) = 1.
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Soit d ∈ B. Il existe (un unique) c ∈ A tel que d = Φ(c). Mais alors dv =
n∑
k=1

dΦ(ak) ⊗ Φ(bk) =

n∑
k=1

Φ(c)Φ(ak)⊗ Φ(bk) =
n∑
k=1

Φ(cak)⊗ Φ(bk).

Utilisant les notations de la remarque 1-2-4, on a

dv =
n∑
k=1

(Φ⊗ Φ)(cak ⊗ bk)

d’où dv = (Φ⊗ Φ)
( n∑
k=1

cak ⊗ bk
)

= (Φ⊗ Φ)
( n∑
k=1

ak ⊗ bkc
)

(comme u diagonale), soit

dv =
n∑
k=1

(Φ⊗Φ)(ak⊗bkc) =
n∑
k=1

Φ(ak)⊗Φ(bkc) =
n∑
k=1

Φ(ak)⊗Φ(bk)Φ(c) =
n∑
k=1

Φ(ak)⊗Φ(bk)d = vd

Donc v est une diagonale sur B.

2.3 Exemples de diagonales

2.3.1 Diagonales sur l∞N

On rappelle que l∞N est une C?− algèbre, pour le produit et l’involution définis respectivement
par : (a1, · · · , aN) · (b1, · · · , bN) = (a1b1, · · · , aNbN) et (a1, · · · , aN)∗ = (a1, · · · , aN). La norme
est celle du sup : ||(a1, · · · , aN)||∞ = max {|ai|, 1 6 i 6 N}. On note {ei}16i6N la base canonique
de l∞N , où ei désigne l’élément (0, · · · , 1, · · · , 0), le 1 étant situé en ieme place. l∞N est unitale,

d’unité
N∑
i=1

ei (que l’on notera 1). On vérifie facilement que p(ei ⊗ ej) = δijei(= δijej)

Théorème 2-3-1 : l∞N a une unique diagonale. C’est u =
N∑
i=1

ei ⊗ ei.

Démonstration : D’après la remarque ci-dessus, on a directement que p(u) = 1. De plus,

∀a ∈ l∞N , au =
N∑
i=1

(aei)⊗ ei =
N∑
i=1

ai(ei ⊗ ei) =
N∑
i=1

ei ⊗ (eia) = ua

Donc u est une diagonale sur l∞N . Vérifions que c’est la seule.

Soit u une diagonale de l∞N . Comme {ei ⊗ ej} est une base de l∞N ⊗ l∞N , on peut écrire

u =
N∑

i,j=1

λij(ei ⊗ ej)

Mais alors p(u) =
N∑

i,j=1

λijδijei =
N∑
i=1

λiiei. Or u est une diagonale, donc p(u) = 1. Comme

{ei}16i6N est une base de l∞N , alors pour tout i = 1, · · ·N λii = 1 (1)
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Toujours par le fait que u soit une diagonale de l∞N , on a :

∀ l = 1, · · · , N elu = uel

c’est-à-dire :
N∑

i,j=1

λij(elei)⊗ ej =
N∑

i,j=1

λijei ⊗ (ejel).

soit

∀ l = 1, · · · , N
N∑
j=1

λljel ⊗ ej =
N∑
i=1

λilei ⊗ el

Comme {ei ⊗ ej}16i,j6N est une base de l∞N ⊗ l∞N , on en déduit que :

∀j 6= l λlj = 0 (2)

Combinant (1) et (2), on obtient que λij = δij. D’où

u =
N∑

i,j=1

δij(ei ⊗ ej) =
N∑
i=1

ei ⊗ ei

Ce qui prouve le résultat annoncé. �

2.3.2 Diagonales sur Mn

On rappelle que Mn est une algèbre unitale. Une base de Mn est constituée des matrices Eij
constituées de 0 sauf à l’intersection de la ieme ligne et de la jeme colonne où il y a un 1.

Théorème 2-3-2 : L’algèbre Mn des matrices complexes de taille n × n a pour diagonales les

éléments de la forme u =
n∑

i,j,k=1

bkjEij ⊗ Eki, où
n∑
j=1

bjj = 1.

Démonstration : on utilisera constamment le résultat suivant : EijEkl = δjkEil
Soit u de la forme annoncée.

p(u) =
∑
i,j,k

bkjEijEki =
∑
i,j,k

δjkbkjEii =
∑
i,j

bjjEii =
(∑

j

bjj

)(∑
i

Eii

)

Sachant que
∑
j

bjj = 1 et
∑
i

Eii = 1 (l’unité de Mn : ici 1 désigne In), on a p(u) = 1.

∀p, q = 1, · · · , n Epqu =
∑
i,j,k

bkj(EpqEij)⊗ Eki

soit
Epqu =

∑
i,j,k

bkjδqiEpj ⊗ Eki =
∑
j,k

bkjEpj ⊗ Ekq

De même :

uEpq =
∑
i,j,k

bkjEij ⊗ (EkiEpq) =
∑
i,j,k

bkjδipEij ⊗ Ekq =
∑
j,k

bkjEpj ⊗ Ekq
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Ainsi,
pour tout p, q = 1, · · · , n Epqu = uEpq.

{Epq}16p,q6n formant une base de Mn, on en déduit que ∀a ∈ Mn au = ua. Donc u est une
diagonale sur Mn.

Vérifions maintenant que si u est une diagonale sur Mn, alors u est de la forme

u =
n∑

i,j,k=1

bkjEij ⊗ Eki où
n∑
j=1

bjj = 1

Soit u une diagonale de Mn. {Eij ⊗ Ekl ; 1 6 i, j, k, l 6 n} est une base de Mn ⊗Mn. On peut
donc écrire

u =
∑
i,j,k,l

aijklEij ⊗ Ekl (1)

p(u) =
∑
i,j,k,l

aijklEijEkl =
∑
i,j,k,l

aijklδjkEil =
∑
i,j,l

aijjlEil

Or p(u) = 1 =
∑
i,l

δilEil. Donc ∀(i, l)
∑
j

aijjl = δil. En particulier :

∀i
∑
j

aijji = 1 (2)

Il est remarquable que la quantité
∑
j

aijji soit indépendante de i.

D’autre part, pour tout (p,q) on a Epqu = uEpq , soit :

∀(p, q)
∑
i,j,k,l

aijkl(EpqEij)⊗ Ekl =
∑
i,j,k,l

aijklEij ⊗ (EklEpq)

i.e
∀(p, q)

∑
j,k,l

aqjklEpj ⊗ Ekl =
∑
i,j,k

aijkpEij ⊗ Ekq (3)

Via l’injection Mn ⊗Mn ↪→ B(M∗
n,Mn), l’égalité (3) devient :

∀(p, q) ∀φ ∈M∗
n

∑
j,k,l

aqjklφ(Epj)Ekl =
∑
i,j,k

aijkpφ(Eij)Ekq

Choisissant φ = Tr (la trace), on obtient :∑
j,k,l

aqjklδpjEkl =
∑
i,j,k

aijkpδijEkq

soit
∀(p, q)

∑
k,l

aqpklEkl =
∑
i,k

aiikpEkq (4)
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{Ekl ; 1 6 k, l 6 n} formant une base de Mn , on a :

∀(p, q) si l 6= q aqpkl = 0

D’après (1) on a donc u =
∑
i,j,k

aijkiEij ⊗ Eki

Utilisant (4), on a ∀k ∀(p, q) aqpkq =
∑
i

aiikp

soit en changeant d’indice :

∀i, j, k aijki =
∑
l

allkj (5) (quantité indépendante de i)

Combinant (2) et (5), posons bkj = aijki pour n’importe quelle valeur de i.

D’après (2) on a
∑
j

bjj = 1. Finalement, u s’écrit :

u =
∑
i,j,k

bkjEij ⊗ Eki

D’où le résultat. �

2.4 Toutes les algèbres unitales n’ont pas de diagonales

Proposition 2-4 : T2, la sous-algèbre de M2 des matrices triangulaires supérieures à coeffi-
cients complexes, n’a pas de diagonale.

Démonstration : Supposons par l’absurde que T2 admette une diagonale u =
n∑
k=1

ak⊗bk ; ak, bk ∈

T2 (1 6 k 6 n).
Soit T ′2 = {A ∈M2 ; ∀U ∈ T2 AU = UA} le commutant de T2.
Il est clair que 1 ∈ T ′2 donc < {1} > ⊂ T ′2.

Réciproquement, soit A =

(
α β
γ δ

)
∈ T ′2

AE11 = E11A entraine β = γ = 0.
AE12 = E12A entraine α = δ.
D’où finalement A = α1 ∈ < {1} > et T ′2 = < {1} > (1)

Soit : Φ :


M2 −→M2

T 7−→
n∑
k=1

akTbk
et pour T ∈M2 fixé ΨT :

{
M2 ×M2 −→M2

(a, b) 7−→ aTb

Φ est linéaire ; ΨT est bilinéaire, donc induit une unique application linéaire Ψ̃T : M2⊗M2 −→M2

telle que ∀(a, b) ∈M2 ×M2 Ψ̃T (a⊗ b) = aTb.
Ainsi, par linéarité de Ψ̃T on a :

Ψ̃T (u) = Φ(T ) ∀T ∈M2

Mais u est une diagonale sur T2, donc pour tout a ∈ T2 au = ua, d’où ∀a ∈ T2 Ψ̃T (au) = Ψ̃T (ua),
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soit après un bref calcul aΦ(T ) = Φ(T )a.
Ainsi, pour tout T ∈M2 Φ(T ) ∈ T ′2 (2)
Comme ak, bk ∈ T2, on vérifie aisément par le calcul que ∀k = 1, · · · , n akE11bk ∈ < {E11;E12} >,
d’où Φ(E11) ∈ < {E11;E12} >.
Mais par ce qui précède, Φ(E11) ∈ < {1} > et < {E11;E12} > ∩ < {1} >= {0}. D’où
Φ(E11) = 0. De même Φ(E22) = 0
D’où Φ(E11 + E22) = Φ(1) = 0.
Or comme u diagonale, Φ(1) = 1. Contradiction.
Donc T2 n’a pas de diagonale.

2.5 Diagonales et dérivations

Dans ce paragraphe, nous définissons la notion de dérivation et de dérivation intérieure, que
nous mettons en lien avec celle de diagonale. Il apparâıtra que A possède une diagonale si et
seulement si pour tout A−bimodule X, toutes les dérivations sont intérieures. On a ainsi une
condition nécessaire et suffisante d’existence d’une diagonale sur une algèbre unitale A.

Définition 2-5-1 : Soit X un A−bimodule. Une application δ : A −→ X est appelée une
dérivation si pour tous a, b ∈ A δ(ab) = aδ(b) + δ(a)b

Proposition-Définition 2-5-2 : Etant donné x ∈ X, l’application δ : A −→ X définie par
δ(a) = xa− ax est une dérivation. Les dérivations de cette forme sont dites intérieures.

Démonstration : Soient a, b ∈ A.

aδ(b) = a(xb− bx) = axb− abx

δ(a)b = (xa− ax)b = xab− axb

D’où
aδ(b) + δ(a)b = xab− abx = δ(ab)

Proposition 2-5-3 : A possède une diagonale si et seulement si pour tout A−bimodule X, toutes
les dérivations sont intérieures.

Démonstration : Supposons que A possède une diagonale u =
n∑
i=1

ai⊗bi. SoitX un A−bimodule

et δ : A −→ X une dérivation. Posons x =
n∑
i=1

δ(ai)bi. Soit Ψ :

{
A× A −→ X
(a, b) 7−→ δ(a)b

Ψ est bilinéaire, donc induit une unique application linéaire φ : A⊗ A −→ X telle que ∀(a, b) ∈
A⊗ A φ(a⊗ b) = δ(a)b
Comme u est une diagonale, on a ∀a ∈ A :

φ
( n∑
i=1

ai ⊗ (bia)
)

= φ
( n∑
i=1

(aai)⊗ bi
)
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D’où :
n∑
i=1

δ(ai)bia =
n∑
i=1

δ(aai)bi

Soit :

xa =
n∑
i=1

δ(aai)bi (1)

Or
n∑
i=1

δ(aai)bi =
n∑
i=1

(aδ(ai)bi + δ(a)aibi) = a

n∑
i=1

δ(ai)bi + δ(a)
n∑
i=1

aibi

Comme u est une diagonale,
n∑
i=1

aibi = 1. D’où :

n∑
i=1

δ(aai)bi = ax+ δ(a)

D’après (1) on a : xa = ax + δ(a), donc δ(a) = ax − xa. Ainsi, toutes les dérivations sont
intérieures.

Réciproquement, supposons que pour toutA−bimoduleX, toutes les dérivations soient intérieures.
Notant toujours p l’application linéaire induite par le produit sur A, posons X = Ker p. X ⊂
A ⊗ A est clairement un A−bimodule. Comme p(a ⊗ 1 − 1 ⊗ a) = a − a = 0, on peut définir
δ : A −→ X, a 7−→ a ⊗ 1 − 1 ⊗ a. Comme X est un A−bimodule, on vérifie aisément que
∀(a, b) ∈ A× A δ(ab) = aδ(b) + δ(a)b. Donc δ est une dérivation.
Par hypothèse δ est intérieure. Soit w l’élément de X tel que ∀a ∈ A δ(a) = aw − wa. Posons
u = 1⊗ 1− w.

au = a⊗ 1− aw

ua = 1⊗ a− wa

D’où
au− ua = a⊗ 1− 1⊗ a− (aw − wa)

Soit
au− ua = δ(a)− δ(a) = 0 ∀a ∈ A

w ∈ Ker p = X donc p(w) = 0. Or u = 1⊗ 1− w, d’où p(u) = 1.
Donc u est une diagonale sur A.
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Chapitre 3

Diagonales et dimension finie

Les exemples du chapitre précédent ont montré qu’une algèbre de dimension finie pouvait
avoir une ou plusieurs diagonales, mais ”être de dimension finie” n’est pas une condition suffi-
sante comme le prouve le contre-exemple de T2. Cependant, nous prouverons que si une algèbre
unitale admet une diagonale, elle est nécessairement de dimension finie. Enfin nous caractériserons
complètement les algèbres unitales possédant une diagonale, en prouvant qu’elles sont isomorphes
aux C?−algèbres de dimension finie.

3.1 Algèbres possédant une diagonale

Proposition 3-1 : Soit A une algèbre unitale possédant une diagonale. Alors A est de dimen-
sion finie.

Démonstration : Soit u =
N∑
k=1

ak⊗bk une diagonale sur A. Utilisant le résultat du lemme 1-1-11,

on peut supposer les familles {a1, · · · , aN} et {b1, · · · , bN} libres.
Démontrons que {ajbi}16i,j6N engendre A.

Comme u est une diagonale, alors ∀x ∈ A
N∑
k=1

(xak) ⊗ bk =
N∑
k=1

ak ⊗ (bkx). Or via l’injection

A⊗ A ↪→ B(A∗, A), l’égalité précédente se réécrit :

∀x ∈ A ∀φ ∈ A∗
N∑
k=1

φ(xak)bk =
N∑
k=1

φ(ak)bkx (1)

La famille {ai}16i6N étant libre, pour tout j = 1, · · · , N on peut trouver une forme linéaire
φj ∈ A∗ telle que (φj(a1), · · · , φj(aN)) = ej, où ej = (0, · · · , 1, · · · , 0), le 1 étant situé en jeme

place, i.e
∀i, j = 1, · · · , N φj(ai) = δij (2)

Mais alors

∀j = 1, · · · , N ∀x ∈ A bjx =
N∑
i=1

φj(ai)bix

D’où

ajbjx =
N∑
i=1

φj(ai)ajbix
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Sommant sur j et utilisant le fait que
N∑
j=1

ajbj = 1 (car u diagonale), il vient x =
N∑

i,j=1

φj(ai)ajbix.

Mais
N∑

i,j=1

φj(ai)ajbix =
N∑
j=1

aj

( N∑
i=1

φj(ai)bix
)

D’après (1)
N∑
j=1

aj

( N∑
i=1

φj(ai)bix
)

=
N∑
j=1

aj

( N∑
i=1

φj(xai)bi

)
Soit

x =
N∑

i,j=1

φj(xai)ajbi

Donc
x ∈ < {ajbi ; 1 6 i, j 6 N} >

et la conclusion s’ensuit. �

3.2 C?−algèbres de dimension finie

Proposition 3-2-1 : Toute C?−algèbre de dimension finie possède une diagonale.

Démonstration : Soit A une C?−algèbre de dimension finie. D’après [Ta, p50], on sait que A
est isomorphe à une C?−algèbre de la forme Mn1 ⊕ · · · ⊕MnN

. Utilisant la proposition 2-2, on est
ramené à prouver que Mn1⊕· · ·⊕MnN

possède (au moins) une diagonale. On peut donc supposer
que A = Mn1 ⊕ · · · ⊕MnN

Pour chaque 1 6 j 6 N , on a une injection canonique Mnj
⊂ A (c’est Ij : aj ∈ Mnj

7−→
(0, · · · , aj, · · · , 0)), et donc une injection canonique Mnj

⊗Mnj
⊂ A ⊗ A, que nous noterons Jj.

Pour chaque j, soit uj une diagonale de Mnj
. Pour tout a = (a1, · · · , aN) ∈ A, on a

aJj(uj) = Jj(ajuj) = Jj(ujaj) = Jj(uj)a

Posons

u =
N∑
j=1

Jj(uj)

Par ce qui précède, u ∈ A⊗ A est une diagonale de A.

Remarque 3-2-2 : la notion de C?−algèbre de dimension finie (donc unitale) apporte un plus
par rapport à celle d’algèbre unitale de dimension finie. Si toute algèbre unitale n’admet pas
nécessairement de diagonale, toute C?−algèbre en a nécessairement (au moins) une.
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3.3 Résultats principaux

Le résultat suivant précise la proposition 3-1. Nous obtiendrons comme corollaire la description
complète des algèbres unitales possédant une diagonale.

Théorème 3-3-1 : Soit A une algèbre unitale. Si A admet une diagonale, alors A est isomorphe
à une somme directe d’algèbres matricielles, i.e A ≈Mn1 ⊕ · · · ⊕MnN

On aura besoin des 2 lemmes suivants :

Lemme 3-3-1-1 : Soit A ⊂MN une sous-algèbre unitale possédant une diagonale. Alors A = A′′

(A′′ désigne le bicommutant de A).

Démonstration : Soient u =
∑
i

ai ⊗ bi une diagonale de A et φ : MN −→MN définie par :

∀T ∈MN , φ(T ) =
∑
i

aiTbi

En reprenant des arguments similaires à la démonstration de la proposition 2-4, on démontre que
φ est à valeurs dans A′. Donc pour tout S ∈ A′′ on a

∀T ∈MN ,
∑
i

SaiTbi =
∑
i

aiTbiS

Utilisant les mêmes notations que celles de la proposition 2-4, on démontre que

∀S ∈ A′′ Su− uS ∈
⋂

T∈MN

KerΨ̃T = {0}. On en déduit que pour tout S ∈ A′′,

∑
i

Sai ⊗ bi =
∑
i

ai ⊗ biS

Donc u est en fait une diagonale de A′′. On a vu au cours de la démonstration de la proposition
3-1 que ceci impliquait que la famille {aibj ; i, j > 1} était génératrice de A′′. D’où A′′ ⊂ A et
comme l’inclusion inverse est toujours vérifiée, on obtient l’égalité souhaitée.

On rappelle la définition suivante : Soit A ⊂ MN ' B(l2N). On dit qu’un sous-espace vectoriel
K ⊂ l2N est A-invariant si a(h) ∈ K pour tout a ∈ A et pour tout h ∈ K.

Lemme 3-3-1-2 : Soit A ⊂ MN une sous-algèbre unitale possédant une diagonale. Si les seuls
sous-espaces vectoriels A-invariants de l2N sont (0) et l2N , alors A = MN .

Démonstration : D’après le lemme 1, il suffit de démontrer que A′ =< I > (car alors A′′ = MN et
donc A = MN). Supposons au contraire qu’il existe T ∈ A′ non scalaire. Il admet un sous-espace
propre K ( K 6= (0) et K 6= l2N). Soit h ∈ K \ {0} et λ la valeur propre associée à h. Soit a ∈ A.
Comme T ∈ A′, on a : T (ah) = aT (h) = aλh = λah. D’où (T − λIN)(ah) = 0. Ainsi ah ∈ K. Ce
qui prouve que K est A−invariant. Contradiction.

Démonstration de 3-3-1 : Soit L l’ensemble des opérateurs ”multiplications à gauche” de A, i.e
L = {la : A −→ A, b 7−→ ab ; a ∈ A} ⊂ L(A). On vérifie aisément que L est une algèbre (unitale)
d’opérateurs sur A et que l’application l : A −→ L, a 7−→ la est un isomorphisme d’algèbres
unitales. Comme A est de dimension finie (disons n), L(A) s’identifie à Mn via l’isomorphisme
(unital) d’algèbres u ∈ L(A) 7−→ Mat (u ; e), où e est une base fixée de A. Par composition
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de ces deux isomorphismes, on peut représenter A comme une sous-algèbre de Mn. On notera
π : A −→ Mn une telle représentation. Comme A possède une diagonale, il en est de même de
π(A) d’après la proposition 2-2. On identifiera alors A et π(A), ce qui permet de supposer que
A ⊂Mn. Parmi tous les entiers n tels qu’il existe un homomorphisme injectif unital π : A −→Mn,
choisissons le plus petit d’entre eux.
Si les seuls sous-espace vectoriels A−invariants sont (0) et l2n, on a d’après le lemme 3-3-1-2 que
A = Mn et le résultat annoncé s’ensuit. Sinon il existe un sous-espace vectoriel A−invariant strict
K de l2n que l’on choisit de dimension minimale. Notons PK la projection orthogonale sur K. Soit
a ∈ A ⊂Mn ≈ B(l2n). K étant A−invariant, on a que K est stable par a, ce qui équivaut d’après
un résultat classique que PKaPk = aPK . Donc PK est par définition une projection orthogonale
invariante pour A. On notera PK = p. Ainsi ∀ a ∈ A pap = ap
On vérifie facilement que X = pMn(1− p) est un A−bimodule et que l’application

δ :

{
A −→ X
a 7→ δ(a) = pa(1− p) = pa− ap (1)

définit une dérivation de A sur X.
D’après la proposition 2-5-3, δ est une dérivation intérieure, donc il existe x ∈ X tel que

∀ a ∈ A δ(a) = ax− xa (2)

Combinant (1) et (2), on voit que p + x commute avec A. Par définition de X, on a x2 = 0. On
en déduit que l’élément y = 1 + x est inversible dans Mn et son inverse est y−1 = 1− x.
On a pour tout a ∈ A :

p(1 + x)a(1− x) = (p+ px)a(1− x) = (p+ x)a(1− x) = a(p+ x)(1− x) = ap

et
(1 + x)a(1− x)p = (1 + x)ap = (1 + x)pap = pap = ap

Ce qui prouve que p commute avec B = yAy−1. Donc ∀ b ∈ B pb = bp. Notant toujours K
l’image de la projection p, l’égalité précédente est équivalente au fait que K et K⊥ sont stables
par b, et comme b est quelconque dans B, K et K⊥ sont stables par tous les éléments de B.
Comme l2n = K ⊕K⊥, on a en prenant pour base de l2n une base de K suivie d’une base de K⊥

que les éléments de B s’écrivent comme une matrice bloc 2× 2 dont les blocs non diagonaux sont

nuls, ie T ∈ B s’écrit T =

(
T1 0
0 T2

)
où T1 = pT|K ∈ B(K) et T2 = (1 − p)T|K⊥ ∈ B(K⊥). On

notera par la suite q = 1− p.
Remarquons d’abord que A et B = yAy−1 sont isomorphes en tant qu’algèbres unitales, par
conséquent B possède une diagonale d’après la proposition 2-2. Soient B1 = Bp (= pB) et
B2 = Bq (= qB) de sorte que B ⊂ B1 ⊕ B2. De plus, tout sous-espace vectoriel de K qui est
B1−invariant est aussi B−invariant, donc par minimalité de la dimension de K, cela implique
que les seuls sous-espaces B1−invariants de K sont (0) et K. D’où B1 = B(K).

De plus, l’application u : B 7−→ B(K⊥) définie par u :

(
T1 0
0 T2

)
7−→ T2 a un noyau isomorphe à

I =
{
T ∈ B(K) ;

(
T 0
0 0

)
∈ B

}
. u étant un homomorphisme unital, il s’ensuit par minimalité

de n que u n’est pas injectif, donc que I 6= (0). Or I est un idéal de B(K) et B(K) est simple,
donc I = B(K).
Ce qui précède montre que pour tout T ∈ B(K⊥) :

T ∈ B2 ⇔
(

0 0
0 T

)
∈ B
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Donc
B = B(K)⊕B2 = B1 ⊕B2

On vérifie que B1 et B2 sont respectivement des algèbres unitales, d’unités respectives p et q.

De plus, si u =
∑
i

ai ⊗ bi est une diagonale de B, alors v =
∑
i

(pai) ⊗ (bip) ( respectivement

w =
∑
i

(qai) ⊗ (biq) ) est une diagonale de B1 (respectivement de B2). Posons n1 = dim K et

n2 = dim K⊥. Par ce qui précède, on peut supposer B1 ⊂Mn1 et B2 ⊂Mn2 .
Si les seuls sous-espaces vectoriels B1−invariants de l2n1

sont (0) et l2n1
(ce qui implique que les

seuls sous-espaces vectoriels B2−invariants de l2n2
sont (0) et l2n2

), alors par le lemme 3-3-1-2,
B1 = Mn1 et B2 = Mn2 . D’où B = Mn1 ⊕Mn2 et comme A ≈ B on a le résultat voulu. Sinon on
réitère le processus précédent en choisissant des projections invariantes orthogonales pour B1 et
B2 et en conjuguant par les éléments inversibles correspondants. On conclut par récurrence.

Corollaire 3-3-2 : Une algèbre unitale admet une diagonale si et seulement si elle est isomorphe
à une C?−algèbre de dimension finie.

Démonstration : La première implication résulte directement du théorème précédent. Réciproquement,
supposons que A algèbre unitale soit isomorphe à une C?−algèbre de dimension finie. D’après la
proposition 3-2-1, toute C?−algèbre de dimension finie possède une diagonale. D’après la propo-
sition 2-2, il en est alors de même pour A.
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Chapitre 4

Diagonale, algèbres d’opérateurs et
produit de Haagerup

Dans cette section, nous commençons par étudier quelques propriétés du produit tensoriel de
Haagerup introduit au chapitre 1. Puis nous définissons la notion de h-diagonale sur X ⊗h Y ,
presque analogue à celle de diagonale sur X ⊗ Y , si ce n’est que la topologie de || · ||h apporte
quelques faits supplémentaires. Nous énonçons ensuite le théorème principal : si une algèbre
d’opérateurs unitale A admet une h-diagonale, alors elle est de dimension finie. Ce résultat est à
rapprocher de la proposition 3-1, de nature purement algébrique.

4.1 Propriétés de X ⊗h Y

4.1.1 Représentation d’un élément de X ⊗h Y

Proposition 4 -1 -1 -1 : Soient X et Y deux espaces d’opérateurs. Tout élément z de X⊗hY

s’écrit sous la forme z =
∞∑
k=1

ak ⊗ bk, la série étant convergente en norme, i.e :

lim
N→+∞

∥∥∥z − N∑
k=1

ak ⊗ bk
∥∥∥ = 0

De plus, les séries
∞∑
k=1

aka
∗
k et

∞∑
k=1

b∗kbk convergent

Démonstration : On rappelle que

||z||h = inf
{∥∥∥ n∑

k=1

aka
∗
k

∥∥∥ 1
2 ·
∥∥∥ n∑
k=1

b∗kbk

∥∥∥ 1
2

; z =
n∑
k=1

ak ⊗ bk, ak ∈ X, bk ∈ Y, n ∈ N∗
}

Sans perte de généralité on peut supposer ||z||h < 1. Fixons ε > 0.
Par définition de X ⊗h Y (cf 1-3) il existe w1 ∈ X ⊗ Y tel que

||z − w1||h <
ε

2
et ||w1||h < 1
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Par définition de || · ||h, il existe un entier n1 tel que

w1 =

n1∑
k=1

ak ⊗ bk avec

n1∑
k=1

aka
∗
k 6 1 et

n1∑
k=1

b∗kbk 6 1

Utilisant les mêmes arguments, il existe w2 ∈ X ⊗ Y tel que ||z − w1 − w2||h <
ε

22
et ||w2||h <

ε

2
Par définition de || · ||h, il existe un entier n2 tel que

w2 =

n2∑
k=n1+1

ak ⊗ bk avec

n2∑
k=n1+1

aka
∗
k 6

ε

2
et

n2∑
k=n1+1

b∗kbk 6
ε

2

Par récurrence, on construit pour tout m ∈ N∗ une suite de tenseurs de rang finis

wm =
nm∑

k=nm−1+1

ak ⊗ bk

tels que :

||z − w1 − w2 − · · · − wm||h <
ε

2m
, avec

nm∑
k=nm−1+1

aka
∗
k 6

ε

2m−1
et

nm∑
k=nm−1+1

b∗kbk 6
ε

2m−1

On en déduit rapidement que la suite w̃n = w1 + · · ·+ wn converge dans X ⊗h Y vers z.

Soit WN =
N∑
k=1

ak ⊗ bk une somme partielle de la série des ak ⊗ bk. Il existe un unique entier

m tel que nm−1 + 1 6 N 6 nm, où la suite des nk a été construite précédemment. Mais alors

WN = w̃m−1 +
N∑

k=nm−1+1

ak ⊗ bk. Ainsi :

‖z −WN‖ 6 ‖z − w̃m−1‖+
∥∥∥ N∑
k=nm−1+1

aka
∗
k

∥∥∥ 1
2
∥∥∥ N∑
k=nm−1+1

b∗kbk

∥∥∥ 1
2

6 ‖z − w̃m−1‖+
∥∥∥ nm∑
k=nm−1+1

aka
∗
k

∥∥∥ 1
2
∥∥∥ nm∑
k=nm−1+1

b∗kbk

∥∥∥ 1
2

6 ‖z − w̃m−1‖+
ε

2m−1

On en déduit que la série
∞∑
k=1

ak ⊗ bk converge en norme vers z.

De plus, les sommes partielles de
∞∑
k=1

aka
∗
k et de

∞∑
k=1

b∗kbk convergent (on prouve que les sommes

partielles sont de Cauchy) en norme vers des éléments de norme 6 1 + 2ε. On a même pour tout
entier N ∥∥∥ N∑

k=1

aka
∗
k

∥∥∥ 6 1 + 2ε
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ce qui implique que : ∥∥∥ N∑
k=1

aka
∗
k

∥∥∥ 1
2
6 1 + ε

D’où le résultat.

remarque 4-1-1-2 : De manière générale : pour tout z ∈ X ⊗h Y et pour tout ε > 0, il existe

deux suites (ak)k de X et (bk)k de Y telles que z =
∞∑
k=1

ak ⊗ bk et

∥∥∥ +∞∑
k=1

aka
∗
k

∥∥∥ 1
2
∥∥∥ +∞∑
k=1

b∗kbk

∥∥∥ 1
2
6 ‖z‖h + ε

Proposition-définition 4-1-1-3 : (1) Soit A une algèbre d’opérateurs et c ∈ A. L’application

m̃c :

 A⊗ A −→ A⊗ A∑
k

ak ⊗ bk 7−→
∑
k

(cak)⊗ bk

est bien définie, continue et s’étend de manière unique en une application linéaire continue mc :
A⊗h A −→ A⊗h A.

(2) Pour u ∈ A⊗h A, on pose cu = mc(u) et si u s’écrit u =
+∞∑
k=1

ak ⊗ bk, alors cu =
+∞∑
k=1

(cak)⊗ bk

Démonstration : (1) Le fait que m̃c soit bien définie vient du fait que A⊗A est un A−bimodule :

pour c ∈ A, si
∑
k

ak ⊗ bk =
∑
l

a′l ⊗ b′l on a :

∑
k

(cak)⊗ bk = c
(∑

k

ak ⊗ bk
)

= c
(∑

l

a′l ⊗ b′l
)

=
∑
l

(ca′l)⊗ b′l

Soit x =
n∑
k=1

ak ⊗ bk ∈ A⊗ A. Par définition de ‖ · ‖h, on a :

∥∥∥ n∑
k=1

(cak)⊗ bk
∥∥∥ 6 ∥∥∥ n∑

k=1

(cak)(cak)
∗
∥∥∥ 1

2
∥∥∥ n∑
k=1

b∗kbk

∥∥∥ 1
2

6 ‖c‖
∥∥∥ n∑
k=1

aka
∗
k

∥∥∥ 1
2
∥∥∥ n∑
k=1

b∗kbk

∥∥∥ 1
2

Passant à l’inf sur l’ensemble des représentations de x, on en déduit que m̃c est continue et que
‖m̃c‖ 6 ‖c‖. Donc m̃c s’étend de manière unique en une application linéaire continue
mc : A⊗h A −→ A⊗h A.

(2) Soit u ∈ A⊗h A. D’après la proposition 4-1-1-1, u peut s’écrire sous la forme u =
+∞∑
k=1

ak ⊗ bk

(série convergente). mais alors :

cu = mc(u) = mc

(
lim

n→+∞

n∑
k=1

ak ⊗ bk
)

= lim
n→+∞

mc

( n∑
k=1

ak ⊗ bk
)

= lim
n→+∞

n∑
k=1

(cak)⊗ bk
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On en déduit que la série
+∞∑
k=1

(cak)⊗ bk converge et que cu =
+∞∑
k=1

(cak)⊗ bk.

Le résultat qui suit nous sera utile dans la démonstration du résultat principal de ce chapitre.

Proposition 4-1-1-4 : Soit A une algèbre d’opérateurs unitale et φ ∈ A∗. On définit

Rφ : A⊗ A −→ A par Rφ

(∑
k

ak ⊗ bk
)

=
∑
k

φ(ak)bk

Alors Rφ s’etend de manière unique en un opérateur borné sur A ⊗h A. De plus, si u ∈ A ⊗h A

s’écrit u =
+∞∑
k=1

ak ⊗ bk, alors Rφ(u) =
+∞∑
k=1

φ(ak)bk.

Démonstration : A étant une algèbre d’opérateurs, on a A ⊂ B(H) pour un certain Hilbert

H. Notons 1 l’unité de A. Soit x ∈ A⊗A. Il existe ak et bk éléments de A tels que x =
n∑
k=1

ak⊗ bk.

On a : 
φ(a1)1 · · · φ(an)1

0 · · · 0
...

...
0 · · · 0

 ·
 b1 0 · · · 0

...
...

...
bn 0 · · · 0

 =


n∑
k=1

φ(ak)bk · · · 0

...
...

0 · · · 0


Notons V la première matrice et W la seconde. Il vient

∥∥∥ n∑
k=1

φ(ak)bk

∥∥∥ 6 ‖V ‖‖W‖.
Mais ‖V ‖ =

( n∑
k=1

|φ(ak)|2
) 1

2
et ‖W‖ =

∥∥∥ n∑
k=1

b∗kbk

∥∥∥ 1
2
.

D’autre part, φ étant une forme linéaire, φ est complètement bornée avec ‖φ‖cb = ‖φ‖. D’où( n∑
k=1

|φ(ak)|2
) 1

2
6 ‖φ‖

∥∥∥ n∑
k=1

aka
∗
k

∥∥∥ 1
2

On en déduit que ∥∥∥ n∑
k=1

φ(ak)bk

∥∥∥ 6 ‖φ‖∥∥∥ n∑
k=1

aka
∗
k

∥∥∥ 1
2
∥∥∥ n∑
k=1

b∗kbk

∥∥∥ 1
2

Passant à l’inf sur toutes les représentations de x, on obtient que Rφ est une application bornée
(de norme inférieure ou égale à celle de φ). D’après le théorème de prolongement des applications
linéaires continues, Rφ s’étend de manière unique en une application linéaire continue sur A⊗hA.

remarque 4-1-1-5 : Ce qui précède permet de donner un sens aux expressions du type

+∞∑
i=1

φ(ak)bk où
+∞∑
i=1

ak ⊗ bk ∈ A⊗h A et φ ∈ A∗
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4.1.2 La notion de h-diagonale

On ”prolonge” la définition de diagonale vue au chapitre 2. La norme définie sur l’algèbre
d’opérateurs A ainsi que les propriétés de la norme de Haagerup sur A ⊗h A généralisent en
quelque sorte les définitions et propriétés de nature algébrique rencontrées auparavant. Mais cette
structure topologique nécessite de nouveaux outils (outre les raisonnements classiques de passage à
la limite et les théorèmes standards d’analyse fonctionnelle) pour effectuer cette ”généralisation”.
L’un d’entre eux est la notion de strong-independance étudiée au paragraphe suivant.

Proposition 4-1-2-1 : Soit A une algèbre d’opérateurs et p : A⊗A −→ A l’application linéaire
induite par la multiplication sur A. Alors p s’étend de manière unique en une contraction
p̂ : A⊗h A −→ A.

Démonstration : Soit x ∈ A⊗A. Il existe ak et bk éléments de A tels que x =
n∑
k=1

ak ⊗ bk. On a

‖p(x)‖ =
∥∥∥ n∑
k=1

akbk

∥∥∥ 6 ∥∥∥ n∑
k=1

aka
∗
k

∥∥∥ 1
2
∥∥∥ n∑
k=1

b∗kbk

∥∥∥ 1
2

En passant à l’inf sur l’ensemble des représentations de x, on a ‖p(x)‖ 6 ‖x‖. Donc p est une
contraction. D’après le théorème de prolongement des applications linéaires continues, p s’étend
de manière unique en une application linéaire continue p̂ sur A⊗h A.
Soit z ∈ A⊗h A. On a vu à la proposition 4-1-1-1 que l’on pouvait écrire z sous la forme

z =
∞∑
k=1

ak ⊗ bk

la série étant convergente en norme, avec :∥∥∥ ∞∑
k=1

aka
∗
k

∥∥∥ < +∞ et
∥∥∥ ∞∑
k=1

b∗kbk

∥∥∥ < +∞

D’où

p̂(z) = p̂
(

lim
n→+∞

n∑
k=1

ak ⊗ bk
)

= lim
n→+∞

p̂
( n∑
k=1

ak ⊗ bk
)

= lim
n→+∞

p
( n∑
k=1

ak ⊗ bk
)

Soit

p̂(z) = lim
n→+∞

n∑
k=1

akbk

On posera donc

p̂(z) =
+∞∑
k=1

akbk

De plus, en tant qu’extension de p, p̂ a la même norme que p. donc p̂ est aussi une contraction.

remarque 4-1-2-2 : Dans la démonstration précédente, on a vu que si z =
∞∑
k=1

ak⊗ bk ∈ A⊗hA,

alors p̂(z) =
+∞∑
k=1

akbk (série convergente).
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Nous pouvons à présent, au vu de tous les résultats obtenus avant donner un sens à la :

Définition 4-1-2-3 : Soit A un espace d’opérateurs. On appelle h-diagonale sur A un élément
u de A⊗h A tel que :

1. ∀c ∈ A uc = cu

2. p̂(u) = 1

Autrement dit une h-diagonale sur A est un élément u =
+∞∑
i=1

ai ⊗ bi de A⊗h A tel que

∀c ∈ A uc = cu et
+∞∑
i=1

aibi = 1

4.1.3 Indépendance forte

Définitions et notations

Notations : (1) Soit H un espace de Hilbert. H∞ désigne la somme d’une infinité de copies
de H.
(2) Soit u ∈ A ⊗h A (A algèbre d’opérateurs). En vertu de la proposition 4-1-1, il existe des fa-

milles {ai}i>1 et {bi}i>1 d’éléments de A telles que u =
∑
i>1

ai⊗ bi et les séries
∑
i>1

aia
∗
i et

∑
i>1

b∗i bi

convergent. On posera u = a� b , où a = (a1, a2, · · · ) et b = t(b1, b2, · · · )

Définition 4-1-3-1 : (1) Un opérateur s ∈ B(H∞;H) peut être vu comme une matrice ligne

d’opérateurs si ∈ B(H), où
∑
i>1

sis
∗
i ∈ B(H).

(2) Un opérateur t ∈ B(H;H∞) peut être vu comme une matrice colonne d’opérateurs ti ∈ B(H),

où
∑
i>1

t∗i ti ∈ B(H).

remarque 4-1-3-2 : Avec la définition précédente, si u = a � b ∈ A ⊗h A, on a en vertu de la
proposition 4-1-1-1 : a ∈ B(H∞;H) et b ∈ B(H;H∞).

On rappelle que l2 désigne l’ensemble des suites (λi)i>1 à coefficients complexes telles que
∑
i>1

|λi|2

converge, muni de la norme ‖(λi)i>1‖2 =
( +∞∑
i=1

|λi|2
) 1

2

Proposition-Définition 4-1-3-3 : (1) Soit λ = (λ1, λ2, · · · ) ∈ l2 et s ∈ B(H∞;H). La série∑
i>1

λisi est convergente. On note alors λ · s =
+∞∑
i=1

λisi ∈ B(H) sa somme.

(2) De même, si t ∈ B(H;H∞), on note λ · t =
+∞∑
i=1

λiti.

Démonstration : En utilisant un argument similaire au début de la démonstration de la propo-
sition 4-1-1-4, on a :

∀m 6 n
∥∥∥ n∑
i=m

λisi

∥∥∥ 6 ( n∑
i=m

|λi|2
) 1

2
∥∥∥ n∑
i=m

sis
∗
i

∥∥∥ 1
2
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Par convergence de
∑
i>1

|λi|2, de
∑
i>1

sis
∗
i , et positivité des sis

∗
i on a alors :

∀m 6 n
∥∥∥ n∑
i=m

λisi

∥∥∥ 6 ( +∞∑
i=m

|λi|2
) 1

2
∥∥∥ +∞∑
i=m

sis
∗
i

∥∥∥ 1
2

La quantité de droite tendant vers 0 quand m tend vers +∞, on en déduit que la suite des sommes

partielles de
∑
i>1

λisi est de Cauchy dans B(H) complet, donc converge.

Définition 4-1-3-4 : Soit {ai}i>1 une famille d’opérateurs définissant un élément de B(H;H∞)
ou de B(H∞;H). On dit que {ai}i>1 est ”fortement independant” si :

(
λ = (λi)i>1 ∈ l2 et

+∞∑
i=1

λiai = 0
)
⇒ ∀i > 1 λi = 0

Remarquons que le forte indépendance de {ai}i>1 n’a pas la même signification que {ai}i>1 est
libre.

Propriétés

Lemme 4-1-3-5 : Soit a = (a1, a2, · · · ) ∈ B(H∞;H). Alors {ai}i>1 est ”fortement indepen-
dant” si et seulement si K = {(φ(a1), φ(a2), · · · ) ; φ ∈ B(H)∗} est dense dans l2.

Démonstration : On démontrera les deux implications par contraposée.
( ⇒ ) Supposons que K n’est pas dense dans l2. Alors K⊥ contient un élément non nul
λ = (λ1, λ2, · · · ). De plus, on a par définition de K et du produit scalaire de l2 :

∀φ ∈ B(H)∗
+∞∑
i=1

λiφ(ai) = 0 =
+∞∑
i=1

λiφ(ai)

Soit :

∀φ ∈ B(H)∗ φ
( +∞∑
i=1

λiai

)
= 0

D’où :
+∞∑
i=1

λiai = 0

Ce qui contredit la ”forte independance” de {ai}i>1.

( ⇐ ) Supposons que {ai}i>1 n’est pas ”fortement independant”. Alors il existe un élément non

nul λ = (λ1, λ2, · · · ) de l2 tel que
+∞∑
i=1

λiai = 0. Ainsi :

∀φ ∈ B(H)∗ φ
( +∞∑
i=1

λiai

)
=

+∞∑
i=1

λiφ(ai) = 0

Par définition du produit scalaire sur l2 et de K, on en déduit que (λ1, λ2, · · · ) ∈ K⊥. Donc K
n’est pas dense dans l2. �
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En corollaire immédiat, on obtient que si {ai}i>1 est ”strong independant”, alors pour
b = (b1, b2, · · · ) ∈ l2 et ε > 0 fixés, il existe φ ∈ B(H)∗ tel que

‖(φ(a1), φ(a2), · · · )− (b1, b2, · · · )‖2 < ε

Proposition 4-1-3-6 : Soient s ∈ B(H∞;H) et t ∈ B(H;H∞). Alors il existe des opérateurs
unitaires u et v de B(l2) tels que les composantes s̃i et t̃i de s̃ = sv et t̃ = ut vérifient :
(i) s̃2i−1 = 0 et t̃2i−1 = 0 pour tout i > 1.
(ii) s̃i ∈ < {sj} > et t̃i ∈ < {tj} >, avec {s̃2i}i>1 et {t̃2i}i>1 ”fortement independant”.
(iii) ‖s̃‖ = ‖s‖ et ‖t̃‖ = ‖t‖

Démonstration : On considère uniquement le cas de t ∈ B(H;H∞), le cas des matrices lignes
se traitant de même. Considérons le sous-espace fermé de l2 : L1 = {λ ∈ l2 ; λ · t = 0}, de sorte
que l2 = L1⊕L⊥1 . Soit {αi}i>1 une base de l2 telle que {α2i−1}i>1 soit une base de L1 et {α2i}i>1

soit une base de L⊥1 . Par Gram-Schmidt, on peut supposer ces bases orthonormales. Notons u la
matrice (infinie) unitaire dont la ieme ligne est αi. On pose t̃ = ut. Ainsi, utilisant les notations
de 4-1-3-3, on a ∀i > 1 t̃i = αi · t.

Par construction, t̃2i−1 = α̃2i−1 · t = 0. De plus, soit (λi) ∈ l2 telle que
+∞∑
i=1

λit̃2i = 0, ie

( +∞∑
i=1

λiα̃2i

)
· t = 0

Mais alors
+∞∑
i=1

λiα̃2i ∈ L1. Comme {α̃2i} est une base de L⊥1 , on en déduit que
+∞∑
i=1

λiα̃2i = 0 et

∀i > 1 λi = 0. Donc {t̃2i} est ”fortement independant”.
Le point (ii) est clair et le point (iii) résulte du fait que u et v sont unitaires. �

On aura besoin par la suite de la notion d’espace de Hilbert ligne et d’espace de Hilbert colonne

afin de prouver que l’on peut représenter un élément u de X ⊗h Y sous la forme u =
+∞∑
i=1

ai ⊗ bi

où {ai}i>1 est fortement indépendante. Par ailleurs si H est un espace de Hilbert et x, y ∈ H,
l’application x⊗ y est définie sur H par x⊗ y(ζ) = < ζ ; x > y.

Proposition-Définition 4-1-3-7 : (1) Soit H un Hilbert et e ∈ H de norme 1. Alors les espaces
d’opérateurs

X1(e) = {e⊗ x ; x ∈ H} ⊂ B(H)

et
X2(e) = {x⊗ e ; x ∈ H} ⊂ B(H)

sont isométriques à H. Si de plus, e et e′ sont deux vecteurs de norme 1, alors X1(e) et X2(e)
sont complètement isométriques via l’application e⊗ x 7−→ e′ ⊗ x.
(2) On appelle alors Hc (espace de Hilbert colonne) n’importe lequel des espaces X1(e).
De même on appelle Hr (espace de Hilbert ligne) n’importe lequel des espaces X2(e).

Proposition 4-1-3-8 : (1) Etant donné une famille orthogonale {e1, · · · , eN} de H et un N−uplet
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(x1, · · · , xN) d’un espace d’opérateurs X, on a∥∥∥ N∑
k=1

ek ⊗ xk : Hc −→ X
∥∥∥
cb

=
∥∥∥( N∑

k=1

xkx
∗
k

)∥∥∥ 1
2

et ∥∥∥ N∑
k=1

xk ⊗ ek : Hr −→ X
∥∥∥
cb

=
∥∥∥( N∑

k=1

x∗kxk

)∥∥∥ 1
2

(2) Via l’identification isométrique entre H et Hc, tout opérateur borné u : H −→ H est
complètement borné de Hc dans Hc, avec ‖u : Hc −→ Hc‖cb = ‖u‖.

Lemme 4-1-3-9 : SoitH un espace de Hilbert séparable de dimension infinie, soit (ek)k>1 une base
Hilbertienne deH et ∀N > 1 PN : H −→ H la projection orthogonale d’image< {e1, · · · , eN} >.
Soit T : Hc −→ X complètement bornée. Alors lim

N→+∞
‖TPN − T‖cb = 0 si et seulement si T est

la limite dans CB(Hc;X) d’une suite d’opérateurs de rang fini.

Démonstration : On ne démontre qu’une implication, l’autre étant immédiate. Notons CBF (Hc ; X) ⊂
CB(Hc ; X) l’adhérence des opérateurs de rang fini. Soient ζ ∈ H, z ∈ X et T = ζ ⊗ z.
Alors TPN = PN(ζ) ⊗ z. Donc T − TPN = (ζ − PN(ζ)) ⊗ z d’où comme ‖a ⊗ z‖ = ‖a‖‖z‖,
il vient ‖T − TPN‖cb = ‖ζ − PN(ζ)‖‖z‖ −→ 0. Par combinaison linéaire, on en déduit que
‖TPN − T‖cb −→ 0 pour tout opérateur T de rang fini. Comme ‖PN‖ = 1, on en déduit par
équicontinuité que ‖TPN − T‖cb −→ 0 pour tout T ∈ CBF (Hc ; X).

Proposition 4-1-3-10 : On note C = (l2)c et R = (l2)r et (ek)k>1 la base canonique de l2.
(1) Soient (xk)k>1 et (yk)k>1 deux suites de X et Y et soient

αN =
N∑
k=1

ek ⊗ xk ∈ CB(C ; X) et βN =
N∑
k=1

ek ⊗ yk ∈ CB(R ; X)

Si la suite (αN)N converge dans CB(C ; X) et si la suite (βN)N converge dans CB(R ; X) alors

la série
∑
k>1

xk ⊗ yk converge dans X ⊗h Y . Dans ce cas, on a de plus

∥∥∥ +∞∑
k=1

xk ⊗ yk
∥∥∥
h
6 ‖ lim

N
αN‖cb‖ lim

N
βN‖cb =

∥∥∥ +∞∑
k=1

xkx
∗
k

∥∥∥ 1
2
∥∥∥ +∞∑
k=1

y∗kyk

∥∥∥ 1
2

(2) Réciproquement, pour tout u ∈ X ⊗h Y et pour tout ε > 0, il existe deux suites (xk)k>1 et
(yk)k>1 de X et Y telles que les suites( N∑

k=1

ek ⊗ xk
)
N

et
( N∑
k=1

ek ⊗ yk
)
N

convergent dans CB(C ; X) et CB(R ; Y ) respectivement. De plus :

u =
+∞∑
k=1

xk ⊗ yk

et ∥∥∥ +∞∑
k=1

ek ⊗ xk
∥∥∥
cb
6 ‖u‖h + ε,

∥∥∥ +∞∑
k=1

ek ⊗ yk
∥∥∥
cb
6 ‖u‖h + ε
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Démonstration : (1) On donne l’idée :∥∥∥ N∑
k=M

xk ⊗ yk
∥∥∥
h
6
∥∥∥ N∑
k=M

xkx
∗
k

∥∥∥ 1
2
∥∥∥ N∑
k=M

y∗kyk

∥∥∥ 1
2

= ‖αN − αM‖cb‖βN − βM‖cb

(2) On utilise un raisonnement analogue à celui de la proposition 4-1-1-1 et la proposition 4-1-3-8.

Proposition 4-1-3-11 : Soient X et Y deux espaces d’opérateurs sur un espace de Hilbert H
et u ∈ X ⊗h Y . Alors il existe des familles {ai}i>1 ∈ X et {bi}i>1 ∈ Y où {ai}i>1 est fortement

independante et telles que u =
∞∑
i=1

ai ⊗ bi.

Démonstration : On part du (2) de la proposition précédente. Soit H = l2. Considérons les
deux applications α : H −→ X et β : H −→ Y définies par :

α(t) =
+∞∑
k=1

tkxk et β(t) =
+∞∑
k=1

skyk

Soit
K = Ker(α)⊥ = Im(α∗)

Soit J : K −→ H l’injection canonique (de sorte que JJ∗ est la projection d’image K dans H) et
soient α̂ = αJ et β̂ = βJ . On ne perd rien à supposer K de dimension infinie, ce que l’on fera.
Soit alors (εj)j>1 une base Hilbertienne de K et PN : K −→ K la projection orthogonale sur
< {ε1, · · · , εN} >. D’après le (2) de la proposition 4-1-3-10, α est limite d’opérateurs de rang fini,
il en est donc de même de α̂ par définition de celui-ci. Donc d’après le lemme 4-1-3-9, α̂PN −→ α̂
dans CB(Kc ; X). De même, β̂PN −→ β̂ dans CB(Kr ; Y ). On pose pour tout i > 1 :

ai = α̂(εi) et bi = β̂(εi)

Par ce qui précède les suites ( N∑
i=1

εi ⊗ ai
)
N

et
( N∑
i=1

εi ⊗ bi
)
N

convergent respectivement dans CB(Kc ; X) et CB(Kr ; Y ). Utilisant le (1) de la proposition
4-1-3-10, on peut définir

û =
+∞∑
i=1

ai ⊗ bi

Par construction, JJ∗α∗ = α∗. Donc pour tous φ ∈ X∗ et ψ ∈ Y ∗, on a :

< φ⊗ ψ, u >=
∑
i

φ(xi)ψ(yi) =< α∗(φ)β∗(ψ) >=< JJ∗α∗(φ), β∗(ψ) >

D’où
< φ⊗ ψ, u >=< α̂∗(φ), β̂∗(ψ) >=

∑
i

φ(ai)ψ(bi) =< φ⊗ ψ, û >

Donc u = û. Par construction, la suite (ai)i>1 est fortement indépendante, ce qui achève la preuve.
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4.2 Résultat principal

Théorème 4-2-1 : Soit A une algèbre d’opérateurs . Supposons que A admette une h-
diagonale, alors A est de dimension finie.

Démonstration : Soit u =
∞∑
i=1

ai ⊗ bi une h-diagonale. D’après la proposition 4-1-3-11, on

peut supposer la famille {ai}i>1 ∈ B(H∞;H) fortement independante. Par définition de u,

p̂(u) =
+∞∑
i=1

aibi = 1. Donc il existe un entier M tel que
∥∥∥ M∑
i=1

aibi − 1
∥∥∥ <

1

2
. On rappelle que

dans une algèbre de Banach unitale X, si ‖u−1‖ < 1, alors u est inversible, d’inverse
+∞∑
i=0

(1−u)i.

Par conséquent, c =
( M∑
i=1

aibi

)−1

existe et on a de plus ‖c‖ < 2. Définissons maintenant deux

constantes k et ε par :

k = max
{∥∥∥ +∞∑

i=1

aia
∗
i

∥∥∥ 1
2
,
∥∥∥ +∞∑
i=1

b∗i bi

∥∥∥ 1
2
}
, et ε =

1

8Mk2
(1)

D’après la proposition 4-1-1-3, pour tout x ∈ A, les séries
+∞∑
i=1

(xai) ⊗ bi et
+∞∑
i=1

(ai) ⊗ (bix) sont

convergentes en norme, et comme u est une h-diagonale, leurs sommes respectives sont égales :

+∞∑
i=1

(xai)⊗ bi =
+∞∑
i=1

ai ⊗ (bix)

D’après la proposition 4-1-1-4, on a alors :

∀φ ∈ A∗
+∞∑
i=1

φ(xai)bi =
+∞∑
i=1

φ(ai)bix (2)

Utilisant le lemme 4-1-3-5, par ”forte independance” de {ai}i>1, on peut choisir des formes linéaires
φj ∈ A∗, 1 6 j 6M telles que :

‖(φj(a1), φj(a2), · · · )− ej‖2 < ε ∀ 1 6 j 6M (3)

où {ej}j>1 désigne la base canonique de l2. On a :

bjx−
+∞∑
i=1

φj(ai)bix =
+∞∑
i=1

(δij − φj(ai))bix ∀ 1 6 j 6M

Utilisant un argument similaire à celui du début de la proposition 4-1-1-4, on a :∥∥∥bjx− +∞∑
i=1

φj(ai)bix
∥∥∥ 6 ( +∞∑

i=1

|δij − φj(ai)|2
) 1

2
∥∥∥ +∞∑
i=1

(bix)∗bix
∥∥∥ 1

2

Or

‖(φj(a1), φj(a2), · · · )− ej‖2 =
( +∞∑
i=1

|δij − φj(ai)|2
) 1

2
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D’où utilisant (3) et la définition de k, on a pour tout entier j = 1, · · · ,M :

∥∥∥bjx− +∞∑
i=1

φj(ai)bix
∥∥∥ 6 ε‖x‖

∥∥∥ +∞∑
i=1

b∗i bi

∥∥∥ 1
2
6 εk‖x‖ (4)

D’autre part, ∥∥∥ +∞∑
i=n

φj(xai)bi

∥∥∥ 6 ‖φj‖∥∥∥ +∞∑
i=n

xai(xai)
∗
∥∥∥ 1

2
∥∥∥ +∞∑
i=n

b∗i bi

∥∥∥ 1
2

D’où ∥∥∥ +∞∑
i=n

φj(xai)bi

∥∥∥ 6 max16j6M‖φj‖‖x‖
∥∥∥ +∞∑
i=n

aia
∗
i

∥∥∥ 1
2
∥∥∥ +∞∑
i=1

b∗i bi

∥∥∥ 1
2

6 k max16j6M‖φj‖‖x‖
∥∥∥ +∞∑
i=n

aia
∗
i

∥∥∥ 1
2

Comme lim
n→+∞

∥∥∥ +∞∑
i=n

aia
∗
i

∥∥∥ 1
2

= 0, il existe un entier N tel que pour tout j = 1, · · · ,M

∥∥∥ +∞∑
i=N+1

φj(xai)bi

∥∥∥ 1
2
6 εk‖x‖

D’où pour tout j = 1, · · · ,M :

∥∥∥bjx− N∑
i=1

φj(ai)bix
∥∥∥ 6 2εk‖x‖ (5)

Par définition de k, ‖aj‖2 = ‖aja∗j‖ 6
∥∥∥ +∞∑
i=1

aia
∗
i

∥∥∥ 6 k2. D’où :

∥∥∥ M∑
j=1

[
ajbjx−

N∑
i=1

φj(xai)ajbi

]∥∥∥ 6 2εMk2‖x‖

Utilisant le fait que ‖c‖ < 2 et qu’on a une norme d’algèbre, il vient en composant à gauche par

c =
( M∑
i=1

aibi

)−1

que pour tout x ∈ A :

∥∥∥x− M∑
j=1

N∑
i=1

φj(xai)cajbi

∥∥∥ 6 4εMk2‖x‖ =
‖x‖
2

(6)

Soit le sous-espace de dimension finie défini par :

B =< {cajbi; 1 6 j 6M ; 1 6 i 6 N} >

L’inégalité (6) assure que l’application canonique π : A −→ A/B a une norme inférieure à
1

2
.

D’où nécessairement A = B. Donc A est de dimension finie. �
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Corollaire 4-2-2 : Soit A une algèbre d’opérateurs. S’il existe une diagonale pour A⊗̂A, alors A
est de dimension finie.

Démonstration : Remarquons tout d’abord que l’on peut définir une notion de diagonale sur le
produit tensoriel projectif de A par lui-même de même manière que l’on a défini une notion de
diagonale pour le produit tensoriel de Haagerup de A par lui-même.
D’après la proposition 1-3-5, on sait que ‖·‖h 6 ‖·‖∧. Ainsi, l’application identité de (A⊗A, ‖·‖∧)
sur (A⊗A, ‖ · ‖h) s’étend en une application Î contractante (donc injective) de A⊗̂A sur A⊗hA.
On vérifie que si u est une diagonale de A⊗̂A, alors Î(u) est une h-diagonale. Le résultat découle
alors du théorème précédent.
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