FORMATION PYTHON POUR L'ALGORITHMIQUE AU LYCEE
Yannick Le Bastard — Hubert Raymondaud
Mars 2019

Table des matiéres

1. Quelques environnements de ProgrammMAtION.cc.eeruierieeriierieeteeseeesteesteeteessteeseessaeeseesseeesseessaesnsseeesssseens 2
2. Utiliser la console interactive (Shell €n anglais)..........cc.vivcvieciieiiiiiiiieiieee ettt e 4
2.1. Exécuter des lignes de commandes simples dans 1a console...........cceeecvieruiiriiinieiciieniecieeeeeee e 4
2.2. Objets Python et affeCtation.........c..ceeciiiiiiieeiiie ettt e s e e e ae e e snbeeesnseeennseeennnneas 4
2.3. Compléments utiles sur la notion d'affectation.............ccveevuieriiiriiieiiece e 6
3. Créer un script, utiliser les boucles while (tant que) €t fOr (POUL).......ccvieeeiieeiiie e 8
3.1. Applications avec Une bouCIe WHIle...........c.coiiiiiiiiiiiiiiiciece et e e et e e e snaeeeearaeenes 8
3.2. Applications avec UNE DOUCIE fOT........uiiiiiiieiiiiecie ettt e e e e e et e e e e esaeeennseeas 9
4. Input — Output (entrées et sorties de dONNEES), UN TESUME...........eeeiueieriiiieriieeeiieeeieeerreeesveeeereeeereessneesnneeeas 10
4.1. input : entrée des dONNEES AU ClAVIET........eieviiieiiieeiiee e eieeeeree et e steeesteeeseaeeesaeestaeessaeeeesnsseeaeeennnns 10
4.2. print : sorties de donneées A I'affichage..........coouiiiiiii i 10
4.3. OpErateurs de COMPATAISON :.....cccuureeiurreeireeeitreeeiteeesteeesseeessseaassseeassseeassseeassssessssessssseessssssssssesssssssseeesanes 10
5. Instructions CONAILIONNEIIES.co.uiiiiiiiiiiiie et ettt et e st e bt e st e e bt e sateebeesaeeaeeans 12
6. Un peu de dessin avec le module tUtle...........ocoooiiiiiriiniiiiiii e 14
7. Chalnes de CAraCteres € LISEES.eiuuiiriiiiiieiie ettt ettt ettt et e st e et e et e et e e eabbeeeensaeeenneee 17
7.1. Les chaines de caracteres (type St — SINEZ).....cecueeruieruieriieriieeieeite et esieeseeesteesereeseeesebeebeesneeeeenneeeesnnees 17
7.2. Les listes (type List €t tyPe tUPLE)....cccueeruiiiiieiii ettt sttt et e e 19
8. La notion de fonction en langage de programmation.............ccueerueeeriierieeiieeniiesieeseeereeseeeaeesieeeseesseeeseeeeenee 23
8.1. SYNTAXE €1 IMISE ©T1 GBUVIEC.....eeutitieitertteteeiteettente et sttesteeateetee bt et e sbeenteesaesbeebeeatesbeebeestesbeenseeenbeeennteenbeeeas 23
8.2. Variables 10cales €t GloDaLes...........couiieiiiiiiiiieie e ettt ee e eeennes 26
9. Les bibliotheques numpy et matplotlib et les graphiques..........c.eeoueeeiiirieniiiiiieeeee e 28
0.1, MAtPIOIID ©F IUMPY.....iiiiiiiiieeieeie ettt ettt et et e e bt e st e esbeestaeesbeeesbeensaessseenseessseeseeeenssaeenns 28
9.2. random, NUMPY €t 1€S ProDaDIILES.oocuiiiiiiiiieiie ettt sttt seeeeneaeeens 31
10. Séquences de mise en ceuvre de 'algorithmique en TP de mathématiques de la seconde a la terminale....... 34
10.1. Présentation ENETALE.........cccuiiiuiiiiieiie ettt ettt ettt e st eebee st e et e e saeeenbeeesbeenbeensneeenseeeennnes 34

10.2. Prise €N MAIN dES SEQUEIICES.eeevieuieeieertieeteesiteeteeteessreeseessseesseessseeseesssessseesssessseesssessseesssessssssessnnses 35

FORMATION PYTHON POUR L'ALGORITHMIQUE AU LYCEE
MARS 2019

1. Quelques environnements de programmation

Un environnement de programmation est un ensemble d'outils facilitant le travail du programmeur. Ces
outils sont souvent réunis dans une application, souvent dédiée a un langage.

Les trois principaux outils sont :

e un ¢éditeur de texte a coloration syntaxique, complétion, indentation et aide en ligne automatiques,
facilitant la saisie, la lecture et la correction du code informatique,

e une console ou interpréteur de commande ou shell, permettant d'exécuter les lignes de codes des
programmes et d'afficher les résultats,

e un explorateur de variable ou workspace, permettant d'afficher touts les objets ("variables", "fonctions",
"modules",) présents en mémoire,

e une fenétre permettant l'affichage de séries de graphiques.
Voici quelques exemples d'environnement de programmation :
Pyzo, Spyder, dédiés a Python, RStudio dédi¢ a R

Sublime text2, Gedit, sont seulement des éditeurs de texte généralistes fournissant, entres autres, la
coloration syntaxique et I'indentation automatique.

Ci-dessous une copie d'écran de Spyder 3 :

Spyder (Python 3.6)
Fichier Edition Recherche Source Exécution Déboguer Consoles Projets Outils Affichage Aide

O =@ |(rDpGCE M ==EpE B, [Ihome/boibaite Sk A
Editeur & X Explorateur de variables 8 x
[0 GenerateursAleatoires.py [I LoupAgneau0.py I PiecesSimul.py] 3desTer-Graph.py] LoiGri jﬁ, £ & &

=11 Nom | Type ‘ Taille ‘ Valeur
numpy . random randn - e o o
randn(', , a list 4 ['e’, 'f', 'g', 'h']
. b tuple 4 'a', 'b', 'c', 'd’
numpy . random uniform G IEI:m S = ! !)
uniform(low = =, high , size = (2, 3, 4)) S int64 (10,) i1
numpy . random randint
randint(low = -, high = /, size = (,)) Explorateur de vayfables [Aide |
randint(low = , Size = 1) —_—
Console IPython 8 x
numpy . random choice [} Console VA D } %,
o TR e ———

b=('a', '
choice(a = b, s , replace = r P = (17 Weradite ar "]3cancal -
choice(a = , s , "credits" or "license" for more

numpy . random permutation

-- An enhanced Interactive Python.
Introduction and overview of IPython's

D = r r
permutation(b)

. > Quick reference.
5= [nump\,.randon1 A Python's own help system.

- ’ ! 4 5 o] 5 ' 5 0
shuffle(b) ject? - ‘Detalls about 'object', use
extra details.

numpy . random
binomial(n = , p =

In [1]: numpy . random import choige
47 ot

(*a', 'b', 'c', 'd")

numpy . random poisson

poisson(lam = , si ['e’, 'T",

random
seed()

Drgits/d'acces : RW Fins de ligne : LF Encodage : UTF-8 Ligne : 47 Colonne : 1 Mémoire : 38 %

I'éditeur de texte l'explorateur de variables la console ou shell

Ci-dessous une copie d'écran de Pyzo 4 :

JeuDeDe0.py (fhome/bubu/Documents/Hubw/CoursMath/AlgoEtProgCalculettes/AA-ProgPython/Autres/jeuDeDe0.py) - Interactive Editor for Python
Fichier Edition Affichage Paramétres Shell Exécuter Outils Aide

— = = Shells
= Lien vers LoiGrandsNombressimul.py

ieEff

fs))

ieFreq / nbsim, 4) for i im range(16

tabloFreq

= s{x) wWorkspace ®

LEE D RZABLE ") =
IME DES)5 CHIFFRES OBTENUS") | LT ~
SIMULEE") : [Mame 2 | Type Repr |
° |Proba list <list with 16 elements> |
s3d_1 function <function S3d_1 at 0x7f150e3f30d0> |
e = <= s . UnivS3df list <list with 216 elements> |

“uUne univerfTriplets tuple <tuple with 216 elements>

def S3d_1(n 5 | cardUniversTri.. int 216 |
from random import rand e — = |
from matplotl import 4 de? it s |
ot T : afz int 4 |
for |
[’ int 215 |

listeEff list <list with 16 elementsf |
| mainloop_locals dict {'self: <matplotlib.bafkends.backend_qts.Show object at 0x7f1... |
n int 9
| nbsim int 10 |
plt module <module 'matplotfib.pyplot’ from ‘rfhomesbubusminiconda3/ibr... |
1 probas3d function <function probag3d at 0x7f150e2ecf28> |
print{tab randint method <bound methog/Random.randint of <random.Random object a... |
print(t serieEffectifs list <list with 16 elgments> |
. _ serieFreq list <list with 16 efements> |
show_locals dict Lhw': 3, 'argy: O} |
tabloEffec dict {3:0.4:0,5f0.6:0,7:2,8:0,9:1,10:0,11:3,12:0, 13: 1, 14: 2,
|tabloFreq dict .0, 4: Qf0, 5: 0.0, 6: 0.0, 7: 0.2, 8: 0.0, 9: 0.1, 10: 0.0, 11: 0.3, 1
tabloProba dict .0046f 4: 0.0139, 5: 0.0278, 6: 0.0463, 7: 0.0694, 8: 0.0972, 9:
troisDes int
= range rangeliias)

I'éditeur de texte la console ou shell l'explorateur de variables

Ci-dessous une copie d'écran de RStudio :

RStudio
Edit Code Wiew Flots Session Build Debug Tools Help
T - 2 | Addins - &l project: (None) -
Environment History
= [| & import Dataset~ | & List -
Giobal Environment =
LLELA11 4) Values
iloee DepAX 1
DepAX = T Pepdy : wpn wpe
DeplLX 1 ; DepLY <- N -+ 1 piece chr [1:2] F P
Functions
Piece Agneau sample(piece, N, replace = TRUE) LLELAL11 function (N = 4)
DeplaceAgneauX (Piece Agneau Py =
DeplaceAgneauyY = (Piece_Agneau = F*") *=-1
PositionsAX c(DepAX, cumsum(DeplaceAgneauX) + DepAX)
PositionsAY c(DepAY, cumsum(DeplaceAgneauY) + DepAY)
Piece Loup < sample(piece, N, replace TRUE)
DeplacelLoupX -(Piece_ Loup P")
DeplacelLoupY -(Piece_Loup F™)
PositionsLX c(DepLX, cumsum(DeplaceLoupX) + DepLX) Files | Plofs | Packages Help | Viewer
PositionsLY c(DepLY, cumsum(DeplacelLoupY) + DepLY) f® Zoom | 3| Export~ | € e “%- Publish
plot(c(1l, N + 1), y N + 1), xlab , ylab
text(c((N -+ 1), cf
cex .6 P c(3, 1), col = c{)
points (Position K, PositionsAY, pch 1 3 1 B e
ines (Position - = 61 — N
3a:1 | (Top Leven
Console
_— 3 -
o -
+ 11
o~ Ty
LLELAL1()
[1]1 "Rencontr I J
i T T T
1 2 3 4 5

I'éditeur de texte la console ou shell I'explorateur de variables la fenétre graphique

La fenétre graphique est particulierement utile lorsque 1'on veut comparer les graphiques illustrant plusieurs
simulations.

2. Utiliser 1a console interactive (shell en anglais).

2.1. Exécuter des lignes de commandes simples dans la console

Travailler directement dans l'interpréteur de commande (ou shell ou console) permet de tester des
commandes. Elles sont saisies apres lg/ "prompt" >>> et peuvent étre exécutées en appuyant sur la touche
"entrée". Ce n'est pas le mode habituel pour exécuter des programmes car ¢a n'est pas pratique.

B e T :) Testez dans cette fenétre les commandes qui suivent :

>>> 549

<tmp 1>

L >>> 8%6
>>>4/3
>>> (5+7%3)/2
Source struct... B) File Browser @@ . “ 7 Je . r
—= . Jasmwmmmens s | LA priorité des opérations est-elle respectée ?
T crlusers\fanrick

= | Saisir ensuite :
d;:if;\e;t\\b >>>3 kk 2

spyder-py3
texlive2012

1=pyc T |[searchinfies A >>>3**3

Quelle fonction a la commande ** ?

2.2. Objets Python et affectation

Pour exécuter les certaines opérations arithmétiques, le langage interprété Python utilise des variables. Ce
sont des objets informatiques que le langage sait manipuler a 1'aide de certains opérateurs, tout comme on
utilise des objets mathématiques qui interviennent dans des opérations mathématiques.

Mais attention, une variable informatique est une référence a un emplacement en mémoire vive, dont le
contenu peut évoluer pendant le déroulement du programme, mais qui ne peut prendre qu'une seule "valeur" a
un moment donné. Une variable informatique peut aussi contenir une chaine de caracteres. Elle est, en tout cela,
mais pas uniquement, diftérente d'une variable en mathématique ou d'une variable en statistique.

L'affectation d'une valeur a une variable s'effectue a 1'aide du symbole €gale « =». La encore il faut bien
faire la différence avec la relation mathématique =, intervenant entre 2 objets, assertion vraie ou fausse et
l'affectation informatique d'une référence a une "valeur". On place une "valeur" dans une "case" ayant une
"adresse". Certaines calculatrices utilisent le symbole —, le langage R peut utiliser les symboles =, —, «—.

Testez, dans l'interpréteur de commandes, les instructions suivantes :

>>>3 =5

>>>h =3.14 #Le séparateur décimal en Python est le point.
>>>type(a) #Que s'affiche-t-il ?
>>>type(b) #Que s'affiche-t-il ?
>>>c¢ = "Salut"

>>>type(c) #Que s'affiche-t-il ?
>>>d =3, 5, 2.7, "coucou"]

>>>type(d) #Que s'affiche-t-il ?
>>>e = (3, 5, 2.7, "coucou"

>>>type(e) #Que s'affiche-t-il ?
>>>f = True

>>>type(f) #Que s'affiche-t-il ?

>>>¢0 = range(8)
>>>type(g) #Que s'affiche-t-il ?

Afin de faciliter la lecture des lignes d'instruction, il est d'usage de mettre des espaces de chaque coté des
operateurs.

Il est important de noter que les variables peuvent étre de types différentes, le typage se faisant
automatiquement lors de l'affectation d'une adresse a un contenu. L'interpréteur Python sait reconnaitre certains
type de variables. Il faut parfois l'aider en saisissant des "signes" lui permettant cette reconnaissant. C'est ce
qu'on appelle le typage automatique des variables.

Donner quelques exemples de types des variables que vous venez de rencontrer :

D'autres types existent, dont nous rencontrerons quelques exemples par la suite. Remarquez que l'objet de
type "list" peut étre constituée de variables de types différents. Certaines opérations ne peuvent pas se faire sur
tous les types de variables ou sur des variables de types différents. Testez en observant l'explorateur de
variables :

>>>c=a+b
>>>c
>>>c=c *3

>>>type(c) #0n a ré-affecté a la variable ¢ une autre valeur

>>>c ="a nouveau du texte !"

>>>type(c) #On peut recommencer autant de fois que l'on veut une ré-affectation
>>>a+ ¢ #Que s'affiche-t-il ?

>>>c¢ * 3 #Que s'affiche-t-il ?

Pour d'avantage d'informations a propos des types de variables et de leur utilisation, vous pouvez consulter
l'aide de Python, trés utile et fourmillant d'exemples. Nous donnons également en annexe un complément utile
sur la notion d'affectation. En ce qui concerne les variables, nous utiliserons ici essentiellement les types int,
float, str, tuple et list.

B Exercice 2—1 : Signalons au passage 'opérateur modulo, représenté par le symbole %. Cet opérateur
fournit le reste de la division entiere d'un nombre par un autre. Essayez par exemple :
>>>10 % 3
>>>10% 5
Cet opérateur vous sera tres utile plus loin, notamment pour tester si un nombre a est divisible par un
nombre b. Il suffira en effet de vérifier que a % b donne un résultat égal a zéro.

Vérifier a 'aide de la commande modulo si le nombre 33294 est divisible par 3 puis par 17.

B Exercice 2-2 (un grand classique) : Saisir dans le prompt de commandes
>>> =5

>>>h=2

Puis saisir des instructions (en nombre minimum) qui permettent d'échanger les valeurs de a et de b.
Vérifiez apres coup.

2.3. Compléments utiles sur la notion d'affectation

2.3.1. L'affectation paralléle

>>>a, b=3,4 #J'affecte simultanément a a la valeur 3 et a b la valeur 4

Ici, la ligne de code ci-dessus parvient exactement au méme résultat que les deux lignes de codes :

>>>3 =3

>>>h =4

444 ATTENTION ! II convient cependant de bien comprendre comment fonctionne I'affectation paralléle par
rapport a l'affectation simple.

B Exercice résolu 2-3 : on souhaite échanger les valeurs de 2 variables a et b.
e Résolution avec l'affectation simple

>>>q =13

>>>h =4
#Fausse bonne idée : échanger directement les valeurs de a et b

>>>a=Db #a prend la valeur 4

>>>h=a #La valeur 4 étant a présent affectée a la variable a, b la prend aussi !
#Au final, a et b valent 4
#On va avoir besoin d'une variable supplémentaire pour stocker la valeur
#initiale de a. Corrigeons le script...

>>>g =3

>>>h =4

>>>c =a #J'affecte a c la valeur initiale de a, c'est-a-dire 3

>>>a =Db #a prend la valeur de b, c'est-a-dire 4

>>>p =¢ #b prend la valeur de c, c'est-a-dire la valeur initiale de a : 3

e Résolution avec l'affectation simple

>>>a3, b=3,4 #J'affecte simultanément a a la valeur 3 et a b la valeur 4

>>>a b=Db,a #ET LA, GROSSE DIFFERENCE : les expressions de la partie droite sont

#d'abord toutes évaluées avant qu'aucune affectation ne se fasse.
#Comme b vaut 3 et a vaut 4, le tour est joué !

B Exercice 2—4 : Sans utiliser Python, quelles valeurs vont étre affectées a a et a b au final aprés les lignes
de codes suivantes ?

>>>a, b=6,10 >>>a b=6,10
>>>a=b >>>a b=b,a-b
>>>b=a-b

2.3.2. L'affectation paralléle

Exemple :

a=b=>5 #On affecte simultanément a a et a b la valeur 5. Raccourci tres pratique

2.3.3. Les surprises de I'affectation, deux exemples

Observez ce qui se passe a l'aide de I'explorateur de variables. [2, 3] est une liste, (2, 3) est un tuple.
>>>a, b = 6, 10 #donne le méme résultat que >>> a, b = (6, 10) # et que >>>(a, b) = (6, 10) # par contre
>>>a =12, 3 # et >>>a = (2, 3) # donnent le méme résultat, différent du précédent.

>>>c=[2,6,7] >>d[2] =5 >>e[0] =8
>>>c[1]1=0 >>d >>e
>>>c >>c >>C

>>>d = ¢ >>e = ¢[:]

2.3.4. Pluralités problématiques, exceptions syntaxiques, quatre exemples

Jappelle pluralité problématique, essentiellement du point de vue pédagogique tant pour les enseignants que
pour les €leves, le fait que le méme symbole corresponde a plusieurs actions tres différentes quand ils sont
utilisés dans le langage Python. C'est malheureusement assez fréquent dans ce langage, et on rencontre méme
ce probléme dans les bibliothéques dont plusieurs modules portant le méme nom font des choses différentes !

2.3.4.1. Pluralités problématiques

» [...] crée des listes OU pointe des ¢léments d'une liste pour lecture ou affectation, deux actions trés
différentes pour un méme symbole.

a = ['prob’, 3, 2.5] #création d'une liste. a[2] = 'affect’ #pointe la case d'indice 2 de la liste
a[0] #pointe 1'élément d'indice 0 et I'affiche. our lui affecter une chaine de caracteres.

» : délimite un bloc OU agrége des références dans des listes. A ne pas confondre avec les : de Texas ou de

R.
suite u=[20];n=10 suite_u[2:5] #Affiche les éléments d'indices 2 a 4.
u = suite_u[0] suite u[:5] #Affiche les éléments d'indices 0 a 4.
for iin range(n + 1): suite_u[6:] #Affiche les ¢léments d'indices 6 au dernier.
ifu%2==0: suite u[:] #Affiche tous les éléments.
u=int(u/2)
else:

u=imt3*u+1)
suite_u.append(u)
print(suite_u)
On trouve :
[20, 10,5, 16,8,4,2,1,4,2, 1, 4]

P (...) crée un tuple OU délimite les parametres d'une fonction OU ne fait rien ...

a, b= ('prob/, 3, 2.5), (8, 7) #création de 2 tuples. |print(suite_u) #délimite les parametres d'une
a, b= (9, 7) #ne fait rien fonction.

» Nous verrons les exemples concernant les modules dans le chapitre 9.
2.3.4.1. Exceptions syntaxiques, un exemple

» Python 3 un langage fonctionnel dans lequel les instructions sont des fonctions (au sens informatique).
Une instruction est donc suivie, normalement obligatoirement, de parenthéses dans lesquelles figurent les
parametres ou rien s'il n'y a pas de paramétres. Il y a malheureusement des exceptions.
Par exemple l'instruction return qui ne donne pas le méme résultat selon qu'elle est suivie de rien, de
parenthese ou de crochets ...
print(‘obligatoire') #parentheses obligatoires. return a, b #retourne un tuple (a, b).

suite u.append() #parenthéses sans arguments. | return(a, b) #retourne un tuple (a, b).
return [a, b] #retourne une liste [a, b].

3. Créer un script, utiliser les boucles while (tant que) et for (pour)

<tmp 1> (non sauvegarde) - Interactive Editor for Python

Fichier ~Edition Affichage Paramétres Shell Exécuter Outils Aide

Shells
!; <tmp 1=

[python .

Source struct... &) (¥ File Browser

— 0 _ E] D[Cliquez sur ['Etoile pohﬁu@ le répertoire & la liste des projets ¥]

DEEDB

custom (64-bit)| (default, Oct 1

@ ®

¥ \Wsers'\¥annick

. .anaconda

. .conda

. .config
ddlerc

. dpython

. jupyter

. .matplotlib

| spyderpy3
texlive2012

F L T

1= pyc || Rechercher dans les fichiers

3.1. Applications avec une boucle while

Exemple 3.1-1 :

Si le mode interactif est tres
pratique pour et tester, explorer des
commandes, découvrir les propriétés
des différents types de variables, D¢s
quil y a plusieurs lignes de
commandes, il est plus pratique de
créer des scripts que l'on peut
enregistrer pour d'éventuelles
réutilisations. Un script est tout
simplement du texte contenant des
lignes de code structurées selon
quelques reégles précises que nous
allons voir ci-dessous. Il faut donc
saisir le texte dans la fenétre de gauche
qui est I'éditeur.

En Python En langage naturel Avec CASIO Avec TI
compteur = 1 compteur «— 1 1-C 1-C
somme = 0 somme «— 0 0—S 0—S
while compteur < 6: Tant que compteur < 6 faire | While C<6 While C<6
somme = somfie + 2 somme «— somme + 2 $+2—S8 S+2—-8
compteur = ¢ompteur + 1 compteur «<— compteur + 1 C +,1 —C Crl—-C
q . WhileEnd End
print(somme Fin Tant que g Disp S
Afficher somme = P

uelgues regles pour I'écriture des scripts :

e les double-points « :» sont obligatoires, ils précédent un nouveau bloc d'instructions qui doit
obligatoirement étre indenté.

e L'indentation du bloc d'instruction suit le double point « : »

e ['utilisation de cette boucle conditionnelle while a un intérét pédagogique car nous voyons
I'évolution du compteur a chaque tour. Ceci ne transparait pas aussi clairement avec une boucle du
type Pour lors d'une premiére approche. On peut alors faire remplir un tableau d'évolution des
variables a titre d'exemple.

Enregistrez ce script via Ctrl+S (ou via le menu fichier) sous le nom exemple3-1-1 (qui prendra l'extension
.py) et exécutez-le via Ctrl+FS5 ou via la commande exécuter du menu Exécuter.

Quel est le résultat affiché ?

B Exercice 3—1:

1. Modifier le script pour calculer la somme S=2+4 +6 +...+100 et donner le résultat.
2. Modifier le script pour calculer le produit P=2x4X6X...X18 et donner le résultat.
3

1 1 1

Modifier le script pour calculer la somme S=—+—+—+... +L et donner le résultat.

3 57

101

3.2. Applications avec une boucle for

Lorsque le nombre d'itérations est connu a l'avance, le mieux est d'utiliser une boucle for (pour). Cette
derni¢re se conjugue en Python avec la fonction prédéfinie range(...), que nous allons d'abord tester dans
l'interpréteur de commandes (fenétre de droite) en lien avec une liste.

Saisir :
>>>range(10) #rien ne se passe a priori, et pourtant...
>>>[1 for i in range(10)] #création d'une liste définie par compréhension.
>>>ist(range(10)) #création d'une liste, permet de visualiser 1'effet de range(...).
>>>tuple(i for i in range(10)) #creation d'un tuple défini par compréhension.
>>>tuple(range(10)) #création d'un tuple, permet de visualiser l'effet de range(...).

Quel résultat renvoie la fonction range(N), ou N est un entier naturel non nul ?
Saisir :
>>>[1 for i in range(1, 11)]
>>>[i for i in range(2, 21)]
>>>[1 for i in range(1, 21, 2)]
>>>[1 for 1 in range(1, 25, 3)]
Quel résultat renvoie la fonction range(a, b, k) ou a, b et k sont des entiers naturels ?
On donne ci-dessous un script alternatif a celui fourni en exemple 3.1-1 :
somme = 0
for compteur in range(1, 6):
somme = somme + 2
print(somme)

Remarquez que le bloc d'instruction se réduit alors a une seule ligne.

m Exercice 3-2:
1) Reprendre les questions 1 a 3 de I’exercice 3—1, en utilisant une boucle for et la fonction range().

2) Créer un script qui calcule et affiche S= ! + ! +..+ ! .
2X4 2X4X6 2X4X6X...X20
10 1
3) Créer un script qui calcule et affiche P= H]
i=1 +1

B Exercice 3-3 : Programmer la suite récurrente linéaire d'ordre 2 définie par u,=2, u,=3 et pour tout

: 1 .
entier naturel n u,, ,= 5 a1 4u, . Vous afficherez tous les termes de u, a u,, .

m Exercice 34 (Flash premiére) : Ecrire un programme qui utilise une boucle for et qui calcule la
somme des 30 premiers termes consécutifs d'une suite géométrique de premier terme u,=—15 et de

raison r=2 .
B Exercice 3-5 : Que renvoie I'expression
>>>[i for i in range(20, —1, -2)] ?
En déduire un exemple pour les boucles a pas dégressifs.
Idée d'application : résolution de systémes triangulaires simples par remontée.
Remarque : Nous verrons plus loin qu'il est préférable d'éviter, tant que possible, les boucles. Des outils, dont
ceux de la bibliothéque numpy nous permettent parfois de nous en passer : c¢f 1'exercice suivant.

B Exercice 3—6 : Reprendre I'exemple 3.1-1 et les exercices 3—2 a 3—5 en utilisant les tuples ou les listes,
mais sans faire appel a la bibliothéque numpy.

4. Input — Output (entrées et sorties de données), un résumé

4.1. input : entrée des données au clavier

La commande de base est l'instruction input(...) qui attend que l'utilisateur saisisse une donnée a 1'écran.
Attention, en Python (version 3.6), tout ce qui est saisi sera automatiquement interprété comme une variable de
type str (chaine de caracteres). Si nous avons a saisir un nombre (entier ou flottant, il faudra composer avec une
autre instruction).

Dans la programmation des langages fonctionnels, les entrées se font uniquement par l'intermédiaire des
parametres des fonctions informatiques. Il n'y a plus quasiment plus besoins de "input".

On retiendra ceci :

Pour saisir une chaine de Pour saisir un entier : Pour saisir un nombre flottant :
caracteres : d = int(input("Saisir un entier ")) e = float(input("Saisir un nombre
¢ = input("Saisir votre texte ") réel "))

Remarques : ® la commande input(...) permet de faire afficher un message de votre choix écrit entre guillemets.
e Sinon utiliser int(input(...)), float(input(...)). Pour les listes saisir ¢lément par ¢lément.

4.2. print : sorties de données a l'affichage

Selon que I'on veuille simplement écrire la valeur d'une variable issue d'un calcul, du texte ou les deux, la
syntaxe sera la suivante :

Pour écrire la valeur d'une variable |[Pour écrire du texte : Pour mixer les deux :
saisie ou traitée auparavant : print("Texte") #Le texte est print("Texte 1", variable 1,
print(variable) entre guillemets. "Texte 2", variable 2, ...)

4.3. Opérateurs de comparaison :

Ces derniers sont indispensables dans la création de scripts.

Opérateur Signification Syntaxe Python
< Strictement inférieur a <
< Inférieur ou égal a <=
> Strictement supérieur a >
> Supérieur ou égal a >=
= Egal a ==
#+ Différent de I=

B Exercice 4-1 : écrire un script qui étant donné un triangle ABC rectangle en A, demande a l'utilisateur
de saisir les mesures des cotés AB et AC et renvoie la valeur de I'hypoténuse BC. (on invoquera la
fonction racine carrée des la premiere ligne via l'instruction : from math import sqrt)

B Exercice 4-2 : écrire un script qui étant donné un triangle €quilatéral ABC, demande a I'utilisateur de
saisir la mesure d'un co6té, et renvoie la mesure de sa hauteur.

B Exercice 4-3 : écrire un script qui donne la table de multiplication par N, ou N est un entier naturel saisi
par l'utilisateur.

11 s'affichera par exemple pour N =4 :
0 fois 4 égale 0
1 fois 4 égale 4

10 fois 4 égale 40

B Exercice 44 : écrire un script qui demande a 'utilisateur :
1) de saisir un entier naturel N non nul,

2) de saisir un autre entier naturel L non nul,

3) et qui affiche la table de multiplication de L par N sous la forme d'un tableau de taille
(N+1)X(L+1) (éléments en gras) de la maniére suivante :

Par exemple, si N =4 et L =3, il s'affichera :

N 0 1 2 3 4
L
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 6 8
3 0 3 6 9 12
Indication : la commande \n permet un retour a la ligne ; la commande end = """ permet de rester sur la

méme ligne.

5. Instructions conditionnelles

Nous en avons déja rencontré une a travers la boucle conditionnelle while. En ce qui concerne l'instruction

conditionnelle classique if — else (Si — Sinon), on peut donner le tableau récapitulatif suivant :

Langage naturel

En Python

Avec CASIO

Avec TI

Si condition vraie faire
instructionl
Sinon faire

if condition vraie:
instruction 1
else :

If condition vraie
Then instruction 1
Else instruction 2

Af condition vraie
:Then instruction 1
:Else instruction 2

instruction 2 instruction 2

Fin Si

IfEnd. :End

Remarques :

e Si l'alternative est de ne rien faire, une simple instruction if suffit,

e Dans le cas de plusieurs conditions disjointes deux a deux, on dispose de l'instruction elif, contraction

de else + if (Sinon si) :

Si (condition 1 vérifi¢e) faire
Bloc d'instructions n°1

...etc.

Sinon si (condition N-1 vérifiée) faire
Bloc d'instructions n° N-1

if condition 1 vérifiée:

Bloc d'instructions n°1
...etc.
elif condition N-1 vérifiée:

Bloc d'instructions n°® N-1

Sinon faire else:
Bloc d'instruction n® N
Fin Si

Bloc d'instruction n® N

B Exercice 5-1 : Ecrire un script qui demande a l'utilisateur de saisir une note N entre 0 et 20 et qui
renvoie le message « recu » si N>10 et recalé sinon.

B Exercice 5-2 : Convertir une note scolaire N quelconque (sur 20), entrée par l'utilisateur sous forme de
points (par exemple 12,75), en une note sous forme de lettre standardisée suivant le code suivant :

Note Appréciation
N>=16 A
16 >N >=12 B
12>N>=10 C
10>N>=8 D
N<8 E

B Exercice 5-3 : Déterminer si une année (dont le millésime est saisi par l'utilisateur) est bissextile ou
non. (Une année A est bissextile si A est divisible par 4. Elle ne 1'est cependant pas si A est un multiple
de 100, a moins que A ne soit multiple de 400). Le ET du tableur s'écrit « and » en Python, et le OU
s'écrit « or ».

B Exercice 54 *(Flash seconde) :

Ecrivez un programme qui demande a l'utilisateur de saisir les coordonnées de quatre points A, B, C et
D et qui détermine précisément la nature du quadrilatere ABCD (trapéze, parallélogramme, rectangle,
losange, carré ou quelconque)

Indication : Faire d'abord un schéma des situations comme dans 1'exercice précédent.

B Exercice 5-5 (un grand classique qui plait) : « Le jeu du devin » : la commande randint(a,b) renvoie
un entier (pseudo-)aléatoire entre a et b inclus. On l'appelle via la commande from random import
randint.

1) Programmer un script qui choisit au hasard un entier (pseudo-)aléatoire entre 1 et 100, et demande a
l'utilisateur de le deviner. Tant que ce ce dernier n'a pas trouvé ce nombre, il recommence : s'il saisit
un nombre plus grand (resp.) plus petit, I'ordinateur renverra le message « plus petit » (resp. « plus
grand »). En cas de victoire, le message sera « gagné » avec le nombre d'essais utilisés.

2) Modifier le programme précédent pour que le nombre d'essais soit limité a 10.

m Exercice 5-6: Ecrivez un programme qui affiche en ligne les 15 premiers termes de la table de
multiplication par 7, en signalant au passage (a I'aide d'un astérisque) ceux qui sont des multiples de 3.

Exemple : 0* 7 14 21* 28 35 42* 49 ...

B Exercice 5-7 : Convertir un entier en nombre Romain.

On demande a l'utilisateur de choisir un entier compris entre 1 et 3999. L'ordinateur le convertit ensuite
en nombres romains.

Rappel : En nombres romains, on a :

un deux trois quatre cinq Six sept
I II 1 v \Y VI VII
huit neuf dix cinquante cent cing cents mille
VIII IX X L C D M

Vous chercherez sur Internet le principe d'écriture d'un nombre en nombre romain. Testez-le ensuite sur

les exemples qui suivent :

a) 2397

b) 3912

c) 3812

d) 756

6. Un peu de dessin avec le module turtle

Prenons quelques instants de détente en utilisant le module Turtle de Python (référence a la tortue du
LOGO). C'est par ailleurs un excellent moyen de faire travailler les éléves sur la notion de boucle, de
coordonnées, avec le double avantage de visualiser directement le résultat et de pouvoir comparer ce-dernier
avec celui a acquérir. Des erreurs d'indentation classiques, trés formatrices, sont alors aisées a corriger, et sont
un excellent moyen d'acquérir de la rigueur.

On appelle le module turtle via la commande « from turtle import™® ».

Les principales commandes qui nous seront utiles sont :

from turtle import * Permet d'importer les commandes pour les tracés.
reset() On efface tout et on recommence

goto(x,y) Aller a I'endroit(x,y)

forward(x) Avancer de la distance x

backward(x) Reculer de la distance x

up() Relever le crayon (avancer sans dessiner).
down() Abaisser le crayon pour recommencer a dessiner.
left(x) Tourner a gauche d'un angle en degrés égal a x.
right(x) Tourner a droite d'un angle en degrés égal a x.
color('couleur’) colorie les traits du dessin en la couleur choisie.
begin fill() ... end fill() |remplit le dessin.

B Exercice 6-1 : Par défaut, le premier déplacement s'effectue horizontalement, vers la droite. Sans vous
servir de I'ordinateur, devinez ce que font les scripts qui suivent :

from turtle import *

for i in range(6):
forward(100)
left(360/6)

from turtle import *

for i in range(5):
forward(50)
left(72)

from turtle import *

for i in range(12):
forward(80)
left(30)

#petit indice : a la place d'écrire left(60)

B Exercice 6-2 : écrivez un script qui renvoie les dessins suivants :
1. Un carré de coté 70,

2. Un heptagone de co6té 100,

3. La figure (de c6té 100) qui suit. Avec juste deux boucles pour la construire.

JAVAN
/N

4. Cinq carrés de coté 15 dont les bases sont espacées de 15 :

ooooao,

5. Les mémes carrés, avec le méme espacement, mais dont les c6tés s'accroissent de 10.

L] >

6. Un carré de carrés rouges (tous de taille 15 et espacés de 15)

>
e 5 S

5
0 T
i e e
[e o e Y

7. Les quadrillages suivants (longueur des traits de 150, espacement de 10) :
»

A
8. Dessiner les figures suivantes (le diametre du cercle est de 150) et il y a 40 bandes horizontales pour
la premicére, a laquelle on rajoute 40 bandes verticales pour la seconde. La commande circle(r) trace
un cercle de rayon r a partir de son « pole sud ».

9. Le motif qui suit :

10. Et ce motif (le carré a pour c6té 40) : si vous bloquez, attendez la section 8 !

10. Rajoutez un carré vert inscrit dans le cercle rouge passant par les 4 points de tangence.

Yannick Le Bastard — Hubert Raymondaud — Formation Python — Occitanie — Mars 2019— V2 page 16 sur 35

7. Chaines de caracteres et listes

Ce sont deux types de variables particulierement utiles et utilisés. Si le second a sa place (ténue) dans les
calculatrices, le premier peut étre exploité efficacement en Python. La rapidité de calcul de ce dernier est
cependant sans commune mesure avec nos outils de poche.

Nous n'en donnerons ici qu'un bref apercu.

7.1. Les chaines de caracteres (type str — string)

7.1.1. Définition et exemples

Sous Python, une donnée de type string est une suite quelconque de caractéres (texte ou méme nombres)
délimitée soit par des apostrophes (simple quotes), soit par des guillemets (double quotes).

Exemple 7.1-1 : Tester sous Pyzo les commandes suivantes
>>> phrasel = "Voila un écrit '

>>> phrase2 = 'bien intéressant'

>>> print(phrasel, phrase2)

Voila un écrit bien intéressant

A l'intérieur d'une chaine de caracteres, 1'antislash « \ » permet d'insérer un certain nombre de codes spéciaux
(sauts a la ligne, guillemets, etc.). On ne donne que l'exemple des sauts a la ligne.

>>> phrase3 = "Comment s'appelle-t-il ?\n Ce rustre ?"
>>> print(phrase3)

Comment s'appelle-t-il ?

Ce rustre ?

Python considére les chaines de caractéres comme une collection ordonnée d'éléments. Pour accéder a un
¢lément de la chaine, on saisit le nom de la variable et on lui accole entre crochets le numéro de 1'élément
considéré. On parle aussi de liste indicée. Attention, la numérotation (I'indice) commence a zéro !

Exemple 7.1-2 : Tester sous Pyzo les commandes suivantes
>>>mot = 'erg4jubop’

>>> print(mot[0])

e

>>> print(mot[3])

4

7.1.2. Opérations élémentaires sur les chaines de caractéres

7.1.2.1. La concaténation

Cette opération consiste a mettre bout a bout les éléments constitutifs de plusieurs chaines de caracteres. Elle
se symbolise a l'aide de l'opération +
Exemple 7.1-3 : Tester sous Pyzo les commandes suivantes

>>>mot1="Mais c'est " #Le caractere spécial apostrophe est dans les double quotes
>>> mot2="merveilleux !"

>>> print(mot1-+mot2) #0On concaténe motl et mot2

Mais c'est merveilleux !

>>> print(mot2+mot1)

merveilleux !Mais c'est #L'ordre est important.

7.1.2.2. Déterminer la longueur d'une chaine

Cette opération s'effectue grace a la fonction len(...).

Exemple 7.1-4 : Tester sous Pyzo les commandes suivantes

>>>mot = "adseghbm55f"
>>> len(mot)

11

7.1.2.3. Convertir une chaine de caracteres en nombre

Exemple 7.1-5 : Tester sous Pyzo les commandes suivantes

>>>nbl ="'54'
>>>nbl +5

Traceback (most recent call last):
File "<pyshell#36>", line 1, in <module>
nb + 5
TypeError: Can't convert 'int' object to str implicitly

>>>int(nbl) + 5 #On convertit la chaine nbl en entier grace a la fonction int()

59

>>>nb2 ='20.36'
>>> float(nb2) + 4 #On convertit la chaine nb2 en flottant grace a la fonction float()

24.36

Remarque : La chaine qui ne contient aucun élément se note "" (rien entre les guillemets)

Exercice 7.1-1 : Ecrire un programme qui :

1) demande a l'utilisateur de saisir une chaine de caracteres

2) compte le nombre d'occurrences du caractére « a » dans cette chaine.

3) Si « a » n'apparait pas, le programme le rajoute a la fin de la chaine et affiche la chaine.

Exercice 7.1-2 : Ecrire un programme qui recopie une chaine (dans une nouvelle variable) en
l'inversant. Ainsi par exemple, « bouchon » deviendra « nohcuob ».

Exercice 7.1-3 : Ecrire un programme qui :

1) demande a l'utilisateur de saisir une chaine de caractéres sous la forme de lettres minuscules et
convertit toutes les minuscules en majuscules.

2) Et vive-versa !

3) effectue ces deux opérations dans une chaine de caracteres de casses mélangées.

Indication : cf1'aide de Python ou le Web pour la numérotation des caracteres en ASCII

Exercice 7.1-4 : L'utilisateur doit saisir une chaine d’ADN valide et une séquence d’ADN valide («

valide » signifie qu’elles ne sont pas vides et sont formées exclusivement d’'une combinaison arbitraire

de "A","T", "G" ou "C"). Pour l'approche fonctionnelle, se référer au paragraphe 7.

1) Ecrire une fonction valide qui renvoie True si la saisie est valide, False sinon.

2) Ecrire une fonction saisie qui effectue une saisie valide et renvoie la valeur saisie sous forme d’une
chaine de caracteres.

3) Ecrire une fonction proportion qui recoit deux arguments, la chaine et la séquence et qui retourne la
proportion de séquence dans la chaine (c’est-a-dire son nombre d’occurrences).

Le programme principal appelle la fonction saisie pour la chaine et pour la séquence et affiche le
résultat.

Exemple d’affichage :
I1ya13.33 % de "CA" dans votre chaine.

Indication : vous rechercherez dans l'aide Python la méthode count pour les chaines de caracteres.
La syntaxe est chaine.count(sous_chaine).

7.2. Les listes (type list et type tuple)

7.2.1. Définition et exemples

Sous Python, on peut définir une liste comme une collection d'éléments (éventuellement de types divers)
séparés par des virgules, I'ensemble étant encadré par des crochets.

Exemple 7.2—1 : Tester sous Pyzo les commandes suivantes :
>>> maliste = ['abc', 'hello’, 20, 3.14, 'coucou']

>>> print(maliste)

['abc', 'hello', 20, 3.14, 'coucou']

Remarque : Comme les chaines de caracteres, les éléments d'une liste sont numérotés en commencgant a zéro.

Exemple 7.2-2 : Tester sous Pyzo les commandes suivantes
>>> maliste = ['abc', 'hello’, 20, 3.14, 'coucou']

>>> maliste[0]

'abc’

>>> maliste[2]
20

A retenir : l'indice d'une liste de n éléments commence a 0 et se termine a n-1

7.2.2. Opérations de base sur les listes
7.2.2.1. Concaténation et duplication
Comme pour les chaines de caractéres, I'opérateur + sert pour concaténer des listes et * pour les dupliquer.

Exemple 7.2-3 : Tester sous Pyzo les commandes suivantes
>>> listel = [325, 'bonjour’, 65, 69]
>>> liste2 = ['ha', 'ben', 564]

>>> listel + liste2 #concaténation
[325, 'bonjour’, 65, 69, 'ha', 'ben', 564]
>>> |iste2 * 3 #répétition

['ha', 'ben', 564, 'ha', 'ben', 564, 'ha', 'ben', 564]
Python est un langage « orienté objet ». On dispose de méthodes spécifiques permettant d'effectuer certaines
actions sur des objets. Nous considérerons ici qu'une liste est un objet.

7.2.2.2. Ajouter un ¢lément a la fin d'une liste

Exemple 7.2—4 : Tester sous Pyzo les commandes suivantes
>>> maliste = [201, 45.8, 12]
>>> maliste.append(35)
>>> maliste
[201, 45.8, 12, 35]
On a appliqué la méthode append(...) a 'objet maliste avec 1'argument 35. La syntaxe est :
liste.append(objet)

Remarque : la liste vide se note [|. La méthode append(...) est particulierement adaptée pour construire une
liste a partir d'une boucle.

7.2.2.3. Ajouter un élément a l'intérieur d'une liste
Exemple 7.2-5 : Tester sous Pyzo les commandes suivantes
>>> maliste = [201,45.8,12,35,89]

>>> maliste.insert(3,100)

>>> maliste

[201, 45.8, 12, 100, 35, 89]
La commande liste.insert(indice, objet) insére 1'objet dans la liste avant l'indice précisé.

7.2.2.4. Supprimer un élément dans une liste
Cette opération s'effectue grace a la commande del liste[indice] ou liste.remove(élément)
Exemple 7.2—6 : Tester sous Pyzo les commandes suivantes
>>> maliste = [55,201,89,33]
>>> del maliste[1]
>>> maliste
[55, 89, 33]
La fonction len(...) renvoie également le nombre d'éléments d'une liste.
Exemple 7.2-7 :
>>>maliste = [55, 120, 40, -8]
>>> len(maliste)
4

7.2.2.5. Sommer les éléments d'une liste
Exemple 7.2-8 :

>>> maliste = [2, 1.35, 4]

>>> sum(maliste)

7.35

7.2.2.6. Min et Max d'une liste
Exemple 7.2-9 :

>>>liste = [0, 2, 4, 12, 3, 5]
>>>min(liste)

0

=>>>max(liste)

12

7.2.2.7. Trier les éléments d'une liste (dans I'ordre croissant)

Exemple 7.2-10 :

=== liste = [0,2,4,12,3,5]
=== liste.sort()

=== liste
[0,2,3,4,5,12]

Remarque : On a appliqué la méthode sort() a l'objet liste. La syntaxe est : liste.sort()

7.2.2.8. Inverser les éléments d'une liste

Exemple 7.2-11 :
>>> maliste =[1, 2, 3, 4]

>>> maliste.reverse()

>>> maliste

[4,3,2,1]

Remarque : On a appliqué la méthode reverse() a I'objet maliste. La syntaxe est : maliste.reverse()

7.2.2.9. Le slicing (on s'en paye une tranche !)
Exemple 7.2-12 :

=>>liste=11,2,3,4,5,6,7]

=== liste[:2]

[1,2]

=== liste[2:]

[3,4,5,6,7]

=>>> liste[3:6]

(4,5, 6]

B Exercice 7.2-5: soit une liste L de longueur N>3 . On se donne deux entiers 0<a<b=<N .
Expliquez ce que font les opérations suivantes :

L[2:],L[3:] L[-2:],L[-3:] L[-b:]
2)L[:2],L[:3] L[:-2],L[:-3] L[:-b]
3)L[1:3],L[a:Db] L[::2],L]::-2] L[2:N:3]

7.2.2.10. Les listes définies en compréhension

Voici un moyen tres puissant de définir une liste. Ses éléments sont définis par une propriété commune qu'il
convient de bien définir.

Exemple 7.2-13 :

L'exemple qui suit crée la liste des 10 premiers carrés d'entiers

>>> carres = [1 ** 2 for i in range(1, 11)] #attention au décalage de fin avec la fonction range()
>>> carres

[1,4,9, 16, 25, 36, 49, 64, 81, 100]

Exemple 7.2-14 :

Essayons par exemple de définir la liste de tous les entiers pairs compris entre deux bornes, par exemple 51
et 106. Il est possible d'insérer une instruction conditionnelle « if ».

>>> pairs = [1 for 1 in range(51, 107) if 1%2 == 0]
>>> pairs
[52, 54, 56, 58, 60, 62, 64, 66, 68,70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106]

B Exercice 7.2—6 : écrire une commande d'une ligne seulement permettant de calculer :
15 15

1) SlSZZ:L et T15=Z !

k=1 (21()2 k=1 (2k+1)2

10
2) S ’:z @ apartirde S, en utilisant le slicing. (deux lignes ici)
k=4

3) cos(n/7)+cos(3m/7)+cos(5m/7)
N 1/2

4) La norme euclidienne sur RY : ||(a1,...,aN)||=(Z|ak|2) . On prendra par exemple
=1

(a)...,ay)=(V7,-4,3,2) .

B Exercice 7.2-7: la commande from random import randint permet d'importer la fonction
randint(a,b) qui génére un entier aléatoire compris entre les bornes entieres a et b incluses.
1) En utilisant cette commande, créer une liste de cinq entiers aléatoires compris entre 1 et 6,
2) Trier la liste dans I'ordre décroissant, avec, puis sans les méthodes sort() et reverse(),
3) Créer un script qui compte le nombre d'ex-aequo et les transfére dans une nouvelle liste.
4) Créer un script qui sépare en deux listes : entiers pairs et entiers impairs la liste créée a la question 1.

!!! Mise en garde importante : les listes sont des objets modifiables

Exemple 7.2-14 : Tester sous Pyzo les commandes suivantes :
>>>x = ['Monsieur', 'Seguin’, 'devient, 'chevre', 35]
>>>y=x #Attention y est seulement un alias de x
>>>y[1] = Fery' #change x[1] en 'Fery'

== print(x)

['Monsieur', 'Fery', 'devient', 'chevre', 35]

>>>y =x[:] #Cette fois-ci, on effectue une copie de x
>>>y[1] ="Renard’ #modifie y mais pas x

=>> print(x)

['Monsieur', 'Fery', 'devient', 'chevre', 35]

~> print(y)

['Monsieur', 'Renard', 'devient', 'chevre', 35]

B Exercice 7.2-8 : créer un script qui génere une liste aléatoire de 10 lettres minuscules : 5 consonnes et 5
voyelles, puis qui renvoie une nouvelle liste alternant consoles et voyelles dans leur ordre d'apparition.
Par exemple : la liste [a, o, e, f, 1, t, 1, y, Z,] sera transformée en [a, f, 0, t, €, 1, 1, Z, y, Z].

Indication : 1a commande shuffle(liste) permet de mélanger les éléments d'une liste donnée.

B Exercice 7.2-9 :

1) créer un script qui génere 1000 tirages de pile ou face avec une piece équilibrée et qui calcule la

fréquence de piles et de faces obtenus sur ces 1000 essais.
2) méme chose si la probabilité de faire pile est égale a 0,75.

B Exercice 7.2-10 : créer un script qui génere un brin d'ADN aléatoire de taille 10 et renvoie sa séquence

complémentaire.

7.2.3. tuples et opérations de base sur les tuples

Les tuples sont des listes non modifiables. Elles prennent moins de place en mémoire. Toutes les opérations
sur les listes excepté celles qui les modifient, peuvent étre utilisées sur les tuples.

Exemple 7.2-15 : Que font les commandes suivantes ? Vérifier en les exécutant.

>>>x = ('"Monsieur', 'Seguin', 'devient, 'chevre', 35)
>>> x[:2]

>>>x[2:]

=== x[1:3]

>>>x + X

>>> 3 * x

=== x.sort()

=>>> x.reverse()

=>>> x.append(5)

>>> x.insert(2, 'inser")
=>>> del x[4]

=>>> x.remove('chevre')
=== del(x)

8. La notion de fonction en langage de programmation

8.1. Syntaxe et mise en ceuvre

De méme qu'un organisme vivant (donc une structure biologiquement complexe) est constitu¢ d'un
assemblage de nombreuses cellules, un programme « compliqué » se structure en un assemblage de plus petits
sous-programmes, chacun ayant un role bien défini. Nous allons découvrir comment créer ces petits sous-
programmes et les utiliser pour en construire un autre plus compliqué.

L'utilit¢ de ces sous-programmes, que l'on appellera fonctions est primordiale lorsque 1'on veut réaliser
plusieurs fois la méme opération au sein d'un méme programme.

ATTENTION : Python ne distingue pas fonctions et procédures comme en Turbo Pascal.
La syntaxe Python pour définir une fonction est la suivante :
def nom_de la fonction(liste de parameétres):
Blocs d'instructions
Remarques :

e Vous pouvez donner a votre fonction n'importe quel nom sauf ceux réservés au langage comme while,
if, etc. et sans utiliser de caracteres spéciaux.

e L'indentation est obligatoire apres le mot clef « def » qui introduit le corps de la fonction et la
encore celui-ci est terminé par un double-point :

e Enfin les parenthéses peuvent ou non contenir un ou plusieurs arguments.

Les nouveaux programmes privilégient cette approche fonctionnelle, ancrée dans le domaine de
l'informatique. Aussi convient-il, sans rentrer dans les détails, de s'y intéresser.

Pour le moment nous allons utiliser Python en mode interactif.

Exemple 8.1-1 :
Recopiez le script qui suit dans l'interpréteur de commande de Pyzo :

>>> def carre(): #Pas de paramétres en argument ici
foriin range(4): #Remarquez l'indentation du bloc d'instructions
forward(50)
1eft(90)

#Tapez deux fois Entrée : La premiere fois valide la ligne en cours.
#La deuxieme valide la fonction, elle est alors disponible en mémoire.

>>> from turtle import *

>>> carre() #Exécute la fonction en réalisant toutes les instructions dans 'ordre du script.
#Que s'affiche-t-il a 1'écran ?

Remarques :

e L'intérieur des parenthéses est vide. Dans cette fonction, nous n'avons utilisé¢ aucun parameétre, c'est-a-
dire que 'utilisateur ne se donne pas le choix de faire varier par exemple la longueur du c6té du carré.

e Bien remarquer l'indentation apres l'instruction def suivie de deux points. Elle est obligatoire.

On aimerait pouvoir dessiner des carrés de tailles et de couleurs variables. Encore faut-il les choisir ! Pour
cela, on mettra ces données en parametre. A la suite de ce que vous avez saisi précédemment, €crire le script ci-
dessous :

Exemple 8.1-2 :
>>> def carre(taille, couleur):
color(couleur)
for 1 in range(4):
forward(taille)
left(90) #Appuyez deux fois sur la touche Entrée. Le prompt >>> réapparait.
Saisir alors :
>>> from turtle import *
>>> carre(40, 'pink")
#Que s'affiche-t-il a 1'écran ?
Saisir ensuite :
>>> carre(80, 'blue')
#Que s'affiche-t-il a 1'écran ?
Remarques :
e Le fait d'avoir mis la taille et la couleur du carré en parametres (a l'intérieur des parenthéses) permet

de tracer le carré avec les informations fournies. Il suffit de remplacer la taille et la couleur par les
valeurs choisies en appelant la fonction.

e On aimerait néanmoins demander a l'utilisateur de saisir la taille et la couleur a 1'écran pour qu'ensuite
la fonction soit appelée et dessine le carré. On séparera donc en deux la construction de la fonction et
le programme principal.

Tout programme en Python un peu complexe prendra nécessairement la forme suivante :
Liste de fonctions
#il peut n'y en avoir qu'une.
Programme principal (le 'main' en anglais)
#on utilise une fonction utilisant les fonctions précédentes.

m Exercice 8.1-1:

1) Créer une fonction polygone(taille,N) qui dessine un polygone régulier a N cotés dont la mesure du
coté est taille, puis 'utiliser pour dessiner la figure suivante :

ool ownowo Yo
Les polygones, ont leurs cotés de mesure 20 et leurs bases sont espacées de 30.

2) La figure suivante (les polygones ont tous un coté de 80) :

3) Le motif de motifs :

%%%

e

Mais les fonctions sont tout aussi utiles, et c'est méme leur but, pour décomposer un probleme complexe en
une multitudes de problémes simples. Reprenons par exemple le calcul de
1 1 1

S=—-+ ..t
2X4 2X4X6 2X4X6X...X20

rencontré a la question 2 de I'exercice 3-2 (Partie 3).

Les dénominateurs successifs sont les produits des nombres pairs de 2 a X, X nombre pair variant de 4 a 20 (y
pour généraliser). La fonction denominateur va calculer cette somme. La fonction principale siprod() calculera
la somme des inverses de tous ces produits.

Exemple 8.1-3 :

def denominateur(x): #Pour calculer 2*4, 2%4%*6, ..., 2*4*6* . *x, x entier pair de 4 a 20.
p=2
foriin range(4,x + 1, 2) : #Le pas est de 2
p=p*i
return p

#Programme principal Algorithme 1, utilise denominateur(x)
def siprod1(y = 20):
sip=0
for x in range(4, y + 1, 2): #Attention a 'argument de fin de range
sip = sip + 1 / (denominateur(x))
return sip
Remarque : pour les accros des listes, on peut remplacer le programme principal par :
#Programme principal Algorithme 2, utilise denominateur(x)
def siprod2(y = 20) :
sip = sum([1 / (denominateur(x)) for x in range(4, y + 1, 2)])
return sip
Les méthodes associées aux listes sont des outils tres efficaces.

B Exercice 8.1-2 : écrire un programme utilisant une fonction exactement :
a) Qui demande a 1'utilisateur de saisir un entier N.

N
b) Et qui calcule u sz L,
k=0 k!
1

nn!

et v sont adjacentes. Leur limite commune et bien connue est e. En utilisant ces deux suites, déterminer
e avec au moins 9 chiffres significatifs.

Soit (v,) la suite définie pour tout entier naturel n par v, =u, + . On admet que les suites u

B Exercice 8.1-3 : écrire un programme utilisant des fonctions :
1) Créer une fonction tri_ C(N) qui étant donné une chaine de caracteres (sans espace et non accentués,
en minuscule pour simplifier) de N caractéres renvoie la chaine ordonnée alphabétiquement. Par
exemple 'abart' devient 'aabrt'.

Indication : penser au codage ASCII des caractéres et a la méthode sort()

2) Créer une fonction tri_L() qui étant donné une liste de quatre mots de 5 lettres minuscules (de type
'str') ordonne les mots de cette liste dans 1'ordre alphabétique. Par exemple si 1'utilisateur saisit :

liste = ['hello','paulo’,'anais','salut']

le script renverra :

['anais','hello','paulo','salut']

L'appliquer aux exemples suivants :

a) listel = ['bravo','james','costa’,'brava'

b) liste2 = ['alex1','anais','anana’,'alexy’]

3) Généraliser au cas ou la liste comporte T caractéres, majuscules et minuscules mélangées, de tailles
différentes.

Indication : Pour simplifier 'ALERTE'.lower() renvoie 'alerte' et 'alerte'.upper() renvoie 'ALERTE' . Et ca
marche aussi quand on a des casses mélangées. Par exemple 'AlertE'.upper() renverra 'ALERTE'.

Disons enfin quelques mots sur la portée des variables...

8.2. Variables locales et globales
Lorsque I'on définit une fonction, il est nécessaire de connaitre la portée des variables.

Exemple 8.2—1 : Définissons une fonction en mode interactif sous Pyzo.
>>>def fonction1():
x=3
print("Dans cette fonction x est égal a ", x)
>>> fonctionl1()
Dans cette fonction x est égal a 3
>>>x #Message d'erreur
Traceback (most recent call last):
File "<pyshell#14>", line 1, in <module>
X
NameError: name 'x' is not defined
Remarque : la variable x n'existe pas en dehors de la fonction ou elle a été définie. On dit que x est une une
variable locale.
Par contre, une valeur déclarée a la racine du module principal est visible partout.

Exemple 8.2-2 : Tester les commandes suivantes sous Pyzo

>>> def fonction2(): >>>x =15
print(x) >>> fonction2()

>>>x =4 5

>>> fonction2()

4

On dit que x est une variable globale. Cette variable est visible dans tout le module.

1+ ATTENTION aux types modifiables comme les listes 1+

> La régle LGI

Nous avons vu au paragraphe précédent les notions de variables locales ou globales. Il existe aussi un
troisieme type de variables : les variables internes. Exemple : la fonction len() qui renvoie la taille d'une liste
ou d'une chaine de caracteres et qui existe dés qu'on lance Python.

Python traite les variables par ordre de priorité :

1) D'abord, il regarde si la variable considérée est une variable locale,
2) Ensuite, si elle n'existe pas localement, il regarde si c'est une variable globale,
3) Enfin, il regarde si c'est une variable interne.
Exemple 8.2-3 :
>>> def fonction():
x=10 #x est une variable locale
print('Dans la fonction x vaut ', X)
>>>x =20 #x est une variable globale
>>> fonction()
Dans la fonction x vaut 10
>>>print('Dans le module principal x vaut ', x)
Dans le module principal x vaut 20

Remarque : Notez bien ce qui s'est passé. x a pris en priorité la valeur qui lui était définie localement par
rapport a celle qui lui était définie globalement.

Il est possible de forcer une variable a prendre sa valeur globale dans une fonction avec le mot clé : global

Exemple 8.2—4 :

>>> def double():
global x
X=xX%*2

>>>x =3

>>> double()

>>> x

6

Remarque : cette notion a son importance lorsque dans une fonction qui renvoie une ou plusieurs valeurs, on
souhaite que ces dernicres servent dans le programme principal sous un nom de variable. On doit
donc les déclarer en tant que variables globales. Mieux vaut cependant 1'éviter au maximum. Et
c'est généralement possible.

Pour optimiser 1'espace mémoire il est d'usage de faire les appels de bibliotheque a 1l'intérieur des fonctions,
et de n'appeler que les fonctions utilisées dans les algorithmes. Elles sont ainsi affectées en variables locales,
juste le temps d'utilisation de la fonction. I1 faut éviter d'importer toute la bibliothéque quand on n'utilise qu'une
seule de ses fonctions.

9. Les bibliothéques numpy et matplotlib et les graphiques

Python dispose de nombreuses bibliothéques répondant a des problémes d'ordres divers :

1. Calcul scientifique (random, numpy et scipy)
2. Tracés de graphiques (matplotlib)
3. Calcul symbolique (sympy)

Nous ne détaillerons brievement dans cette section que les items 1 et 2 (numpy et matplotlib), et encore de
maniére trés partielle.

D'ailleurs le procédé¢ d'appel d'une bibliothéque a déja ¢été utilis€é avec le module turtle. Retenons les
procédés usuels :
import ma_bibliotheque
appel a une fonction de ma_bibliotheque :
ma_bibliotheque.la_fonction(...)

import ma_bibliotheque as bibli # raccourci
appel a une fonction de ma_bibliotheque :
bibli.la_fonction(...)

Moins précis (car la bibliothéque d’origine des fonctions n’est pas précisée a leur appel) :

from ma_bibliotheque import la_fonction
appel a une fonction de ma_bibliotheque :
la_fonction(...)

from ma_bibliotheque import *
appel a la_fonction
la_fonction(...)

9.1. matplotlib et numpy

9.1.1. Quelques commandes matplotlib

Nous allons étudier sur quelques exemples simples I'utilisation de matplotlib pour tracer des courbes de
fonctions usuelles. Voici la commande a entrer pour matplotib avec pour alias plt :

import matplotlib.pylab as plt
Pour x, y vecteurs de méme dimension :

plt.plot(x, y)
affiche la courbe affine par morceaux reliant les points d’abscisses x et d’ordonnées y (nombreuses options
possibles)
plt.hist
#trace un histogramme (spécifier normed = True).
#Deux options pour les colonnes :
#bins = nombre de colonnes ou bins = abscisses des séparations des colonnes
plt.bar
#trace un diagramme en batons
plt.scatter(x, y)
#affiche le nuage de points d’abscisse x et d’ordonnée y
plt.stem(x, y)
#affiche des barres verticales d’abscisse x et de hauteur y
plt.axis([xmin, xmax, ymin, ymax])
définit les intervalles couverts par la figure

Yannick Le Bastard — Hubert Raymondaud — Formation Python — Occitanie — Mars 2019— V2 page 28 sur 35

plt.axis(’scaled’)
impose que les échelles en x et en y soient les mémes

plt.show()
#affiche les fenétres créées dans le script. A insérer a la fin.
plt.figure()
#crée une nouvelle fenétre graphique
plt.title('""'mon titre')
#donne un titre a une figure
plt.legend(loc = ’best’)
#affiche la 1égende d’un graphique (en position optimale)

plt.subplot
#subdivise la fenétre graphique de fagon a y afficher plusieurs graphiques

Bien des options sont négociables dans 1'affichage des graphiques voulus. Nous n'en donnerons que trois
exemples. Voici comment importer la bibliothéque numpy via un alias :

9.1.2. utiliser numpy dans la construction des graphiques
import numpy as np

La bibliothéque numpy est par essence liée aux tableaux (array ou matrices) de nombres. Elle dispose
cependant de nombreuses fonctions avancées en statistiques et probabilités, trés utiles dans les classes du
secondaire ou dans le supérieur (notamment en BTSA). En outre, sa rapidit¢ d'exécution par rapport aux
boucles classiques en Python est largement supérieure.

L'une des options les plus utilisées est la création d'un tableau ligne dont les éléments sont espacés
régulicrement. C'était possible en Python classique grace a la fonction range, mais cette dernicre, seule, ne
pouvait prendre que des pas entiers.

Cependant si I'on veut subdiviser l'intervalle [0;1] en 10 intervalles égaux :
>>>a = [1/10 for 1 in range(11)]
>>>q
[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, 1.0]
qui peut étre remplacé avec numpy par la commande :
>>>a=np.linspace(0, 1, 11) #0 et 1 début et fin de l'intervalle [0;1] , 11 est le nombre de points de
#la subdivision réguliére de [0;1]
>>> g
array([0.,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

Remarque : a est du type np.ndarray (tableau) , objet fondamental de la bibliothéque numpy qui est dédiée au
calcul matriciel. Nous n'en ferons qu'un usage au cas par cas dans ce stage. Mais le lecteur
intéressé ou utilisateur d'algebre linéaire (par exemple en post BTS-DUT) pourra consulter avec
profit les tutoriels fourmillant sur la toile.

Voici deux exemples de tracés (avec quelques options). Ils sont proposés en lignes de commandes afin de
pouvoir détailler 1'effet de chaque option des commandes. Il faudra les inclure dans des fonctions pour en
faciliter l'utilisation et en optimiser la mise en ceuvre informatique.

Il faut aussi penser a n'appeler que les fonctions utilisées dans les algorithmes et effectuer les appels a
l'intérieur des fonctions, qui seront ainsi affectées en variable locales.

Exemple 9.1-1 : recopier le script suivant et l'exécuter. Vous devez obtenir la courbe ci-dessous.

Egmphel.py [C:\Users\‘l’anmm_

Fichier Edition

= | graphe1.py

Affichage

.

3 #importation des biblicthéques numpy et matplotlib avec alias

4 import numpy as np

5 import matplotlib.pylab as plt #ou import matplotlib.pyplot as plt

6

7 x=np.linspace(-3.2, #Trace de la fonction sur [-3;2]. 106 points
g8 y=[i**2 for 1 in x] ce la fonction carre

] type array et y du type list !
10

11 |:1- plot(x,y)

12 plt.show()

Parameétres Shell

Exeécuter Outils Aide

#Mon premier graphe en Python

-
3. Figure 1

A € > $ Q=

Nous pouvons bien siir « customiser » ce graphe en affichant par exemple les 100 points ayant servi a tracer
la fonction, en lui adjoignant un titre, des couleurs, etc. Vous testerez par exemple :

Eglaphel.py (Ch\Users\Yannic I s Figure 1

Fichier Edition Affichage Paramétres

= |graphei.py

#Mon premier graphe en Python

E

3 #importation des bibliothéques
4 import numpy as np

5 import matplotlib.pylab as plt
B

7 x=np.linspace(-3.2,180)

8 y=[i**2 for i in x]

g

16

11 plt.plot{x,y.marker="0",color="
12 plt.title('Ma fonction')

13 plt.grid(True)

14 plt.show()

16

Shell Exécuter Outils Aide

numpy et matpletlib avec alias

#ou import matplotlib.pyplot as plt
#Trac

#on
#x oest

B0 points
Tt !

red") points sont marques o et en rouge

du graphe est Ma fonction
#on affiche une grille en point illes

Exemple 9.1-2 : tracer les graphes de deux fonctions dans la méme fenétre

BB rophet.p (Ve Warrch Dot e Ve P e e e

Fichier Edition Affichage Paramétres Shell

Exécuter Outils Aide

| = | graphe1.py [|= | carre2.py | || dessini.py | |~ | exo9.py |

#Mon premier graphe en Python

#importation des bibliothéques numpy et matplotlib avec alias

import numpy as np

5 import matplotlib.pylab as plt #ou import matplotlib.pyplot as plt
6

3.14,200)

*=np.linspace(-3

ne
1t.grid(True, linest
plt.show()

y=[1**2-2 for i in x] #0n tri
#x est du

#Trace de la fonction sur [-3 180 points

1a fon 1tn c
pe array et

_,Fr list !
tirets pour la fonctionl

Mes fonctions
la grille

#le titre du gra
#on change 1'a

A € > 4 Q=¥ B
Ma fonction
8
6
i
4]
2
79 [
-3 -2 -1 0 1 2
x=-0921371 y=6.95828
-
*. Figure 1 e -'-"‘ '. P=mrE
-— 0
€ $ Q=¥ 0
Mes fonctions
81 3 7
\ /
Ay 7
R 7
\‘ l,.I'
67 \ '
A I
Ay ’
A 4
\‘ ,I
4 \ ’
2
o4
2
-3 -2 -1 0 1 3
x=-0.724226 y=0.884668 ;
=}

Yannick Le Bastard — Hubert Raymondaud — Formation Python — Occitanie — Mars 2019— V2

page 30 sur 35

Nous pouvons bien entendu légender chacune des courbes, mises dans une liste... créer une famille de
courbes, etc. Et pour les utilisateurs de LATEX, exporter les figures au format png ou eps.

Examinons maintenant les utilisations de numpy via l'approche fréquentiste des probabilités ou utilisant les
lois exactes. Ceci est tout a fait exploitable en classe.

9.2. random, numpy et les probabilités

random et numpy sont deux bibliothéques qui contiennent certains modules portant le méme nom mais dont
la syntaxe est différente. Il est donc utile de connaitre ces doublons de facon a les différencier et comprendre et
corriger les éventuelles erreurs de syntaxe ou de l'interpréteur.

9.2.1. utiliser numpy pour mettre en ceuvre probabilités et simulations probabilistes

Nous ne prétendons pas rivaliser avec le logiciel spécialisé¢ R, cependant, au niveau du secondaire, les outils
offerts par numpy sont bien suffisants pour des présentations en classe ou méme pour faire réfléchir (un peu)
nos ¢€leves ! Donnons quelques commandes essentielles :

import numpy.random as npr
Syntaxe générale :
my_sample = npr.ma_loi(parameétres, taille_du_tableau)

Les résultats des commandes numpy sont en général des objets de type "numpy.ndarray" (attention array
n'est pas un type), c'est a dire des tableaux n-dimensionnels constitués de listes de méme type et de méme
longueur. De tels tableaux peuvent se construire avec la commande numpy.array(...).

9.2.1.1. Quelques outils de simulation de distributions de variables aléatoires continues

npr.random(dl, d2, ...)

#tableau de V.A. uniformes indépendantes sur [0;1]
npr.sample(dl, d2, ...)

#tableau de V.A. uniformes indépendantes sur [0;1]
npr.rand(dl, d2, ...)

#tableau de V.A. uniformes indépendantes sur [0;1]
npr.uniform(low = a, high = b, size = n)

#méme chose sur [a;b]

Remarque : size = n peut étre remplacé par size = (d1, d2, ...), comme partout dans ce qui suit.
npr.randn(dl, d2, ...)

#tableau d, X ...d, de V.A.L de loi normale centrée réduite
9.2.1.2. Quelques outils de simulation de distributions de variables aléatoires discretes finies
npr.randint(low = a, high = b, size = n)

#V.A. uniformes sur[a; b]NIN.
npr.choice([al, ..., an], p = [p1, ..., pn], size = n)

#tirages indép. Dans [al,...,an] de loi [p1,...,pn].

npr.permutation(mon_urne)
#permutation de mon_urne ; produit un numpy.ndarray.
npr.shuffle(mon_urne)
#permutation in situ de mon_urne ; conserve une liste.
npr.binomial(n, p, size = n)
#n valeurs simulées tirées d'une distribution binomiale de parametres n et p.
npr.poisson(lam, size = n)
#n valeurs simulées tirées d'une distribution de Poisson de paramétres lam (lambda).

Beaucoup d’autres exemples sont disponibles sur :
http://docs.scipy.org/doc/numpy/reference/routines.random.html

9.2.2. random une bibliothéque qui date
import random as rd

9.2.2.1. Distributions continues

rd.random()
un tirage dans une distribution uniforme [0;1].
rd.uniform(a, b)
#un tirage dans une distribution uniforme sur [a;b].
rd.gauss(mu, sigma)
#un tirage dans un distribution gaussienne de parametres mu et sigma.

9.2.2.1. Tirages équiprobables et distributions discreétes

rd.randrange(start, stop, step)
#un tirage équiprobable dans range(start, stop, step).
rd.randint(a, b)
#un tirage équiprobable dans range(a, b +1).
rd.sample(population, k)
#tirage sans remise équiprobable de k éléments dans population. N'a rien a voir avec le sample de numpy.
rd.choice(seq)
#un tirage équiprobable dans seq ; méme chose que rd.sample(seq, 1).
rd.shuffle(seq)
#permutation aléatoire in-situ de seq.

Yannick Le Bastard — Hubert Raymondaud — Formation Python — Occitanie — Mars 2019— V2 page 32 sur 35

9.2.3. Exemples a réaliser soit avec random soit avec numpy
Exemple 9.2—-1 : Simuler une variable aléatoire discrete infinie.
On lance trois dés a 6 faces équilibrées et on fait la somme S des 3 valeurs obtenues :
* sila somme obtenue est supérieure ou égale a 15 on gagne la partie,
* sielle est comprise entre § et 14, on relance les trois dés,
* sinon on perd la partie.
* Soit Z la v.a. prenant pour valeur 1 pour une partie gagnée et 0 pour une partie perdue
* SoitY la v.a. prenant pour valeurs le nombre de lancers ayant mené a une partie gagnante.

1. Ecrire une fonction une_partie() qui renvoie 1 si la partie simulée est gagnée et 0 sinon,
2. a) Ecrire une fonction frequence(N) qui renvoie la fréquence de parties gagnées sur N simulations (N
choisi par ['utilisateur),
b) Ecrire une fonction qui trace le diagramme en barres de la distribution simulée de Z.

Exercice 9.2-1 :

En reprenant les données de l'exemple 9.2—-1, tracer le diagramme en baton, ainsi que les fonctions de
répartition, de la loi de probabilité simulée des variables aléatoires suivantes (on prendra N=100 000) :

a) Y : Temps d'attente (en nombre de lancers) du premier gain,

b) X : Nombre de parties gagnées sur N simulations.

Exemple 9.2-1: Proposition d'algorithme mettant en ceuvre les commandes présentées et les
recommandations vues pendant cette formation : décomposer la tiche en plusieurs parties codées par des
fonctions, faire les appels aux librairies a l'intérieur des fonctions, utiliser les tuples plutdt que les nécessaires
tuples suffisent, utiliser des listes plutot que des ndarray lorsque les nécessaires listes suffisent...

3desTer-Graph.py (/home/carole/Documents/FiHub/IREM_APMEP/AnimStages/PythonAvecYann-Nimes-]
Fichier Edition Affichage Paramétres Shell Exécuter Outils Aide Figure 1 - o x

A € > Q= ¥

= 3desTer -Graph.py

"JEU SOMME DE 3 DES - DIAGRAMME EN BARRES DE LA DISTRIBUTION SIMULEE DE Z" Distribution de fréquence de 100000 simulations de Z
10 "Z est une variable de Bernoulli prenant la valeur O pour une partie perdue,” 0836
11 " et 1 pour une p '. gagnée" -
12 "Exemple 9.2-1 Que no1”
13 "Utilise randint() de la bibliothéque random.
14 def une_partie():
15 from random import randint "
16 # 5 = randint(l, 6) + randint(l, &) + randint(l. 6) &
17 S = sum({randint(1, &) for i in range(3)}) 2
18 while S > 7 and S < 15: @
19 S = sum{{randint(l, &) for i in range(3))) 8
20 if 5 == 15 g
21 =1 S
22 e11f S==T E
23 =0
24 |etU|n z
27 nombre de parties gagnées (G) lors de M simulations."

"Utilise une_partie() et randint() de la biblio ythégque random.” : perdu Z=0
def frequence(N):
G=20
for i in range(M):
G =G+ une_partie()
return G / N

"Exemple 9.2-1 Question 2 Diagramme en barres
" la distributi les fr»--|L| nces simulées
"Utilise frequence(M), une_partie(), randint()
38 def bar3des (N = 5000):

2] import mat| lotlib.pylab as plt

77 1)

de random et la bibliothéque matplotlib.pylab."

(o,
41 freqG = frequence (M)
42 FG = (1 - fregG, freqG)
43 titre = 'Distributic n de fréquence de '+ str(N) + ' simulations de Z'
44 plt. figure()
45 plt.bar(ZZ, FG, tick_label = {'Perdu Z=0', 'Gagné Z=1'), align = 'center')
46 plt. title(titre)
47 plt. text(ZZ[o], FGIO], stri{round({FG[El, 3}), ha = 'center', va = 'bottom')
48 11, FG[l], striround(FG[1], 3}), ha = 'center', va = 'bottom')
49 #plt.xticks((o, 1) 'Perdu’, 'Gagné'))
50 plt.ylabel(’ Fr~-|u—-nc—-; sinulées')
51 plt.grid()
52 plt.show()

-

Exercice 9.2-2 : résoudre cet exercice de maniére théorique (informatiquement!) ? a préciser ?

Yannick Le Bastard — Hubert Raymondaud — Formation Python — Occitanie — Mars 2019— V2 page 33 sur 35

10. Séquences de mise en ceuvre de I'algorithmique en TP de
mathématiques de la seconde a la terminale.

10.1. Présentation générale

e Ces séquences sont construites pour mettre en ceuvre l'algorithmique en mathématiques, telle qu'elle est
prévue aux programmes de la seconde a la terminale.

e ['activité¢ d'algorithmique telle qu'elle apparait a travers les exercices du baccalauréat consiste a lire et
interpréter un algorithme écrit en "langage naturel", a modifier ou compléter un algorithme donné pour qu'il
réalise une tache particuliére, a corriger un algorithme qui contient une erreur, a choisir parmi plusieurs
algorithmes celui que réalise une tiche demandée.

e Les activités proposées s'inscrivent toutes dans ce cadre, il n'est pas possible avec le peu d'heures consacrées
a l'algorithmique, compte tenu de la difficulté du langage de programmation utilisé, d'aller au dela de ce type
d'activité.

Chaque séquence est présentée par une introduction détaillant son contenu puis est suivie par des fiches
éleves comprenant les instructions pour réaliser le travail a effectuer.

e Les fichiers dont le nom se termine par ... Elev.py sont les fichiers destinés a servir de support au travail des
¢leves afin d'éviter de perdre du temps sur la saisie des lignes de codes. Les fichiers dont le nom se termine
par ...0.py sont les fichiers contenant l'intégralité des lignes de codes demandées lors des activités, plus
parfois, quelques traces des recherches effectuées lors de 1'¢laboration des algorithmes. Ces fichiers sont a
ouvrir avec un environnement de programmation permettant de numéroter les lignes de commandes, d'avoir
un coloration syntaxique et l'indentation automatique, au minimum. (Spyder, Pyzo, Gedit, ...)

La numérotation indiquée dans les introductions correspond a celle des fichiers enseignants dont les noms se
terminent par ...0.py ; la numérotation indiquée dans les fiches éleves correspond a celle des fichiers dont les
noms se terminent par ...0_Elev.py.

Les activités sont de difficulté progressives au fur et & mesure de I'avancée dans les fiches. Les premicres
activités sont guidées par I'enseignant, les suivantes sont prévues pour étre faites en autonomie.

e ['¢léve demande a I'enseignant de valider une activité avant de passer a la suivante.

e | es prolongement sont prévus pour les éléves ayant terminé en avance les activités prévues dans la séance et
peuvent aller un peu au dela des exigence des programmes en proposant la recherche d'algorithmes
nouveaux, basés cependant sur ceux vus précédemment.

e [c nombre de fiche a faire pendant la séance d'informatique est a adapter en fonction du niveau de la classe.
e Les fiches peuvent étre rendues et notées a chaque séance.

e e Concernant le code Python le choix est fait de limiter autant que faire se peut I'utilisation des bibliothéques
spécialisées afin d'éviter 1'effet "boite noire", vu que leur documentation est souvent sommaire et pas facile
d'acces.

La diversité des themes abordés dans les s€quences montrent que 1'on peut couvrir un grand éventail des
notions du programme de mathématique, en les illustrant de fagon rigoureuse et ludique, avec des outils de
base de la programmation en Python.

Le choix est fait, autant que faire se peut, et selon une saine pratique mathématique, lors de 1'utilisation
d'une bibliothéque, de n'importer que la ou les fonctions nécessaires et suffisantes pour le bon
fonctionnement de l'algorithme. On a donc évité les from random import *...

ee [es séquences sont :
A) La notion de fonction en seconde générale.

B) Un marche aléatoire : La rencontre du loup et de 1'agneau (APMEP — Bulletins verts n°® 515 p. 401-406 et
n° 516 p. 637-639). Une version est présentée en langage R.

C) Le paradoxe d'un duc de Toscane — Parier sur la somme des points de 3 dés.

D) Intégration numérique — Méthode des petits et des grands rectangles — Bac S Polynésie juin 2013 —
Exercice 1 questions 2.a. et 2.b.

E) Un intervalle de fluctuation d'une variable binomiale, en premicre S.

F) Une autre marche aléatoire : Le robot TOM — Bac S Antilles Guyane septembre 2013 — Exercice 4
questions 1. et 2.

e Chacune des séquences est introduite en détaillant un des algorithmes de sa progression, qui n'est pas
forcément le premier mais qui illustre un des aspects de la thématique abordée dans la séquence.

e [¢ tableau suivant organise le récapitulatif des différents fichiers utilisés.

Le fichiers contenant les introductions aux séquences est
"SequencesPythonAuLycee.pdf'.
Le dossier compressé contenant tous les fichiers éléves et propositions de solutions est
LesFichesPythonA-F_pdf.zip

Fichiers de présentation et de consignes et fiches Fichiers Python éléves Fichiers Python propositions
éléves (algorithmes a compléter ou a corriger) de solutions
A) Notions de fonction en seconde : FonctionAffinePosi2nde0 Elev.py FonctionAffinePosi2nde0.py
Fonctions2nde-Docu-Elev.odt FonctionGenePosi2nde0 Elev.py FonctionGenePosi2nde0.py

B) Marche aléatoire (APMEP — Bulletins verts n°
515etn® 516): LoupAgneau0 Elev.py LoupAgneau0.py
LeLoupEtLAgneau-Docu-Elev.odt

C) Paradoxe probabiliste au jeu de dés :

DucToscane-Docu-Elev.odt JeuDeDe0O_Elev.py JeuDeDe0.py

D) Intégration numérique méthode des rectangles
(Bac S Polynésie juin 2013) : Darboux0 Elev.py Darboux0.py
IntegrationNumeriqueDarboux-Docu-Elev.odt

E) L'intervalle de fluctuation d'une variable

binomiale selon lalr‘nethode du document BinoDistribEtIF_Elev.py BinoDistribELIFO._0.py
ressource de premiere S : = _

IF-Bino-1lere-Docu-Elev.odt

F) Une marche aléatoire dans un sujet de bac (Bac
S Antilles Guyane septembre 2013) :
Il n'y a pas encore de fiche ¢léve ni de fichier
Python éleve.

RoboTom0.py

10.2. Prise en main des séquences

On peut, dans un premier temps, faire une lecture de 'algorithme de présentation des thématiques abordées
dans chaque séquence (fichier "SequencesPythonAuLycee.pdf"). La prise en main des séquences pourra se
faire en les réalisant avec les fiches et les fichiers éléves.

	1. Quelques environnements de programmation
	2. Utiliser la console interactive (shell en anglais).
	2.1. Exécuter des lignes de commandes simples dans la console
	2.2. Objets Python et affectation
	2.3. Compléments utiles sur la notion d'affectation
	2.3.1. L'affectation parallèle
	2.3.2. L'affectation parallèle
	2.3.3. Les surprises de l'affectation, deux exemples
	2.3.4. Pluralités problématiques, exceptions syntaxiques, quatre exemples

	3. Créer un script, utiliser les boucles while (tant que) et for (pour)
	3.1. Applications avec une boucle while
	3.2. Applications avec une boucle for

	4. Input – Output (entrées et sorties de données), un résumé
	4.1. input : entrée des données au clavier
	4.2. print : sorties de données à l'affichage
	4.3. Opérateurs de comparaison :

	5. Instructions conditionnelles
	6. Un peu de dessin avec le module turtle
	7. Chaînes de caractères et listes
	7.1. Les chaînes de caractères (type str – string)
	7.1.1. Définition et exemples
	7.1.2. Opérations élémentaires sur les chaînes de caractères

	7.2. Les listes (type list et type tuple)
	7.2.1. Définition et exemples
	7.2.2. Opérations de base sur les listes
	7.2.3. tuples et opérations de base sur les tuples

	8. La notion de fonction en langage de programmation
	8.1. Syntaxe et mise en œuvre
	8.2. Variables locales et globales
	►La règle LGI

	9. Les bibliothèques numpy et matplotlib et les graphiques
	9.1. matplotlib et numpy
	9.1.1. Quelques commandes matplotlib
	9.1.2. utiliser numpy dans la construction des graphiques

	9.2. random, numpy et les probabilités
	9.2.1. utiliser numpy pour mettre en œuvre probabilités et simulations probabilistes
	9.2.2. random une bibliothèque qui date
	9.2.3. Exemples à réaliser soit avec random soit avec numpy

	10. Séquences de mise en œuvre de l'algorithmique en TP de mathématiques de la seconde à la terminale.
	10.1. Présentation générale
	10.2. Prise en main des séquences

