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Quelques conseils essentiels

Vous entrez en Terminale spécialité mathématiques, et de ce fait, avez
déjà manipulé des formules, résolu des équations, émis et/ou vérifié des
hypothèses avant de répondre à une question. Mais l’avez-vous fait dans
les règles de l’art ? C’est à dire honnêtement, sans bavures, de manière
explicite, bref : RIGOUREUSEMENT.
Comme tout langage, les mathématiques possèdent leur vocabulaire
propre, leur grammaire. Vous rédigerez essentiellement en français vos
propositions mathématiques, mais apprendrez aussi à les traduire à l’aide
de symboles spécifiques qu’il faudra vous approprier en profondeur.

Votre objectif

Pour résumer : mâıtrisez-vous ! Chaque mot ou symbole vous engagent.
Vous ne pouvez pas impunément intervertir des phrases ou des symboles
sans d’éventuelles conséquences ! Votre réussite future en mathématiques
dépendra en grande partie de votre capacité à intérioriser le contenu qui va
suivre et à en faire des réflexes.
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Propositions et connecteurs logiques

La logique propositionnelle est l’étude des formules abstraites qu’on peut
écrire à partir d’un certain nombre de variables propositionnelles,
représentées par des lettres. Nous nous contentons d’une définition restant
assez vague, l’objet n’étant pas l’étude de la logique formelle, mais une
bonne structuration de la pensée et de la démarche scientifique.

Constantes, variables et propositions

1 Une constante est un signe ayant une valeur précise et immuable ;
par exemple 1, 2, π, une personne en particulier.

2 Une variable est un signe pouvant prendre différentes valeurs dans un
certain ensemble ou n’ayant pas de valeur prédéfinie ; par exemple : x
solution de x2 = 5, une personne prise au hasard dans le lycée.

3 Une proposition est une phrase P pour laquelle on peut décider si
son contenu est réalisé ou non ; par exemple ”3 est un entier” est une
proposition, mais ”Donne-moi l’heure” n’en n’est pas une.
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Propositions et connecteurs logiques

Les connecteurs logiques sont des mots ou symboles permettant, à partir
de propositions existantes, de définir de nouvelles propositions.

Connecteurs logiques et tables de vérité

On distingue trois connecteurs logiques fondamentaux à partir desquels on
peut définir d’autres connecteurs plus complexes.

1 La négation, notée symboliquement ¬ : la proposition ¬P est vraie
si la proposition P est fausse, et la proposition P est vraie si la
proposition ¬P est fausse. On résume ceci dans une table de vérité :

P ¬P
V F

F V

Table: Table de vérité du connecteur ¬

Remarquons que ¬(¬P) et P sont simultanément vraies ou fausses.
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Propositions et connecteurs logiques

Connecteurs logiques et tables de vérité

Le second et troisièmes connecteurs logiques sont :

2 la conjonction ”et”, notée ∧,

3 la disjonction inclusive ”ou”, notée ∨
Leurs tables de vérité sont données ci-dessous :

P Q P ∧ Q

V V V

V F F

F V F

F F F

P Q P ∨ Q

V V V

V F V

F V V

F F F

Table: Tables de vérité des connecteurs ∧ et ∨

Principe de non contradiction : Aucune proposition n’est à la fois vraie
et fausse.
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Propositions et connecteurs logiques

Exemple 1

Soient P et Q deux propositions. Donnez les tables de vérité des
propositions :

1 ¬(P ∨ Q) et ¬P ∧ ¬Q
2 ¬(P ∧ Q) et ¬P ∨ ¬Q
3 ¬P ∨ Q et P ∧ ¬Q
4 P ∨ ¬Q et ¬P ∧ Q

Exemple 2

Donnez la négation des propositions suivantes :

1 P : ”x ≥ 1” et Q : ”− 1 < x ≤ 5”

2 P : ”Tous les étudiants ont la moyenne à l’examen”
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Propositions et connecteurs logiques

Nous ne corrigeons que la question 1 de l’exemple 1 ainsi que l’exemple 2.

Correction partielle des exemples

1 Exemple 1 question 1 :

P Q P ∨ Q ¬(P ∨ Q)

V V V F

V F V F

F V V F

F F F V

P Q ¬P ¬Q ¬P ∧ ¬Q
V V F F F

V F F V F

F V V F F

F F V V V

2 Exemple 2 :

question 1 a) : la négation de ”x ≥ 1” est : ”x < 1”.
question 1 b) : la négation de
”− 1 < x ≤ 5”est : ”(x ≤ −1) ∨ (x > 5)”.
question 2 : la négation de ”Tous les étudiants ont la moyenne à
l’examen” est : ”Il existe (au moins) un étudiant qui n’a pas la
moyenne à l’examen”.
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Propositions et connecteurs logiques

Au cours de votre scolarité, vous avez souvent été amené(e)s à démontrer
des implications : si une certaine proposition P est vraie, alors ceci
entraine qu’une autre proposition Q est vraie aussi.

Par exemple, P : ”n est un entier pair” implique Q : ”n2 est un entier
pair”. Si P est vraie, alors Q l’est aussi. C’est la véracité de Q que l’on
vise à prouver !

Dans le cas présent, la réciproque, que nous définirons précisément plus
tard, est vraie aussi : Si Q est vraie, alors P l’est aussi. Nous dirons que
les propositions P et Q sont équivalentes. Elles sont simultanément
vraies ou fausses : leur table de vérité est identique.

Nous allons définir précisément ce que signifie ”P implique Q”, que nous
noterons P =⇒ Q, et en déduirons deux modes de raisonnement utilisés
très fréquemment en mathématiques :

Le raisonnement par l’absurde,

Le raisonnement par contraposée.
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tard, est vraie aussi : Si Q est vraie, alors P l’est aussi. Nous dirons que
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Propositions et connecteurs logiques

Paradoxalement, il est plus simple de comprendre la proposition
P =⇒ Q en commençant par définir sa négation : ¬(P =⇒ Q). Je
vais donc reprendre ce slogan bien connu de la FDJ : ”Tous les gagnants
ont tenté leur chance”, assorti bien évidemment et hypocritement d’un
message de prévention sur l’addiction aux jeux !

Définissons les propositions P : ”J’ai joué” et Q : ”J’ai gagné”. Avoir
tenté sa chance, c’est bien avoir joué . . . Seulement, le fait d’avoir joué
n’implique pas nécessairement de gagner.

On peut donc nier le fait que ”jouer implique gagner” par : ”j’ai joué
et j’ai perdu”, soit : P ∧ ¬Q. Or ¬(P ∧ ¬Q) ≡ ¬P ∨ Q, d’où la :

Définition de l’implication

Soient P et Q deux propositions. La proposition P implique Q, que l’on
note par P =⇒ Q est exactement la proposition ¬P ∨ Q .
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message de prévention sur l’addiction aux jeux !
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Propositions et connecteurs logiques

Donnons la table de vérité de P =⇒ Q et de sa négation.

P Q P =⇒ Q ¬(P =⇒ Q)

V V V F

V F F V

F V V F

F F V F

Remarques importantes

1 Si P est fausse, la proposition P =⇒ Q est toujours vraie.

2 En particulier, la flèche =⇒ n’est pas synonyme de ”donc”, qui
sous-entend que ce qui précède est vrai.

3 Pour prouver que P =⇒ Q est vraie, on supposera donc P
vraie, puis on aboutira à la conclusion que Q est vraie.
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Propositions et connecteurs logiques

Résumé

Retenez donc bien que l’implication P =⇒ Q est une proposition, alors
que la phrase ”P est vraie, donc Q est vraie” est un RAISONNEMENT,
i.e un enchevêtrement complexe de propositions :
((P est vraie) ET (P =⇒ Q) est vraie), DONC Q est vraie.

Vocabulaire

Considérons deux propositions P et Q.

1 On dit que P est une condition suffisante pour Q si P =⇒ Q : si
P est vraie, alors Q est vraie.

2 La proposition Q =⇒ P est la réciproque de la proposition
P =⇒ Q.

3 On dit que P est une condition nécessaire pour Q si Q =⇒ P : si
Q est vraie, alors P est vraie.
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Propositions et connecteurs logiques

Vocabulaire (suite)

Par exemple, soient P : ”x > 0” et Q : ”x > −1” : P est une condition
suffisante pour Q (mais P n’est pas nécessaire pour Q)

4 Si (P =⇒ Q) et (Q =⇒ P), on dit que les propositions P et Q
sont équivalentes, et on écrit P ⇐⇒ Q.
On dit aussi ”P si et seulement si Q.

5 On appelle contraposée de l’implication : P =⇒ Q l’implication :
¬Q =⇒ ¬P. P =⇒ Q et sa contraposée sont équivalentes.

Deux raisonnements usuels pour prouver une implication P =⇒ Q

1 Le raisonnement par l’absurde : on suppose P vraie et Q fausse,
puis on aboutit à une contradiction.

2 Le raisonnement par contraposée : on suppose Q fausse et on
prouve que P est fausse.
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Propositions et connecteurs logiques

Exemples de preuves d’implication

1 Prouvez directement que pour tout réel x ∈ [3; 8], on a :
−2√
x + 1

∈
[
−1;−2

3

]
2 Soit n un entier naturel. Prouvez par l’absurde que si n2 est pair,

alors n est également pair.

3 Retrouvez ce résultat par contraposée.

4 On rappelle que l’ensemble Q des rationnels est l’ensembles des

nombres qui s’écrivent sous la forme
p

q
, où p ∈ Z et q ∈ N∗.

Prouvez par l’absurde que x =
√

2 n’est pas rationnel.
Indication : Vous pourrez vous servir du fait que toute fraction
possède un représentant irréductible.
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Propositions et connecteurs logiques

Soyez attentifs à la rédaction employée. Vous devrez vous l’approprier
autant que le fait de respirer est naturel !

Correction des exemples

1 Soit x ∈ [3; 8] i.e 3 ≤ x ≤ 8. Alors 4 ≤ x + 1 ≤ 9. Par croissance de
la fonction racine carrée sur [0; +∞[ (donc sur [4; 9]), on a :
2 ≤
√
x + 1 ≤ 3. Par décroissance de la fonction inverse sur ]0; +∞[

(donc sur [2; 3]), on en déduit que :
1

2
≥ 1√

x + 1
≥ 1

3
. On multiplie

par le réel −2 < 0 chaque membre de l’inégalité, d’où :

−1 ≤ −2√
x + 1

≤ −2

3
i.e x ∈

[
−1;−2

3

]
.

2 Soit n ∈ N. Supposons par l’absurde que n2 soit pair et n impair.
Or n impair signifie qu’il existe un entier naturel p tel que n = 2p + 1.
En élevant au carré : n2 = 4p2 + 4p + 1 = 2(2p2 + 2p) + 1, donc n2

impair. Or nous avons supposé n2 pair. Contradiction !
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Propositions et connecteurs logiques

Correction des exemples

3 Soit n ∈ N. Par contraposée, supposons que n ne soit pas pair i.e n
impair. Alors il existe un entier naturel p tel que n = 2p + 1. En
élevant au carré : n2 = 4p2 + 4p + 1 = 2(2p2 + 2p) + 1, donc n2

impair i.e n2 n’est pas pair !

4 Posons x =
√

2 et supposons par l’absurde que x soit rationnel.
Comme x > 0, il existe deux entiers naturels p et q strictement

positifs tels que
√

2 =
p

q
, fraction que l’on supposera irréductible.

En élevant chaque membre au carré nous obtenons que
p2

q2
= 2, d’où

p2 = 2q2. Ainsi p2 est pair, donc d’après (3) p est pair. Mais alors il
existe p′ ∈ N∗ tel que p = 2p′, et partant p2 = 4p′2 = 2q2. D’où
q2 = 2p′2 i.e q2 pair. Mais alors q est pair : 2 divise donc p et q, ce
qui contredit le fait que la fraction p/q soit irréductible.
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2 et supposons par l’absurde que x soit rationnel.
Comme x > 0, il existe deux entiers naturels p et q strictement

positifs tels que
√

2 =
p

q
, fraction que l’on supposera irréductible.

En élevant chaque membre au carré nous obtenons que
p2

q2
= 2, d’où

p2 = 2q2. Ainsi p2 est pair, donc d’après (3) p est pair. Mais alors il
existe p′ ∈ N∗ tel que p = 2p′, et partant p2 = 4p′2 = 2q2. D’où
q2 = 2p′2 i.e q2 pair. Mais alors q est pair : 2 divise donc p et q, ce
qui contredit le fait que la fraction p/q soit irréductible.
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Quantificateurs

Introduction : En français, quantifier signifie attribuer une quantité à
quelqu’un, quelque chose . . .
En statistiques vous avez déjà rencontré des variables quantitatives, i.e
auxquelles on peut associer un nombre : la taille d’un individu, d’un arbre,
la masse d’un objet, etc.

Nous allons définir ici la notion de quantificateurs en mathématiques qui
traduira les phrases du type :

1 Pour tout élément x appartenant à un certain ensemble E , on la
propriété P(x).

2 Il existe (au moins) un élément x appartenant à un certain
ensemble E tel que : P(x).
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traduira les phrases du type :

1 Pour tout élément x appartenant à un certain ensemble E , on la
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Quantificateurs

Vocabulaire
1 Quantificateur universel ∀ : La proposition ∀x , P(x) est vraie si

tout objet mathématique a la propriété P et fausse sinon, i.e si au
moins un objet n’a pas la propriété P.

2 Quantificateur existentiel ∃ : La proposition ∃x , P(x) est vraie si
au moins un objet mathématique a la propriété P et fausse sinon, i.e
si aucun un objet n’a la propriété P.

Remarques : En pratique, on verra souvent :

1 ∀x ∈ E , P(x), où E est un ensemble, ce qui résume en fait :
∀x , (x ∈ E =⇒ P(x)) et signifie que tout élément de E a la
propriété P.

2 ∃x ∈ E , P(x), où E est un ensemble, ce qui résume en fait :
∃x , (x ∈ E et P(x)) et signifie qu’au moins un élément de E a la
propriété P.
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Quantificateurs

Un exemple de traduction Français / Mathématiques

Suites arithmétiques : on dit qu’une suite (un)n∈N de réels est une suite
arithmétique s’il existe un réel r tel que pour tout entier naturel n :
un+1 − un = r .

La propriété P dépend ici de l’entier n et l’on note P(n) : un+1 − un = r .

Nous traduirons donc le fait qu’une suite (un)n∈N de réels est une suite
arithmétique par : (∃r ∈ R)(∀n ∈ N), un+1 − un = r .

Remarque fondamentale : Ce réel r ne dépend pas de l’entier n. C’est le
même r que n vaille 0, 1, 1000, etc.

Mise en garde sur l’inversion des quantificateurs

On ne peut PAS inverser les quantificateurs dans l’exemple précédent sans
changer complètement le sens ! Dans ce cas, r dépendrait de n.
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Quantificateurs

Propriétés des quantificateurs

1 Inversion : On peut inverser des quantificateurs universels ou
existentiels qui se suivent :

∀x ∈ E ,∀y ∈ F , P(x , y) ≡ ∀y ∈ F ,∀x ∈ E , P(x , y).
∃x ∈ E ,∃y ∈ F , P(x , y) ≡ ∃y ∈ F ,∃x ∈ E , P(x , y).

2 Implication :
∃x ∈ E ,∀y ∈ F , P(x , y) =⇒ ∀x ∈ E ,∃y ∈ F , P(x , y), avec
réciproque fausse.

3 Négation :

¬(∀x ∈ E , P(x)) ≡ (∃x ∈ E , ¬P(x))
¬(∃x ∈ E , P(x)) ≡ (∀x ∈ E , ¬P(x))

Remarque : On retrouve dans la négation d’une propriété vraie pour tous
les x appartenant à un ensemble E la définition du quantificateur
universel. Relisez-la bien ! Idem avec le quantificateur existentiel.
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Quantificateurs

Exemple 1

Traduire en français les propositions qui suivent et préciser leur véracité.
Si la proposition est fausse, donner un contre-exemple ou une justification
précise.

1 ∃N ∈ N, ∀n ∈ N, n ≤ N

2 ∀x ∈ R∗+, ∃y ∈ N, x < y2

3 ∀n ∈ N, ∃x ∈ N,∃y ∈ N, n = x + y

Exemple 2 (à comprendre également graphiquement)

Soit (un)n∈N une suite de nombres réels et ` un réel.
Traduire à l’aide de quantificateurs la proposition suivante :
Pour tout réel strictement positif ε, il existe un entier naturel N tel que
pour tout entier naturel n supérieur ou égal à N, |un − `| < ε.
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Quantificateurs

Exemple 3

Nier les propositions P qui suivent à l’aide des quantificateurs, puis
traduire en français la proposition ¬P.

1 P : ∀x ∈ R, x > 2 =⇒ x ≥ 3

2 Soit f une fonction définie sur R. P : ∃M ∈ R,∀x ∈ R, f (x) ≤ M

3 Soit f une fonction définie sur R. P : ∀y ∈ R,∃x ∈ R, y = f (x)

4 Soit f une fonction définie sur R.
P : ∀x ∈ R, ∀y ∈ R, x < y =⇒ f (x) < f (y)

5 P : ∀x ∈ R,∃p ∈ Z,∃q ∈ Z, x = p2 + q2

6 Soit f une fonction définie sur R.
P : ∃T ∈ R, ∀x ∈ R, f (x + T ) = f (x).

7 Soit (un)n∈N une suite de nombres réels.
P : ∃N ∈ N,∀n ∈ N, n ≥ N =⇒ un+1 ≤ un.
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Le raisonnement par récurrence

Voici l’un des raisonnements les plus importants que vous utiliserez à de
nombreuses reprises au cours de l’année. Il est fréquemment employé (mais
pas toujours) lorsque l’on cherche à prouver qu’une certaine propriété
P(n) est vraie pour tout entier naturel n ou à partir d’un certain rang.

Principe de récurrence

En conformité avec le programme de Terminale, nous en énoncerons sa
forme la plus simple, dite faible.
Soit P(n) une propriété dépendant d’un entier n ∈ N.

1 Initialisation : On démontre qu’il existe un entier naturel n0 tel que
P(n0) soit vraie.

2 Hérédité : On se donne un entier naturel n ≥ n0 quelconque et on
suppose P(n) vraie. On prouve alors que P(n + 1) est vraie.

3 Conclusion : La propriété P(n) est vraie pour tous les entiers n ≥ n0.
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Le raisonnement par récurrence

L’exemple de base

Soit n un entier naturel non nul et Sn =
n∑

k=1

k . On veut prouver que

pour tout entier naturel n non nul : Sn =
n(n + 1)

2
.

Posons pour tout n ∈ N∗ : P(n) : Sn =
n(n + 1)

2
.

1 Initialisation : S1 = 1 et
1(1 + 1)

2
= 1. Donc P(1) est vraie.

2 Hérédité : Soit n ∈ N∗ quelconque. Supposons P(n) vraie i.e que

pour cet entier n, on a Sn =
n(n + 1)

2
. Prouvons que P(n + 1) est

vraie i.e que Sn+1 =
(n + 1)(n + 2)

2
.
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Le raisonnement par récurrence

Par définition, on a Sn+1 =
n+1∑
k=1

k, soit en isolant le dernier terme de la

somme :

Sn+1 =
n∑

k=1

k + (n + 1) = Sn + (n + 1).

Or par hypothèse de récurrence, Sn =
n(n + 1)

2
. D’où :

Sn+1 =
n(n + 1)

2
+ (n + 1). Factorisant n + 1, il vient :

Sn+1 = (n + 1)
(n

2
+ 1
)

, soit Sn+1 =
(n + 1)(n + 2)

2
.

Ainsi P(n + 1) est vraie.

Conclusion : on a prouvé que P(1) est vraie et que pour tout entier
naturel n non nul, Pn =⇒ Pn+1, donc :

Pour tout entier naturel n non nul Pn est vraie i.e Sn =
n(n + 1)

2
.
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Le raisonnement par récurrence

Terminons par un exemple d’application aux suites numériques.

Suites récurrentes et . . . récurrence !

Soit (un) la suite définie par u0 =
1

2
et pour tout entier naturel n par

un+1 =

√
1 + un

2
. Prouver par récurrrence que pour tout entier naturel n :

0 < un < un+1 < 1. Interpréter le résultat obtenu.

Posons pour tout entier naturel n : P(n) : 0 < un < un+1 < 1.

1 Initialisation : u1 =
√

3
4 =

√
3

2 . On a bien 0 < u0 < u1 < 1, donc

P(0) est vraie.

2 Fixons n ∈ N quelconque et supposons P(n) vraie : pour cet entier n,
0 < un < un+1 < 1. Prouvons que P(n + 1) est vraie i.e
0 < un+1 < un+2 < 1.

Yannick Le Bastard (LEGTA de l’Hérault) Rudiments de logique November 26, 2023 26 / 27



Le raisonnement par récurrence

De 0 < un < un+1 < 1, on tire que
1

2
<

1 + un
2

<
1 + un+1

2
< 1.

Par stricte croissance de la fonction racine carrée sur [0; +∞[, on en

déduit que :

√
1

2
<

√
1 + un

2
<

√
1 + un+1

2
< 1.

D’où : 0 < un+1 < un+2 < 1. Ainsi P(n + 1) est vraie.

Conclusion : on a prouvé que P(0) est vraie et que pour tout entier
naturel n, Pn =⇒ Pn+1, donc :
Pour tout entier naturel n non nul Pn est vraie i.e pour tout entier naturel
n : 0 < un < un+1 < 1.

Ceci prouve que la suite (un) est strictement croissante et tous ses termes
un appartiennent à l’intervalle ]0; 1[. En particulier, (un) est bornée.
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De 0 < un < un+1 < 1, on tire que
1

2
<

1 + un
2

<
1 + un+1

2
< 1.

Par stricte croissance de la fonction racine carrée sur [0; +∞[, on en

déduit que :

√
1

2
<

√
1 + un

2
<

√
1 + un+1

2
< 1.
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