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INTRODUCTTION :

Le présent mémoire a pour but d’étudier la notion de diagonale dans une algebre unitale ainsi
que quelques propriétés particulieres du produit tensoriel de Haagerup. Ces deux notions d’abord
définies séparément, seront confrontées dans la derniere partie de ce travail.

La premiere partie de ce mémoire est essentiellement algébrique. On établit quelques résultats
sur les diagonales dans une algebre unitale, donnant des conditions suffisantes d’existence comme
des contre-exemples : toutes les algebres unitales de dimension finie n’ont pas nécessairement
de diagonales. Nous obtenons en résultat principal la description de toutes les algebres unitales
admettant (au moins) une diagonale.

La seconde partie de ce travail repose sur la notion de produit tensoriel de Haagerup. Apres
avoir défini une norme sur le produit tensoriel de Haagerup de deux espaces d’opérateurs, on
étudie quelques unes de ses propriétés et on définit la notion de h-diagonale. On obtient alors
I'analogue d’un des théoremes obtenus dans la premiere partie (cette fois-ci, algebre et topologie
étant intimement meélés).



Chapitre 1

Produits tensoriels

Dans ce chapitre, nous abordons les bases nécessaires a I’ étude des diagonales dans une algebre
unitale A. Nous définissons d’abord la notion purement algébrique de produit tensoriel de deux
espaces vectoriels et nous étudions brievement ses principales propriétés. La propriété universelle
a la base de sa construction est le pivot de nombreux résultats obtenus ultérieurement. Nous
définissons également le produit tensoriel projectif, que nous mettrons en confrontation avec le
produit de Haagerup, lequel, comme nous le verrons au cours de cette étude, possede des pro-
priétés particulieres.

1.1 Produit tensoriel d’espaces vectoriels

Théoréme-définition 1-1-1 : Soient E, F et G trois K—espaces vectoriels (K = R ou C). 11
existe un espace vectoriel X et une application bilinéaire © : £ x F' — X (i) telle que pour toute
application bilinéaire B : E x F' — (@, il existe une unique application linéaire f : X — G telle
que fo© = B (ii). Le couple (X, ©) vérifiant la propriété universelle précédente : (i) et (ii) est
unique & un isomorphisme pres, dans le sens ou si (X, 0) et (X', 0") vérifient (i) et (ii), alors il
existe un isomorphisme o de X sur X’ tel que 0 © = ©'.

On appelle produit tensoriel de E et F tout couple (X, ©) vérifiant (i) et (ii). On note X = EQF
et O = ®.

remarque 1-1-2 : Ainsi X = EF ® F est défini a isomorphisme pres. Selon le contexte, on
en choisira une réalisation commode.

Proposition 1-1-3 : Si E et F sont deux K—espaces vectoriels de bases respectives (e;);cr et
(fj)jes, alors (&; ® f;)(ij)erxs est une base de £ ®@ F

Proposition 1-1-4 : £ ® F possede les propriétés suivantes :
) {z®y;ze€lE;yeF }engendre ER F.
(2) Pour tout A € K et pour tout (z,y) € EXx F,ona ANz®y)=(\)®@y=12& (\y)

(3) Tout élément de E ® F' est de la forme o = Z Tk ® yg, OU T et y, appartiennent respecti-

k=1
vement & E et F.

Définition 1-1-5 : Les éléments de F'® F' s’appellent des tenseurs. Un élément de la forme a ® b
s’appelle un tenseur élémentaire.




remarque 1-1-6 : Si dim F =n et dim F' = p, alors dim (E® F) =np
Pour la démonstration des résultats précédents, on pourra consulter [ABM,77, p135-142]

Une réalisation commode du produit tensoriel de deux espaces vectoriels est donnée par la
construction suivante :

Proposition 1-1-7 : Soient E et F deux espaces vectoriels sur K. On note E' le dual algébrique
de E. Alors F ® F' s’identifie a un sous-espace de E(ET, F), 'espace des applications linéaires de
E®F — L(E' F)

Zxk®yk»—>u
k=1

ET vers F, via l'injection ¥ : ou pour tout forme linéaire  sur E; on a

u(yp) = Z (k) Y-
k=1

Corollaire 1-1-8 : (1) Soit ¢ = Zxk@)yk € E®F. Alors o = 0 si et seulement si
k=1

Zgo(xk)yk =0 pour tout ¢ € Ef

k=1
n

(2) De méme o = 0 si et seulement si Z o(z)0(yx) = 0 pour tout ¢ € BT et 1 € T
k=1

remarque 1-1-9 : Le résultat précédent a une formulation plus précise si E et F sont munis

d’une structure topologique. Plus exactement :

Soient E et F deux espaces de Banach . On note E* le dual topologique de E. Alors £ ® F

s’identifie & un sous-espace de B(E*, F'), 'espace des applications linéaires continues de E* vers
E®F — B(E*,F) n

F, via I'injection W : ka ® i — U ou pour tout ¢ € E*, on a u(p) = ; O(Tk)Yg-
k=1

En fait, Im(V) est constitué du sous-espace RF.(E™, F') des applications linéaires de rang fini qui

sont continues de £ muni de la topologie préfaible sur F muni de la topologie de la norme. [LM,07]

La propriété universelle du produit tensoriel permet d’obtenir des identifications tres utiles en
pratique. En voici trois :

Proposition 1-1-10 : (1) Soient F; et F; des sous-espaces de E et F. Alors on peut réaliser

Fy ® F} comme un sous-espace de £ ® F.

(2) Si E:El@EQ et F:Fl@FQ, alors :
EQF=(Ei10F)8(E10R) 6 (E,® ) ® (B F)

résultat qui se généralise aisément par récurrence.

(3) Soient S € B(E,E') et T € B(F, F'). D’apres la propriété universelle du produit tensoriel, il

existe une unique application linéaire S @ T : E ® F — E' @ I’ telle que pour tout « € E et
pour tout y € F, (S@T)(z®y) = S(x) @ T(y).

Lemme 1-1-11 : (1) Soit u € X ® Y. Posons u = Z x; ®y;. Alors on peut écrire u sous la forme
i=1

bt



u = Z T, @y, ou les familles {z}} et {y;} sont libres.
i=1

p
(2) Si de plus, u = Z:’éj ® y; et que les familles {Z;, 1 < j < p} et {g;, 1 < j < p} sont libres

j=1
alors :
<{z;, 1<j<p}>=<{af, 1<i<m}>
et
<{g, 1<j<py>=<{y; 1<i<m}>
Démonstration : (1) Soit £ =< {1, - ,z,} > et F' =< {y1,--- ,y,} >. Quitte a réordonner
les y;, on peut supposer que pour un k < n {y;, -+, Yk} est une base de F. Apres avoir exprimé
Yk+l, - ,Yn comme combinaison linéaire de yi,--- ,yg, on peut réécrire u sous la forme u =
k
ZLE; ® y;, avec x; € E. Quitte a réindexer, on peut supposer que {x},--- 2, } est une base
i=1 -
de < {&f, -+, 2.} >. u se réécrit alors u = Zx; ® yi. On vérifie aisément que les familles
i=1
{z},--+ 2 Yet {y}, -+ ,y.,} sont libres.

(2) La famille {z}, 1 < i < m} étant libre, il existe m formes linéaires f; : X — C telles que
P
fil@}) =65, 4,5 =1---m. Soit fi®1: X®Y —Y.Ona (fi®l)(u) = Zfz(fk)gjk Il s’ensuit

k=1
que y; €< {71, -+, Yp} >. Les autres cas se traitent de la méme maniere.

Définition 1-1-12 : De ce qui précede, on en déduit m = p. m s’appelle le rang de u.

1.2 Produit tensoriel projectif

Proposition-Définition 1-2-1 : Soient E et F deux espaces de Banach et ¢ € F® F. Il

existe des familles finies (z;) de E et (yx) de F telles que o = Z Tp @ Y-
k=1

On pose ||o|| = inf { ZkaH Nyl ; 0= Zxk@)yk, x, €E, y, € F } Alors || - || est une
k

k=1
norme sur F ® I, appelée norme tensorielle projective.

Démonstration : cf exercice 5 du chapitre 4 [LM,07]

Définition 1-2-2 : Soit EQF le complété de E @ F pour || - ||x. C'est par définition le produit
tensoriel projectif de E et F.

Proposition 1-2-3 : V(z,y) € E X F, ||z @ y||» = ||z||A - ||y]|

Proposition 1-2-4 : Soient S : £ — E' et T : F — F’ des opérateurs. Alors il existe un
unique opérateur ST : EQF — E'®F' tel que (S®T)(z ®y) = S(z) ® T(y) pour tout = € E
et y € F. De plus, ||SQT|| = ||S]] - ||T]]-



remarque 1-2-5 : La norme du produit tensoriel projectif ”passe tres mal” aux sous-espaces.
Dit autrement, si W est un sous-espace de l’espace de Banach E, de sorte que W ® F' est un
sous-espace de £ ® F, alors la norme induite sur W ® F' par la norme || - ||+, n’est pas en général,
la norme projective sur W & F. Pour plus, de détails, cf [R,02, p18].

Ces limitations peuvent étre contournées en introduisant une nouvelle norme sur £ ® F', plus faible
que la norme tensorielle projective et jouissant de propriétés spéciales, inhérentes a elle-méme.
Nous y reviendrons en détail dans le chapitre 4.

1.3 Produit de Haagerup

Proposition-Définition 1-3-1 : Soient E et F deux espaces d’opérateurs et 0 € F ® F.
Il existe des familles finies (xy) de E et (yx) de F telles que o = Z T @ Y.
k

1 1
On pose ||o||, = inf { HZQSWZHQ . HZy,’;ka2 ;0= Zxk@)yk, . € E, y € F } Alors
k k k

[| - [|n est une norme sur F ® F| appelée norme tensorielle de Haagerup.

1.1 1
Lemme 1-3-1-1 : Soient a, b deux réels positifs. a2b2 = 5 inf {\a + A"'b, A > 0}
Demonstration : Si @ = 0 ou b = 0, le résultat est clair. Si a,b > 0, Aa + A\7'b — 2Vab =
1.1 ]_
A (Wa — Vb)? > 0, ceci pour tout A > 0. D’olt a2b? < 3 inf {\a + A7'b, A > 0}. Choisissant

b
A= \/j , on obtient I'égalité voulue.
a

Démonstration (du 1-3-1) :

Il est clair que pour tout A € C et pour tout u € E® F on a ||Aul|n = |Al||w]/n

Soient u et v deux éléments de F ® F. Soit € > 0 fixé. Par définition de || - ||, il existe des
représentations de u et de v : u = Z r;Qy; et v= Z 2r ® wy, telles que :
J k

T ()

1 1,
| s || v 5 <l < || s
J J J

%H zj:y;yj

et

b

1 1 1
x| 2 * 2 € x| 2 *
|2t S win[" = 5 <ol < [ X st 2w
k k k k

D’apres le lemme 1-3-1-1, il existe A > 0 et p > 0 tels que :

] 2| Sl -5 < |
J J J

1
2

* (2

Z Y;Yi
i

et

b (2)

1
ol oo i} - 5 < ] S
k k k k



Combinant (1) et (2) on obtient :
1 *
3| Eases

J

De méme on a avec (1) et (2') :

1 *
EPIEE
k

Remarquons a présent que

b <l +e (3)

+A‘1‘

Z Y Yj
j

| S wpe]| b < el e )
k

1 1
u+v= ;(\/Xa:]) ® (ﬁyj) + ;(\/ﬁzk) ® (ﬁwk)

D’ou )
3

lu+vlln < HAZ%I’; DI
i k

1

2 — * - *

S ety v
j k

Or pour a,b >0 vab <

1 * *
|lu+vl|ln < 5{“)\29@-% —i—,uz,zkzk
j k

(a+b), dou :

| —

+ HA‘I Syt w}iwkH}
J k
D’ou

+ 27!

1 *
|lu+v|lp < §{AH g 7]
J

Soit, utilisant (3) et (3’) :

S} + ol s+ S}
J k k

[+ olln < [lulln + [v]ln + 2

€ étant arbitraire, I'inégalité triangulaire est démontrée.

Soit u € E® F tel que ||ul|, = 0. u s’écrit u = Zxk@)yk (somme finie). Soient ¢ € E* et ¢ € F*.

k
Par Cauchy-Schwarz,

Y etmgot| < (Sloteor) (S otmr)’

Mais ¢ est une forme linéaire continue, donc est complétement bornée, avec ||¢||s = ||¢||. Idem
pour #. Il s’ensuit que :

(S o)’ < ol ¥ ai

Par conséquent,

L (S wr) < ]| X vin
k k

‘Zcb(xk)@/)(yk)) < ||¢||||¢||H S éH Z?Jzkaé
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Passant a I'inf sur I’ensemble des représentations de u, et se servant du fait que ||u||, = 0, on en
déduit que Zgb(mk)w(yk) = 0 pour tous ¢ € E* et ¢ € F*. D’ou u = 0 d’apres le corollaire
k

1-1-8. Ce qui acheve la preuve. [

Définition 1-3-2 : Soit F ®j, F' le complété de E ® F pour la norme || - ||n. C’est par définition
le produit de Haagerup de E et F.

Notation : Si 'on note x = (z1,...,2,) et y = (y1, ..., Yn), ON a :

n

k=1
Identifiant  un vecteur ligne & une matrice X de M, ,(E) et 'y & une matrice Y de M, ;(F) ce
qui précede se réécrit :

lolln = inf {[[X][2- VI 5 0= o @ye, a4 € B, gy € F, n€N'}
k=1

les x; et yi désignant les composantes respectives de X et Y.
On écrira 0 = X @Y pour plus de lisibilité.

remarque 1-3-4 : (1) Contrairement au produit tensoriel projectif, si £y C E et F; C F, la
norme d’un élément dans F; ® F; coincide avec sa norme induite dans £ ® F'. Supposons que E et
F sont des espaces d’opérateurs sur le méme espace de Hilbert H, on peut regarder £ ®j, F' comme
un sous-espace de B(H) ®, B(H). [S, p165] Cette injection est une isométrie [ASM, 93, p113]. On
dit que || - ||, est injective.

(2) on peut remarquer que B(H) ®; B(H) est une algebre de Banach pour I'une quelconque des
multiplications suivantes : (a ® b)(c ® d) = ac ® bd, ac ® db, ca ® bd, ca @ db.

Proposition 1-3-5 : La norme du produit tensoriel projectif est plus forte que celle du produit
de Haagerup.



Chapitre 2

Diagonales dans une algebre unitale

Ici commence 1'étude plus précise de la notion d’algebre unitale et de diagonale. Le cadre bien
que purement algébrique, est néanmoins suffisant pour obtenir des résultats importants, liés a
la notion de dérivation. Le lien étroit entre diagonale dans une algebre unitale et le fait qu’elle
soit de dimension finie sera abordé au chapitre suivant. Nous définissons ici la notion de dia-
gonale et en donnons quelques exemples. Il apparait que toutes les algebres unitales, méme de
dimension finie, n’ont pas de diagonale. Le fait qu'une algebre unitale admette une diagonale est
donc une propriété particuliere qui, nous le verrons, caractérise les C*—algebres de dimension finie.

2.1 Diagonales

Définition 2-1 : Soit A une algebre unitale (on notera 1 'unité de A). Onnotep : AQ A — A
I'unique application linéaire induite par la multiplication, i.e. p(Zak ® bk> = Zakbk, pour
k k

tout Zak @b, € A® A (la somme étant finie). Etant donné u = Zak b, € AR A et
k k
c € A, on note cu = Z (car) @ by et uc = Zak ® (brc). Par définition, une diagonale sur A

k 2
est un élément u € A ® A tel que p(u) =1 et cu = uc pour tout ¢ € A.

2.2 Isomorphismes et diagonales

Proposition 2-2 : Soient A et B deux algebres unitales isomorphes. Si A admet une diagonale,
alors B en admet une également.

Démonstration : Soit ® un isomorphisme de A sur B. C’est un isomorphisme d’algebres unitales,
n

donc V(a,b) € A x A, ®(ab) = ®(a)P(b) et (1) = 1. Soit u = Zak ® by, une diagonale sur A,
k=1

(ag, by € A). Posons v = Z@(ak) ® ®(by) € B ® B. Notant toujours p l'application linéaire

k=1
n

induite par la multiplication, p(v) = Z D (ag)P(by) = Z O(agby) = @(Z akbk) =d(1) = 1.
k=1 k=1 k=1

n

10



Soit d € B. Il existe (un unique) ¢ € A tel que d = ®(c). Mais alors dv = Zd@(ak) ® ®(by) =
k=1

k=1
Utlhsant les notations de la remarque 1-2-4, on a

n

dv="> (2 ® ®)(ca ® by)

k=1

d'ot dv = (P ® D) < i cay, bk) =(P® D) ( i ag ® bkc> (comme u diagonale), soit
k=1 k=1

n

dv = Z(@@@)(ak®bk0 ZCI) (ar) @ (bpc) = Z@ (ar) QP (by)P(c) = Z@(ak)®®(bk)d = vd
k=1 k=1 k=1 k=1

Donc v est une diagonale sur B.
2.3 Exemples de diagonales

2.3.1 Diagonales sur I3

On rappelle que [} est une C*— algebre, pour le produit et I'involution définis respectivement

par : (ay, -+ ,ay) - (by,--+ ,by) = (a1by, -+ ,anby) et (ay,- - ,an)* = (a1, -+ ,an). La norme
est celle dusup : |[(a1, -+ ,an)||leo = max {|a;|, 1 <7< N}. On note {e; }1<i<n la base canonique
de I3, ou e; désigne I'élément (0,---,1,---,0), le 1 étant situé en “"° place. [ est unitale,

N
d’unité Z e; (que 'on notera 1). On vérifie facilement que p(e; @ e;) = d;;e;(= d;5¢€;)
i=1
N
Théoreme 2-3-1 : [ a une unique diagonale. C’est u = Z e; X e;.
i=1

Démonstration : D’apres la remarque ci-dessus, on a directement que p(u) = 1. De plus,

N N

VYa €Iy, au = Z(aei) ®e; = Zaz (e; ®e;)

=1 i=1 i=1

e,® —ua

Mz

Donc u est une diagonale sur [3’. Vérifions que c’est la seule.
Soit u une diagonale de {J. Comme {e; ® e;} est une base de [ ® I3, on peut écrire

N
u= Y Ajle; @e;)

ij=1

N

Mais alors p(u Z NijOij€; = Z)\iiei. Or u est une diagonale, donc p(u) = 1. Comme
1,j=1 =1

{ei}1<i<iv est une base de I3, alors pour tout i =1,--- N \; =1 (1)

11



Toujours par le fait que u soit une diagonale de I3, on a :

Vi=1,--- N eu=ue

c’est-a-dire : E Nij(ere) ®ej = E Aije; @ (ejer).

4,j=1 t,j=1

soit

N N
Vlzl, ,N Z)\ljel®ej22/\ilei®el

=1
Comme {e; ® e;}<i i<y est une base de [ ® I35, on en déduit que :
J LI N N>

Vi£l A =0 (2)

Combinant (1) et (2), on obtient que \;; = d;;. D’ou

N N
U= Z 5ij(€i®ej) = Z@i@ei
ij=1 i=1

Ce qui prouve le résultat annoncé. [

2.3.2 Diagonales sur M,

On rappelle que M,, est une algebre unitale. Une base de M,, est constituée des matrices E;;
constituées de 0 sauf a l'intersection de la " ligne et de la j°*° colonne ou il y a un 1.

Théoreme 2-3-2 : I’ algebre M,, des matrices complexes de taille n x n a pour diagonales les

éléments de la forme u = Z bijEij @ Ei;, ou Z bj; = 1.

i k=1 =1

Démonstration : on utilisera constamment le résultat suivant : E;; By = ;1L
Soit u de la forme annoncée.

= Z bi;Eij By = Z 0D B Z bjj i = ( Z bjj> < Z Em)
P i

i7j7k 7.]7

Sachant que Z bjj =1et Z E;; =1 (I'unité de M, : ici 1 désigne I,), on a p(u) = 1.
- ,
vpaqzla"' nEqU—Zbk] z] ®Ek1
i,7:k

soit

Epu = Z bijlgiEp; @ By = Z bijEpj @ Elq

1:7j7k
De méme :

Z kaEZJ ® (Ekz pq Z bkj5sz%J ® Ekq Z bkjEpj ® Ekq

1,5,k 4,7,k
12



Ainsi,
pour tout p,qg=1,---,n Ey,u=uk,.

{Epq h<pqg<n formant une base de M, on en déduit que Va € M, au = ua. Donc u est une
diagonale sur M,,.

Vérifions maintenant que si u est une diagonale sur M,,, alors u est de la forme

U= Z b Eij @ Ei; ol Zbﬂ =

i,j,k=1

Soit u une diagonale de M,,. {E;; ® By ; 1 < 14,7, k,1 < n} est une base de M,, ® M,. On peut
donc écrire
u = Z aijEi; @ Egy (1)
i,g,kl

u) = Z i iy By = Z gLl = Za”ﬂEil

ig kil igi kil i)l
Or p(u)=1= Z5ilEil- Donc V(i,1) Zaijﬂ = 0;. En particulier :
il J

\4) Zaijﬁ =1
J

Il est remarquable que la quantité Z a;j;; soit indépendante de i.
J
D’autre part, pour tout (p,q) on a E,,u = uk,, , soit :

q) Zaijkl(qu i) ® B = Zazgm @ (B Eyy)

7:7j7k7l 7‘7 k l

e
V(p.q) > agnEy ® By =Y aijpE;® Ey (3)
Gkl i,k
Via l'injection M,, ® M,, — B(M}, M,), I'égalité (3) devient :

v<p7 Q) v¢ € M* Zaqjkl¢ p] Ekl Zamkp¢ z])Ekq

Jik,l 1,5,k

Choisissant ¢ = T'r (la trace), on obtient :

E agjn0Op; B = E Qijkp0ij Erg

j’k’l i’j?k

soit

V(p,q) D tgrBru =Y ainpFry (4)

k.l ik
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{Ew ; 1 < k,l <n} formant une base de M,, , on a :

V(p,q) sil# q agpu =0

D’apres (1) on a donc u = Z aijriEij @ By
ijik

Utilisant (4), on a Vk Y(p,q) agprg = Z Qiikp

soit en changeant d’indice :

Vi, j k air = Z auk; (5) (quantité indépendante de i)
1

Combinant (2) et (5), posons by; = a;jy; pour n’'importe quelle valeur de i.
D’apres (2) on a ijj = 1. Finalement, u s’écrit :
J

i7j7k

D’ou le résultat. O

2.4 Toutes les algebres unitales n’ont pas de diagonales

Proposition 2-4 : T, la sous-algebre de M; des matrices triangulaires supérieures a coeffi-
cients complexes, n’a pas de diagonale.

Démonstration : Supposons par I’absurde que 75 admette une diagonale u = Z ap®by 5 ag, by €
k=1

Soit Ty ={A € My ; YU € T, AU = UA} le commutant de 7.

Il est clair que 1 € Ty done < {1} > C Ty.

Réciproquement, soit A = ( 3 g eT,

AFy = F11A entraine g =~ = 0.

AE12 = E12A entraine a = 4.

Dot finalement A = al € < {1} > et Ty = < {1} > (1)

Mo == M My X My —s M
o= n , . 2 X Mo — Vg
Soit : & : T}_)Zakak et pour T € M, fixé \IJT.{ (a,b) —s aTb
k=1

® est linéaire ; Wy est bilinéair~e, donc induit une unique application linéaire U s My®@ My — M,
telle que Y(a,b) € My x My Vr(a®b) = aTb.
Ainsi, par linéarité de W7 on a :

Up(u) = (T) VT € M,

Mais u est une diagonale sur T, donc pour tout a € Ty au = ua, d’ott Va € Ty Ur(au) = @T(ua),
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soit apres un bref calcul a®(7) = ®(T)a.

Ainsi, pour tout 7' € My, ®(T) €T, (2)

Comme ay, by € Ty, on vérifie aisément par le calcul que Vk =1, -+ ,n apEn1by € < {E11; E1n} >,
d’ou (P(En) c < {Ell; Elg} >.

Mais par ce qui précede, ®(Ey;) € < {1} > et < {En;Ep} > N < {1} >= {0}. Don
®(Fy1) =0. De méme ®(Ey) =0

D’ou CI)(EH + E22) = @(1) =0.

Or comme u diagonale, ®(1) = 1. Contradiction.

Donc T; n’a pas de diagonale.

2.5 Diagonales et dérivations

Dans ce paragraphe, nous définissons la notion de dérivation et de dérivation intérieure, que
nous mettons en lien avec celle de diagonale. Il apparaitra que A possede une diagonale si et
seulement si pour tout A—bimodule X, toutes les dérivations sont intérieures. On a ainsi une
condition nécessaire et suffisante d’existence d’une diagonale sur une algebre unitale A.

Définition 2-5-1 : Soit X un A—bimodule. Une application 6 : A — X est appelée une
dérivation si pour tous a,b € A 6(ab) = ad(b) + d(a)b

Proposition-Définition 2-5-2 : Etant donné x € X, 'application 6 : A — X définie par
d(a) = xa — ax est une dérivation. Les dérivations de cette forme sont dites intérieures.

Démonstration : Soient a,b € A.

ad(b) = a(xb — bx) = axb — abx

d(a)b = (za — ax)b = xab — axb

D’ou
ao(b) + 0(a)b = xab — abx = 6(ab)

Proposition 2-5-3 : A possede une diagonale si et seulement si pour tout A—bimodule X, toutes
les dérivations sont intérieures.

n
Démonstration : Supposons que A possede une diagonale u = Z a;®b;. Soit X un A—bimodule
i=1

o R o [AxA—X
et 0 : A — X une dérivation. Posons = = ;5(%‘)@- Soit U : { (a,b) — 8(a)b

U est bilinéaire, donc induit une unique application linéaire ¢ : A ® A — X telle que V(a, b) €
AR A ¢(a®b) =0d(a)b
Comme u est une diagonale, on a Va € A :

o3 e ) = o Stan) o)
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D’ou :

Soit :

ra = Z d(aa;)b; (1)

n n n n

Z d(aa;)b; = Z(aé(ai)bi +d(a)a;b;) = a Z d(a;)b; + d(a) Z a;b;

i=1 i=1 =1 =1

n
Comme u est une diagonale, E a;b; =1. D’ou:
i=1

Z d(aa;)b; = ax + 6(a)

i=1

D’apres (1) on a : za = ax + §(a), donc d(a) = ax — xa. Ainsi, toutes les dérivations sont
intérieures.

Réciproquement, supposons que pour tout A—bimodule X, toutes les dérivations soient intérieures.
Notant toujours p I'application linéaire induite par le produit sur A, posons X = Ker p. X C
A ® A est clairement un A—bimodule. Comme p(a ® 1 — 1 ® a) = a —a = 0, on peut définir
0:A— X, ar— a®1—1® a. Comme X est un A—bimodule, on vérifie aisément que
V(a,b) € A x A d(ab) = ad(b) + d(a)b. Donc ¢ est une dérivation.

Par hypothese 0 est intérieure. Soit w I’élément de X tel que VYa € A 6(a) = aw — wa. Posons
u=1®1—w.

au=a®1—aw
ue =1®a— wa
D’ou
av—ua=a®1—-—1®a— (aw—wa)
Soit

au—ua = 6(a) —d6(a) =0Va € A

we Kerp=X donc p(w) =0.0ru=1®1—w, dou p(u) = 1.
Donc u est une diagonale sur A.
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Chapitre 3

Diagonales et dimension finie

Les exemples du chapitre précédent ont montré qu'une algebre de dimension finie pouvait
avoir une ou plusieurs diagonales, mais ”étre de dimension finie” n’est pas une condition suffi-
sante comme le prouve le contre-exemple de 7T,. Cependant, nous prouverons que si une algebre
unitale admet une diagonale, elle est nécessairement de dimension finie. Enfin nous caractériserons
completement les algebres unitales possédant une diagonale, en prouvant qu’elles sont isomorphes
aux C*—algebres de dimension finie.

3.1 Algebres possédant une diagonale

Proposition 3-1 : Soit A une algebre unitale possédant une diagonale. Alors A est de dimen-
sion finie.

N
Démonstration : Soit u = Z a, ® by, une diagonale sur A. Utilisant le résultat du lemme 1-1-11,
k=1
on peut supposer les familles {ay,--- ,ay} et {by, -+, by} libres.
Démontrons que {a;b;}1<; j<n engendre A.
N N
Comme u est une diagonale, alors Vx € A Z(mak) ® b, = Zak ® (bgz). Or via l'injection
k=1 k=1

A®A— B(A*, A), 'égalité précédente se réécrit :

WE

N
VoeA VoeA > dlxar)by =Y dlap)ber (1)

k=1 k=1

La famille {a;}1<;<n étant libre, pour tout j = 1,--- N on peut trouver une forme linéaire
¢; € A" telle que (¢j(ar), -+ ,¢j(an)) = e;, oue; = (0,---,1,---,0), le 1 étant situé en ;"
place, i.e
Mais alors

N

Vj = 1, ,N Vre A bj$: Z¢](az)bz$

i=1

D’ou

N
(ljbjﬂ? = Z ¢j (CLZ‘>Cij7;LU
i=1
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N N
Sommant sur j et utilisant le fait que Z a;jb; =1 (car u diagonale), il vient x = Z oj(a;)a;biz.

j=1 i,j=1
Mais N Ny N
Z ij (ai)ajbim = Z Q; ( Z ¢J((ll)bz$>
ij=1 j=1 i=1
D’apres (1) N . N .
Z a; < Z gzﬁj(ai)bix) = Z a; ( Z b; (:vaz)bz>
7j=1 i=1 j=1 i=1
Soit
N
r = Z @(:cai)ajbi
i,j=1
Donc

r € <{ab;; 1<i,j <N}t >

et la conclusion s’ensuit. O

3.2 (*—algebres de dimension finie
Proposition 3-2-1 : Toute C*—algebre de dimension finie possede une diagonale.

Démonstration : Soit A une C*—algebre de dimension finie. D’apres [Ta, p50], on sait que A
est isomorphe a une C*—algebre de la forme M,,, & --- & M,,,,. Utilisant la proposition 2-2, on est
ramené a prouver que M,, @---@ M, possede (au moins) une diagonale. On peut donc supposer
que A=M, & ---&M,,

Pour chaque 1 < j < N, on a une injection canonique M,, C A (c’est I; : a; € M, r—
(0,---,aj,---,0)), et donc une injection canonique M, ® M,, C A® A, que nous noterons .J;.
Pour chaque j, soit u; une diagonale de M, . Pour tout a = (a1,--- ,an) € A, on a

adj(u;) = Jj(au;) = Jj(uza;) = Ji(uj)a

Posons
N
w=">> Ji(u)
j=1
Par ce qui précede, u € A ® A est une diagonale de A.
Remarque 3-2-2 : la notion de C*—algebre de dimension finie (donc unitale) apporte un plus

par rapport a celle d’algebre unitale de dimension finie. Si toute algebre unitale n’admet pas
nécessairement de diagonale, toute C*—algebre en a nécessairement (au moins) une.
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3.3 Résultats principaux

Le résultat suivant précise la proposition 3-1. Nous obtiendrons comme corollaire la description
complete des algebres unitales possédant une diagonale.

Théoréme 3-3-1 : Soit A une algebre unitale. Si A admet une diagonale, alors A est isomorphe
a une somme directe d’algebres matricielles, i.e A~ M,, & ---® M,,

On aura besoin des 2 lemmes suivants :

Lemme 3-3-1-1 : Soit A C My une sous-algebre unitale possédant une diagonale. Alors A = A”
(A" désigne le bicommutant de A).

Démonstration : Soient u = Z a; ® b; une diagonale de A et ¢ : My — My définie par :

(2

VT € My, &(T)=_aTh

)

En reprenant des arguments similaires a la démonstration de la proposition 2-4, on démontre que
¢ est & valeurs dans A’. Donc pour tout S € A” on a

VT € MN, Z SCLlTbZ = ZaszZS

Utilisant les mémes notations que celles de la proposition 2-4, on démontre que
vS e A" Su—uS ¢ ﬂ KerWy = {0}. On en déduit que pour tout S € A”,

TeMn
ZSai@)bi = Zai ® b;S

Donc u est en fait une diagonale de A”. On a vu au cours de la démonstration de la proposition
3-1 que ceci impliquait que la famille {a;b; ; 4,7 > 1} était génératrice de A”. D’ou A” C A et
comme l'inclusion inverse est toujours vérifiée, on obtient 1’égalité souhaitée.

On rappelle la définition suivante : Soit A € My ~ B(l%). On dit qu'un sous-espace vectoriel
K C I3 est A-invariant si a(h) € K pour tout a € A et pour tout h € K.

Lemme 3-3-1-2 : Soit A C My une sous-algebre unitale possédant une diagonale. Si les seuls
sous-espaces vectoriels A-invariants de [3, sont (0) et [3,, alors A = My.

Démonstration : D’apres le lemme 1, il suffit de démontrer que A’ =< I > (car alors A” = My et
donc A = My). Supposons au contraire qu'il existe T' € A’ non scalaire. Il admet un sous-espace
propre K ( K # (0) et K #1%). Soit h € K\ {0} et A la valeur propre associée & h. Soit a € A.
Comme T € A, on a : T(ah) = aT'(h) = al\h = Aah. D’ou (T — My)(ah) = 0. Ainsi ah € K. Ce
qui prouve que K est A—invariant. Contradiction.

Démonstration de 3-3-1 : Soit £ I’ensemble des opérateurs ”multiplications a gauche” de A i.e
L={l,: A— Ab—ab; a € A} C L(A). On vérifie aisément que L est une algebre (unitale)
d’opérateurs sur A et que l'application [ : A — L, a —— [, est un isomorphisme d’algebres
unitales. Comme A est de dimension finie (disons n), £(A) s’identifie & M,, via I'isomorphisme
(unital) d’algebres u € L(A) — Mat (u ; e), ou e est une base fixée de A. Par composition
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de ces deux isomorphismes, on peut représenter A comme une sous-algebre de M,. On notera
m: A — M, une telle représentation. Comme A possede une diagonale, il en est de méme de
7w(A) d’apres la proposition 2-2. On identifiera alors A et 7w(A), ce qui permet de supposer que
A C M,. Parmi tous les entiers n tels qu’il existe un homomorphisme injectif unital 7 : A — M,,,
choisissons le plus petit d’entre eux.
Si les seuls sous-espace vectoriels A—invariants sont (0) et (2, on a d’apres le lemme 3-3-1-2 que
A = M, et le résultat annoncé s’ensuit. Sinon il existe un sous-espace vectoriel A—invariant strict
K de I que 'on choisit de dimension minimale. Notons P la projection orthogonale sur K. Soit
a € AC M, ~B(I?). K étant A—invariant, on a que K est stable par a, ce qui équivaut d’apres
un résultat classique que PxaP, = aPg. Donc Pk est par définition une projection orthogonale
invariante pour A. On notera Px = p. AinsiVa € A pap = ap
On vérifie facilement que X = pM,,(1 — p) est un A—bimodule et que Iapplication
A— X
: (1)
{ a— d(a) = pa(l —p) = pa —ap
définit une dérivation de A sur X.
D’apres la proposition 2-5-3, § est une dérivation intérieure, donc il existe x € X tel que

VaeA da)=ar—za (2)

Combinant (1) et (2), on voit que p + 2 commute avec A. Par définition de X, on a 2* = 0. On
en déduit que I’dlément y = 1 + x est inversible dans M, et son inverse est y ' =1 — .
On a pour tout a € A :

p(l+x)a(l —2) = (p+pr)a(l —z) = (p+x)a(l — 2) = a(p + 2)(1 — x) = ap

et
(I+z)a(l —z)p = (1 +x)ap = (1 + z)pap = pap = ap

Ce qui prouve que p commute avec B = yAy~'. Donc ¥V b € B pb = bp. Notant toujours K
I'image de la projection p, I'égalité précédente est équivalente au fait que K et K sont stables
par b, et comme b est quelconque dans B, K et K+ sont stables par tous les éléments de B.
Comme [2 = K @ K, on a en prenant pour base de [> une base de K suivie d'une base de K=+
que les éléments de B s’écrivent comme une matrice bloc 2 x 2 dont les blocs non diagonaux sont
nuls, ie 7' € B s’écrit T = < 3;1 2,2 ) o Ty = pTix € B(K) et T = (1 — p)Tix. € B(K™"). On
notera par la suite ¢ =1 — p.

Remarquons d’abord que A et B = yAy~ " sont isomorphes en tant qu’algebres unitales, par
conséquent B possede une diagonale d’apres la proposition 2-2. Soient By = Bp (= pB) et
By = Bq (= ¢B) de sorte que B C By @ Bs. De plus, tout sous-espace vectoriel de K qui est
Bi—invariant est aussi B—invariant, donc par minimalité de la dimension de K, cela implique
que les seuls sous-espaces By —invariants de K sont (0) et K. D’ou By = B(K).

T 0
0 1T

1

De plus, I'application u : B —— B(K") définie par u : (

I = {T € B(K); ( g 8 €B } u étant un homomorphisme unital, il s’ensuit par minimalité

) +—— T5 a un noyau isomorphe a

de n que u n’est pas injectif, donc que I # (0). Or [ est un idéal de B(K) et B(K) est simple,
donc I = B(K).
Ce qui précede montre que pour tout 7' € B(K™) :

0 0
TGBQ<:>(O T)EB
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Donc
B=B(K)® By =B ® By

On vérifie que B; et By sont respectivement des algebres unitales, d’unités respectives p et q.
De plus, si u = Zai ® b; est une diagonale de B, alors v = Z(pai) ® (bip) ( respectivement

w = Z(qai) ® (b;q) ) est une diagonale de B (respectivement de Bs). Posons n; = dim K et

(2
ny = dim K*. Par ce qui précede, on peut supposer By C M, et By C M,,.
Si les seuls sous-espaces vectoriels B;—invariants de [2 , sont (0) et 12 . (ce qui implique que les
seuls sous-espaces vectoriels Bs—invariants de lfm sont (0) et lfm), alors par le lemme 3-3-1-2,
By = M,, et By = M,,. D'ou B = M,, & M,, et comme A~ B on a le résultat voulu. Sinon on
réitere le processus précédent en choisissant des projections invariantes orthogonales pour B; et
Bs et en conjuguant par les éléments inversibles correspondants. On conclut par récurrence.

Corollaire 3-3-2 : Une algebre unitale admet une diagonale si et seulement si elle est isomorphe
a une C*—algebre de dimension finie.

Démonstration : La premiere implication résulte directement du théoreme précédent. Réciproquement,
supposons que A algebre unitale soit isomorphe a une C*—algebre de dimension finie. D’apres la
proposition 3-2-1, toute C*—algebre de dimension finie possede une diagonale. D’apres la propo-
sition 2-2, il en est alors de méme pour A.
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Chapitre 4

Diagonale, algebres d’opérateurs et
produit de Haagerup

Dans cette section, nous commencons par étudier quelques propriétés du produit tensoriel de
Haagerup introduit au chapitre 1. Puis nous définissons la notion de h-diagonale sur X ®; Y,
presque analogue a celle de diagonale sur X ® Y, si ce n’est que la topologie de || - ||, apporte
quelques faits supplémentaires. Nous énoncons ensuite le théoreme principal : si une algebre
d’opérateurs unitale A admet une h-diagonale, alors elle est de dimension finie. Ce résultat est a
rapprocher de la proposition 3-1, de nature purement algébrique.

4.1 Propriétés de X ®;Y

4.1.1 Représentation d’un élément de X ®, Y
Proposition 4 -1 -1 -1 : Soient X et Y deux espaces d’opérateurs. Tout élément z de X ®,Y

s’écrit sous la forme z = E ar ® by, la série étant convergente en norme, i.e :
k=1

lim
N—4o00

N
Z—Zak@)ka:O

De plus, les séries

[e.e] [e.e]
Zakaz et Zb;bk convergent

k=1 k=1

Démonstration : On rappelle que
el = inf {|| > anar]| " | Yoie| s =Y o ae X, ey nen}
k=1 k=1 k=1

Sans perte de généralité on peut supposer ||z||, < 1. Fixons € > 0.
Par définition de X ®;, Y (cf 1-3) il existe w; € X @ Y tel que

€
Iz —willn < 5 et JJunfln <1
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Par définition de || - ||, il existe un entier n; tel que

ni

wy :Zak@)bk avec Zakak 1et Zb*bk

k=1 k=1

Utilisant les mémes arguments, il existe wy € X @ Y tel que ||z — wy — ws||n < = et [Jwa||n < ¢

22 2
Par définition de || - ||, il existe un entier ny tel que
ng ¢ no p
*
Z ar ® b, avec Z agay < <3 et Z brb, < 3
k=n1+1 k=n1+1 k=nq1+1

Par récurrence, on construit pour tout m € N* une suite de tenseurs de rang finis

Nm
W = E ap & bk
k=nm-1+1
tels que :
Nm, Nm,
€ . € . €
|z —wy —wy — - — wp|n < om avec 5 apay < S et E bibr < S
k=nm_1+1 k=nm_1+1
On en déduit rapidement que la suite w,, = wy + - - - + w,, converge dans X ®, Y vers z.
N
Soit Wy = E ar ® by une somme partielle de la série des a; ® by. Il existe un unique entier
k=1
m tel que n,,—1 +1 < N < n,,, ou la suite des n; a été construite précédemment. Mais alors
N
WN = ?I)m,1 -+ E ap & bk Ainsi :
k=nm-1+1
N 1 N 1
~ 2 2
le =Wl < lz=amall+ | > || D bin
=Nm-1+1 =nm-1+1
Nm 1 Nm 1
- L2 < |2
< |z = W] + E axay E biby,
=Nm—-1-+ =Nm—1+
N €
< Nz = Gl + oy
o0
On en déduit que la série E ap ® by converge en norme vers z.
k=1
[o.¢]
De plus, les sommes partielles de E axay, et de E brby convergent (on prouve que les sommes
k=1 k=1

partielles sont de Cauchy) en norme vers des éléments de norme < 1+ 2¢. On a méme pour tout
entier N

N
H ZakaZH <142



ce qui implique que :

N 1
[l <1
k=1

D’ou le résultat.

remarque 4-1-1-2 : De maniere générale : pour tout z € X ®;, Y et pour tout € > 0, il existe
oo

deux suites (ay)r de X et (by)r de Y telles que z = Z ap ® by, et
k=1

+oo 1, Foo 1
| D2 anai]| ]| Do biee]|” < Mzl + €
k=1 k=1

Proposition-définition 4-1-1-3 : (1) Soit A une algebre d’opérateurs et ¢ € A. L’application
ARA— AR A

mc : Zak ® bk — Z(cak) ® bk
k

k

est bien définie, continue et s’étend de maniere unique en une application linéaire continue m, :

A®hA—>A®hA

+00 +o0
(2) Pour u € A®), A, on pose cu = m.(u) et si u s’écrit u = Z ar @ by, alors cu = Z(cak) ® by,
k=1 k=1

Démonstration : (1) Le fait que m, soit bien définie vient du fait que A® A est un A—bimodule :
pour ¢ € A, si Zak@)bk:Za;@bg on a:
k !

Z(cak) ® by, = c(Zak ® bk> = c(Zag ® bg) = Z(cag) ® b
I

k k l

Soit z = Zak ® by € A® A. Par définition de || - ||5, on a :
k=1

H Z(cak) ® ka < H Z cay,)(cay)* Zb*bk
k=1
< | ] [l
k=1 k=1

Passant a I'inf sur ’ensemble des représentations de z, on en déduit que m, est continue et que
||me|| < |l¢/|. Donc m, s’étend de maniére unique en une application linéaire continue

mc:A®hA—>A®hA.

+00
(2) Soit u € A®j, A. D’apres la proposition 4-1-1-1, u peut s’écrire sous la forme u = Z a & by,

k=1
(série convergente). mais alors :

n—-+00 n—-+o0o n—-+o00 =

cu=mg(u) = c( lim Z ap @ bk> = lim mc<z ap @ bk> = lim (cay) ® by
k=1
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+00 +oo
On en déduit que la série Z(cak) ® by converge et que cu = Z(cak) ® by,.
k=1 k=1

Le résultat qui suit nous sera utile dans la démonstration du résultat principal de ce chapitre.

Proposition 4-1-1-4 : Soit A une algebre d’opérateurs unitale et ¢ € A*. On définit
R, A® A— A par R¢<Zak ®bk> = Zgb(ak)bk
k k

Alors R, s’etend de maniére unique en un opérateur borné sur A ®;, A. De plus, siu € A®;, A

+00 +o0
s’écrit u = Z ap ® by, alors Ry(u) = Z o(ax)bg.
k=1 k=1

Démonstration : A étant une algebre d’opérateurs, on a A C B(H) pour un certain Hilbert

H. Notons 1 'unité de A. Soit x € A® A. 1l existe ay et b, éléments de A tels que x = Z aj @ by,.

k=1
On a :
1 ... )1 -
. : : : — k=1
0 .. 0 bn 0 - 0 0 0

Notons V' la premiere matrice et W la seconde. Il vient H Z (b(ak)ka < [V
k=

Mais [[VI] = (3 lo(a)?) " et W) = || - ti
k=1 k=1

D’autre part, ¢ étant une forme linéaire, ¢ est completement bornée avec ||¢|| = [|¢]|. D’ou

(S totaP) < ol 3 anci
k=1 k=1

1
2

On en déduit que

1
2

H Z¢(ak)ka < ||¢||H > ayaj, ’2H > bib
h=1 =1 =1

Passant a I'inf sur toutes les représentations de x, on obtient que R, est une application bornée
(de norme inférieure ou égale a celle de ¢). D’apres le théoreme de prolongement des applications
linéaires continues, R, s’étend de maniére unique en une application linéaire continue sur A ®j, A.

remarque 4-1-1-5 : Ce qui précede permet de donner un sens aux expressions du type

+o0o +o00
S ola)be ot Y @b e Ay A et b A"

i=1 =1
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4.1.2 La notion de h-diagonale

On "prolonge” la définition de diagonale vue au chapitre 2. La norme définie sur l'algebre
d’opérateurs A ainsi que les propriétés de la norme de Haagerup sur A ®;, A généralisent en
quelque sorte les définitions et propriétés de nature algébrique rencontrées auparavant. Mais cette
structure topologique nécessite de nouveaux outils (outre les raisonnements classiques de passage &
la limite et les théoremes standards d’analyse fonctionnelle) pour effectuer cette ” généralisation”.
L’un d’entre eux est la notion de strong-independance étudiée au paragraphe suivant.

Proposition 4-1-2-1 : Soit A une algebre d’opérateurs et p: A ® A — A I'application linéaire
induite par la multiplication sur A. Alors p s’étend de maniere unique en une contraction
p: AR, A— A.

Démonstration : Soit x € A® A. Il existe ay et by éléments de A tels que z = Z a, @ b;. On a
k=1

@)l = || > @] < | D2 asai ][] 3o v
k=1 k=1 k=1

En passant a I'inf sur ’ensemble des représentations de z, on a ||p(z)|| < ||z||. Donc p est une
contraction. D’apres le théoreme de prolongement des applications linéaires continues, p s’étend
de maniere unique en une application linéaire continue p sur A ®; A.

Soit z € A®, A. On a vu a la proposition 4-1-1-1 que I'on pouvait écrire z sous la forme

z:Zak(@bk
k=1

la série étant convergente en norme, avec :

o0
H Z aray,
k=1

< 400 et H Zb;ka < 400
k=1

D’ou
g =a{ S awon) = i 5o = oS )
Soit .
p(z) = lim Zakbk
n—-+4oo 1

On posera donc

400

p(z) = Z aby
k=1

De plus, en tant qu’extension de p, p a la méme norme que p. donc p est aussi une contraction.

remarque 4-1-2-2 : Dans la démonstration précédente, on a vu que si z = Z ap b € AR A,

k=1
—+o00

alors p(z) = Z arby (série convergente).
k=1
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Nous pouvons a présent, au vu de tous les résultats obtenus avant donner un sens a la :

Définition 4-1-2-3 : Soit A un espace d’opérateurs. On appelle h-diagonale sur A un élément
u de A ®j, A tel que :

1. Ve€ A uc=cu

2. p(u) =1
+oo
Autrement dit une h-diagonale sur A est un élément u = Z a; ®b; de A®), A tel que
i=1

—+00

Vee A uc=cu et Zaibizl
i=1

4.1.3 Indépendance forte
Définitions et notations

Notations : (1) Soit H un espace de Hilbert. H* désigne la somme d’une infinité de copies
de H.
(2) Soit u € A®;, A (A algebre d’opérateurs). En vertu de la proposition 4-1-1, il existe des fa-
milles {a;};>1 et {b;}i>1 d’éléments de A telles que u = Z a; ® b; et les séries Z a;a; et Z bib;
i>1 i>1 i>1
convergent. On posera u =a ® b , olt a = (ay,ag,---) et b="(by,by,---)

Définition 4-1-3-1 : (1) Un opérateur s € B(H*; H) peut étre vu comme une matrice ligne
d’opérateurs s; € B(H), ou Z s;s; € B(H).

i>1
(2) Un opérateur t € B(H; H*) peut étre vu comme une matrice colonne d’opérateurs t; € B(H),

on Y tit; € B(H).

i>1

remarque 4-1-3-2 : Avec la définition précédente, siu = a ® b € A®;, A, on a en vertu de la
proposition 4-1-1-1 : a € B(H*; H) et b € B(H; H™).

On rappelle que [? désigne 'ensemble des suites (A;);>1 & coefficients complexes telles que Z |2
i>1

+oo 1
converge, muni de la norme ||(A;)i>1||2 = (Z |/\,~|2) ’
i=1

Proposition-Définition 4-1-3-3 : (1) Soit A\ = (A, \g,--+) € I* et s € B(H™; H). La série

400
Z A;s; est convergente. On note alors A - s = Z Ais; € B(H) sa somme.
i>1 i=1
400
(2) De méme, si t € B(H; H*), on note A\ -t = Z)‘iti'
i=1

Démonstration : En utilisant un argument similaire au début de la démonstration de la propo-
sition 4-1-1-4, on a :

1
2

n
VYm<n H Z i Si
i=m

n 1 n
< (Z ’)\i|2) ’ H ZSiS:
i=m i=m
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Par convergence de E |\i|?, de E sis;, et positivité des s;s; on a alors :
i>1 i>1

n —+o00 1, Foo
Z Z 2 Z
i=m =m =m

La quantité de droite tendant vers 0 quand m tend vers +o0, on en déduit que la suite des sommes

partielles de Z Ais; est de Cauchy dans B(H) complet, donc converge.
i>1

Définition 4-1-3-4 : Soit {a;};>1 une famille d’opérateurs définissant un élément de B(H; H™)
ou de B(H*; H). On dit que {a;};>1 est "fortement independant” si :

—+o00
=1

Remarquons que le forte indépendance de {a;};>1 n’a pas la méme signification que {a;};>1 est
libre.
Propriétés

Lemme 4-1-3-5 : Soit a = (ay,az,---) € B(H*™; H). Alors {a;};>1 est "fortement indepen-
dant” si et seulement si K = {(¢(a1), ¢(as), ) ; ¢ € B(H)*} est dense dans [*.

Démonstration : On démontrera les deux implications par contraposée.
( = ) Supposons que K n’est pas dense dans /2. Alors K contient un élément non nul
A= (A1, Ag,---). De plus, on a par définition de K et du produit scalaire de [* :

+0oo
Vo € B(H Zw =0=2 Nio(a,)
1=1

Soit :
Vo € B(H (ZM) _
D’ou :
+oo
Z)\_iai =0
i=1

Ce qui contredit la ”forte independance” de {a;};>1.

( < ) Supposons que {a;};>1 n’est pas "fortement independant”. Alors il existe un élément non
+oo

nul A= (Ag, A, -+ ) de 1% tel que »  Aja; = 0. Ainsi :

i=1

Vo € B(H (Zm):im(ai)zo

Par définition du produit scalaire sur [* et de K, on en déduit que (A_l, A, - ) eK L. Donc K
n’est pas dense dans (2. O
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En corollaire immédiat, on obtient que si {a;};>1 est "strong independant”, alors pour
b= (b1,bs, ) Elyet e >0 fixés, il existe ¢ € B(H)" tel que

[(#(a1), plag), ) — (b, ba, -+ )[[2 < €

Proposition 4-1-3-6 : Soient s € B(H*; H) et t € B(H; H*). Alors il existe des opérateurs
unitaires u et v de B(I?) tels que les composantes §; et t; de § = sv et t = ut vérifient :

(i) $2i—1 = 0 et ty;_1 = 0 pour tout 7 > 1.

(ii) §; € < {s;} > et t; € <{t;} >, avec {39;}i>1 et {t2}i>1 "fortement independant”.

(i) 5] = [1s] et |17 = 1]

Démonstration : On considére uniquement le cas de t € B(H; H*), le cas des matrices lignes
se traitant de méme. Considérons le sous-espace fermé de > : L1 = {\ € I* ; X\ -t = 0}, de sorte
que > = L, @ Ly Soit {ai}i>1 une base de I? telle que {agi—1}i>1 soit une base de Ly et {ag;}ix1
soit une base de Li . Par Gram-Schmidt, on peut supposer ces bases orthonormales. Notons u la
matrice (infinie) unitaire dont la i ligne est ;. On pose ¢ = ut. Ainsi, utilisant les notations
de 4-1-3-3,ona Vi>1 t,=q; - t.

“+o00
Par construction, fo;_; = dg;_1 -t = 0. De plus, soit (A;) € [? telle que Z A\ito; = 0, ie
i=1
+o00
(Z Ai&m) t=0
i=1
+00 +0o0
Mais alors Z Ni@g; € Ly. Comme {asg;} est une base de Lf, on en déduit que Z Aitvg; = 0 et
i=1 i=1

Vi>1 )\ =0. Donc {ty} est ”fortement independant”.
Le point (ii) est clair et le point (iii) résulte du fait que u et v sont unitaires. [

On aura besoin par la suite de la notion d’espace de Hilbert ligne et d’espace de Hilbert colonne
+00

afin de prouver que 'on peut représenter un élément u de X ®; Y sous la forme u = Z a; Q@ b;
i=1

ou {a;}i>1 est fortement indépendante. Par ailleurs si H est un espace de Hilbert et z, y € H,

lapplication T ® y est définie sur Hpar T @ y(¢) =< (; = > y.

Proposition-Définition 4-1-3-7 : (1) Soit H un Hilbert et e € H de norme 1. Alors les espaces
d’opérateurs
Xi(e)={e®@xz; v € H} C B(H)

et
Xo(e)={T®e; v € H} C B(H)

sont isométriques a H. Si de plus, e et € sont deux vecteurs de norme 1, alors X;(e) et Xs(e)
sont completement isométriques via I’application € ® = — €’ ® .

(2) On appelle alors H¢ (espace de Hilbert colonne) n'importe lequel des espaces X (e).

De méme on appelle H" (espace de Hilbert ligne) n’importe lequel des espaces Xs(e).

Proposition 4-1-3-8 : (1) Etant donné une famille orthogonale {e;, - -+ ,ex} de H et un N—uplet
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(1, ,zn) d'un espace d’opérateurs X, on a

=)

N
| Yo —x
k=

et

N[

N
Hzx—k@)ek:m_x
k=1

N
= | (Xaiae)|
cb
k=1

(2) Via lidentification isométrique entre H et H€ tout opérateur borné u : H — H est
completement borné de H¢ dans H, avec ||u: H® — H¢||4 = ||u]|.

Lemme 4-1-3-9 : Soit H un espace de Hilbert séparable de dimension infinie, soit (ex)x>1 une base
Hilbertiennede H et V N > 1 Py : H — H la projection orthogonale d’image < {ey,--- ,en} >.
Soit T': H® — X completement bornée. Alors Nhrf 1T Py —T||e = 0 si et seulement si 7" est

la limite dans CB(H¢; X') d'une suite d’opérateurs de rang fini.

Démonstration : On ne démontre qu’une implication, I’autre étant immédiate. Notons CBp(H®; X) C
CB(H® ; X) I'adhérence des opérateurs de rang fini. Soient ( € H, 2 € X et T = ( ® z.
Alors TPy = Py(¢) ® z. Donc T — TPy = (¢ — Py(¢)) ® z d’ott comme ||a ® z|| = |la||z|,

il vient ||T'— TPyl = ||¢ — Pn(¢Q)||]]z]] — 0. Par combinaison linéaire, on en déduit que
ITPy — T||lee — 0 pour tout opérateur T de rang fini. Comme ||Py|| = 1, on en déduit par
équicontinuité que ||TPy — T'||a, — 0 pour tout T'€ CBp(H® ; X).

Proposition 4-1-3-10 : On note C' = (I*) et R = (I*)" et (ex)r>1 la base canonique de 2.
(1) Soient (xy)r>1 et (yx)r>1 deux suites de X et Y et soient

N N
ay =Y @G@x, € CB(C; X) et Oy =) @@y € CB(R; X)
k=1 k=1

Si la suite (o) n converge dans CB(C' ; X) et si la suite (Gy)n converge dans CB(R ; X) alors

la série E T ® Y converge dans X ®; Y. Dans ce cas, on a de plus
k>1

+o0 +oo 1, oo 1
. . 2 2
|30, < Wipontollig s = [ 3w v
k=1 k=1 k=1

(2) Réciproquement, pour tout u € X ®, Y et pour tout € > 0, il existe deux suites (xy)r>1 et
(yr)r>1 de X et Y telles que les suites

N N
(Cmen), o (aeu),
k=1 k=1
convergent dans CB(C' ; X) et CB(R ; Y) respectivement. De plus :
+oo
U = Z T @ Yk
k=1

et

“+oo
o
k=1

+oo
sl [ amon, <lulre
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Démonstration : (1) On donne l'idée :
N N 1, N 1
2 2
< * * — _ _
H E T ®kah < H E SCkSCkH H E ykka lan — anmllel|On — Barlles
k=M k=M k=M

(2) On utilise un raisonnement analogue a celui de la proposition 4-1-1-1 et la proposition 4-1-3-8.

Proposition 4-1-3-11 : Soient X et Y deux espaces d’opérateurs sur un espace de Hilbert H
et u € X ®, Y. Alors il existe des familles {a;}i>1 € X et {b;};i>1 € Y ou {a;};>1 est fortement

independante et telles que u = Z a; ® b;.
i=1

Démonstration : On part du (2) de la proposition précédente. Soit H = I?. Considérons les
deux applications a: H — X et §: H — Y définies par :

+oo +oo
Oé(t) = Zthk et 6(t) = Z SkYk
k=1 k=1

Soit
K = Ker(a)* = Im(a*)

Soit J : K — H l'injection canonique (de sorte que JJ* est la projection d’image K dans H) et
soient & = a.J et B = (3J. On ne perd rien a supposer K de dimension infinie, ce que 1'on fera.
Soit alors (€;);>1 une base Hilbertienne de K et Py : K — K la projection orthogonale sur
< {e1, - ,en} >. D’apres le (2) de la proposition 4-1-3-10, « est limite d’opérateurs de rang fini,
il en est donc de méme de & par définition de celui-ci. Donc d’apres le lemme 4-1-3-9, Py — &
dans CB(K°; X). De méme, APy — 3 dans CB(K" ; Y). On pose pour tout ¢ > 1 :

~

a; = OAd(EZ) et bz = /6(61)

Par ce qui précede les suites

(Saon), o (Laen),

i=1 i=1

convergent respectivement dans CB(K¢; X) et CB(K" ; Y). Utilisant le (1) de la proposition

4-1-3-10, on peut définir
+oo

=1

Par construction, JJ*a® = . Donc pour tous ¢ € X* et ¢ € Y™, on a :

<@, u>= Z O(x:) Y () =< & (9) 3" (V) >=< JJ (), B* (1)) >

D’ou

<P@Y,u>=<a*(9), ' (¥) >= Z $(a;)b(b;) =< ¢ @1, 1 >

Donc u = @. Par construction, la suite (a;);>1 est fortement indépendante, ce qui acheéve la preuve.
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4.2 Reésultat principal

Théoréme 4-2-1 : Soit A une algebre d’opérateurs . Supposons que A admette une h-
diagonale, alors A est de dimension finie.

Démonstration : Soit u = Zai ® b; une h-diagonale. D’apres la proposition 4-1-3-11, on
i=1
peut supposer la famille {a;};>1 € B(H>;H) fortement independante. Par définition de u,
“+o0o

M
1
p(u) = Zaibi = 1. Donc il existe un entier M tel que H a;b; — 1” < 3 On rappelle que
=1

=1 7
—+00

dans une algebre de Banach unitale X, si ||u — 1]| < 1, alors u est inversible, d’inverse Z( 1—u)".
i=0

-1

Par conséquent, ¢ = (Zady) existe et on a de plus ||c|[| < 2. Définissons maintenant deux
i=1

constantes k et € par :

+oo
k = max {H E a;a;
i=1

3 1
oot =g O

1 +oo 1
LS
i=1

—+oo —+oco

D’apres la proposition 4-1-1-3, pour tout x € A, les séries Z(m&i) ® b; et Z(ai) ® (b;x) sont
i=1 i=1

convergentes en norme, et comme u est une h-diagonale, leurs sommes respectives sont égales :

+oo +o0

Y (wa) @b = a; @ (bir)

i=1 =1

D’apres la proposition 4-1-1-4, on a alors :

+oo +o0o
Vo e A Y dlra)bi = dla)bz (2)
i=1 =1

Utilisant le lemme 4-1-3-5, par ”forte independance” de {a;};>1, on peut choisir des formes linéaires
p; €AY, 1 <j < M telles que :

[(@(ar), ¢j(az),---) —ejlla<e VI<j<M (3)

ol {e;};>1 désigne la base canonique de l5. On a :

+oo
i=1

i=

—+00
1

Utilisant un argument similaire a celui du début de la proposition 4-1-1-4, on a :

+00 +oo 1, +oo 1
bz =y bjai)bix ‘ < (Z i — ¢j(ai)\2) D (bix) b ‘2
=1 i=1 =1

Or

=

(@), d5(az). ) = el = (D185 = ¢5(a)?)”
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D’ou utilisant (3) et la définition de k, on a pour tout entier j =1, - -

400
> ¢a)bix
=1

M :

)

+oo
2
< el Yo
=1

< ekfle] - (4)

D’autre part,

H Z@ wa )| < 1051 ]Zmz w0:)"
=N
D’ou
+oo
| > dstwann]| < masiciauliosliel| Za, Zb*
i=n
3
< kmagelo el Yo
i=n
+
Comme lim H Z a;ar||” =0, il existe un entier N tel que pour tout j =1,--- /M
n—-4o0o -
=N

+oo
| > di@ann|” < eklal
i=N+1
D’ou pour tout j=1,---, M :
N
>~ 6i(aibix|| < 2eklle] (5)
i=1
+oo
Par définition de k, [la;[* = flaa;| < | S aiat]| < 42 Do

M N
H Z [ajbjx - Z qu(xai)ajbi]
j=1 i=1

\ < 2eME?||]|

Utilisant le fait que ||c|[| < 2 et qu’on a une norme d’algebre, il vient en composant a gauche par
M

~1
c= (Zaibi) que pour tout z € A :
i=1

M N
e =" os(@aeat,

=1 i=1

<o = 12 (o)

Soit le sous-espace de dimension finie défini par :
B:<{cajbi; 1<]<M, 1<Z<N}>

1
L’inégalité (6) assure que l'application canonique 7 : A — A/B a une norme inférieure a —
D’olt nécessairement A = B. Donc A est de dimension finie. [
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Corollaire 4-2-2 : Soit A une algebre d’opérateurs. S'il existe une diagonale pour A®A, alors A
est de dimension finie.

Démonstration : Remarquons tout d’abord que 'on peut définir une notion de diagonale sur le
produit tensoriel projectif de A par lui-méme de méme maniere que 'on a défini une notion de
diagonale pour le produit tensoriel de Haagerup de A par lui-méme.

D’apres la proposition 1-3-5, on sait que ||« || < ||-||1. Ainsi, I'application identité de (A® A, ||-]|)
sur (A® A, || - ||n) s’étend en une application I contractante (donc injective) de AQA sur A ®, A.
On vérifie que si u est une diagonale de AQA, alors I (u) est une h-diagonale. Le résultat découle
alors du théoreme précédent.
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