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Les exercices sont indépendants. On portera une attention particuliére 3 la rédaction.

SUJET

Le devoir comporte 24 points, mais le total obtenu sera votre note sur 20. Toute note supérieure a 20 est
ramenée a 20. Le soin est une qualité essentielle : aérez votre copie, soulignez ou encadrez proprement vos
résultats.

Exercice n° 1. 10 points

1) Question de cours : compléter les limites classiques suivantes sans justifier.
sinx
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2) Déterminer, en justifiant les limites suivantes. Préciser les asymptotes éventuelles.

a) IEIEOO 3 — 21n(z)

3z
. e’ —1
b) :rggloo 2z

3) Déterminer, en justifiant les limites suivantes. Préciser les asymptotes éventuelles.

—1/z% 0
a) Limite en 0 et en +oo de f(x) = {6 stz 7

Osiz=0
—522 + 2z + 1
b) Limite en +oo de f(z) = :ngj—_ﬁ
3—-2
c) Limite en +oo de f(x) = 3 = 2cos(z)
x
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e —x—1six<0

4) Soit f la fonction définie sur R par f(z) = ¢ 0810 <z <1

1
X

a) Justifier briévement que f est dérivable sur R\ {0;1}
b) f est-elle continue en 07 en 17

c) f est-elle dérivable en 07 en 17

. . M 1 2
5) (plus difficile) Calculer ilgé 22 —5r+6 22—4dx+3

minateurs de chaque fraction).

(indication : commencer par factoriser les déno-

Exercice n° 2. 10 points
On considére I'équation (E) d’inconnue z réelle : e” = 3 (22 + ).
Partie A : Conjecture graphique

Le graphique ci-dessous donne la courbe représentative de la fonction exponentielle et celle de la fonction
f définie sur R par f(z) =3 (:132 + x3) telles que les affiche une calculatrice dans un méme repére orthogonal.

1) A l'aide du graphique ci-dessus, conjecturer le nombre de solutions de I’équation (E) et leur encadrement
par deux entiers consécutifs.

Partie B : Etude de la validité de la conjecture graphique
2)
1) a. Etudier selon les valeurs de z, le signe de 22 + z3.
b. En déduire que I’équation (E) n’a pas de solution sur l'intervalle | — co ; —1].

c. Vérifier que 0 n’est pas solution de (E).

2) On considére la fonction h, définie pour tout nombre réel de | —1; 0[U]0 ; +oo[ par :
h(z) =In3 +In (x2) +1In(1+2z) —=.

Montrer que, sur | — 1 ; 0[U]0 ; +oo], ’équation (E) équivaut a h(x) = 0.
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3) a. Montrer que, pour tout réel x appartenant & | —1; 0[ U ]0; +oo[, on a :

224+ 2x+2

Wi(w) = z(z +1)

b. Déterminer les variations de la fonction h.

c. Déterminer le nombre de solutions de l’équation h(z) = 0 et donner une valeur arrondie au
centiéme de chaque solution.

d. Conclure quant a la conjecture de la partie A.

Exercice n° 3. 4 points
Cet exercice est facultatif.

Dans chacune des questions qui suivent, une seule bonne réponse est possible. Entourer la bonne réponse
(aucune justification n’est demandée).

V1—4z2 -1

1) Soit f la fonction définie au voisinage de 0 par f(z) = 2x siz#0 est continue en 0.
Osiz=0
a) VRAI b) FAUX
2) La fonction précédente est dérivable en 0.
a) VRAI b) FAUX
3) L’équation (E) : In((x —3)(z+4)) = 1 est équivalente a I’équation (E') : In(x —3)+1In(z+4) = 1.
a) VRAI b) FAUX
4) (E) et (E') ont le méme ensemble de solutions.
a) VRAI b) FAUX

FIN DE L’'EXAMEN



