Une expérience aléatoire

Yannick Le Bastard

17 janvier 2024

Table des matiéres

L 2
Modélisation du jeu avec les graj babilisted 2
1.2 Modélisation du jeu avec les ératriced 3

fonctions gén

[.3_Loi de probabilité de la somme de trois déd, 4

: : : 4
i2 1 Avec I'hyvpothése d’équiprobabilitd 5

2.2 Sans I'hypothése d’équiprobabilitd 8
13 _Somme de k déd 12

12

12

12
41 Enoncéd 12
b2 Solutiond. 13

I5.1 Graphes mgba.hlhs_tf‘s] 18

15.1.1 Arbres de probabilitéd 19

% 20

ines de Markovl 21

5.1.4 Reéduction de eraphed 23

5.2 Fonctions gﬁ’nératrjgeé 25
Résumé

Cet article détaille le jet de trois dés équilibrés, associé & un jeu d’argent. Nous modélisons
d’abord la situation de maniére théorique a ’aide de graphes probabilistes, en appliquant les
régles de parcours et les processus de réduction de tels graphes, ainsi que les régles de la valeur
moyenne. Dans un regard comparé, nous utilisons la puissante notion de fonction génératrice,
en se basant sur la remarquable méthode de marquage de Van Dantzig. Ce qui nous permet
d’obtenir la loi exacte des variables aléatoires considérées.

Ceci dit, les outils théoriques mis en jeu dépassent largement le cadre du lycée. D’ou l'idée
d’effectuer des simulations afin de retrouver de maniére approchée les résultats précédents. Et
par 1a méme, justifier I'intérét d’une telle approche pour répondre & des problémes théorique-
ment inaccessibles dans le secondaire.

Nous utiliserons le langage de programmation Python pour illustrer nos propos en mettant en
valeur 'approche fonctionnelle conformément aux nouveaux programmes.

1 Aspect théorique d’un jeu probabiliste

Considérons le jet de trois dés équilibrés a six faces. Notons S la somme obtenue.
1. Si § <7, la partie est perdue,
2. Si 8 < 5 < 14, on relance les trois dés,
3. Si § > 15, la partie est gagnée.

Nous nous proposons de répondre dans un premier temps aux trois questions suivantes :
— Calculer la probabilité de gain & ce jeu en modélisant sa loi,
— Calculer la durée moyenne d’une partie,
— Modéliser la loi de probabilité de la variable aléatoire .S somme de 3 dés.

1.1 Modélisation du jeu avec les graphes probabilistes

Les trois dés étant parfaits, nous pouvons prendre comme univers = {1;2;3; 4;5;6}3 que
nous munissons de la probabilité uniforme. Soit S la variable aléatoire réelle qui & chaque jet
de trois dés équilibrés, associe la somme obtenue.

Il est évident que S(2) = {3;4;...;18}.

Détaillons un peu le calcul de P(S < 7) :

événement | déclinaisons possibles | nombre de cas favorables
(S=3) 1+1+41 1
(S=4) 14142 31/21=3
B 1+14+3 31/21=3
(5=5) 14242 31/21=3
14144 31/21=3
(S=6) 14243 31=6
24242 1
14145 31/21=3
B 14244 31=6
(8=7) 1+3+3 31/21=3
2+2+3 31/21=3
2x1 2
Ainsi, P(§ < 7) = 22X 1HTx3H72x6_ 35
63 216
. o 20
En effectuant un raisonnement similaire, nous trouvons que P(S > 15) = 216"
20+ 35 161
Nous en déduisons que P(8 < S < 14) =1 — DEd —.
216 216

Nous pouvons dés lors créer un graphe probabiliste modélisant le jeu et qui comporte trois
états @ les deux états absorbants "Perte" : (S < 7) et "Gain" : (S > 15), ainsi que 'état
"Rejouer" : (8 < § < 14). Sans perte de généralité, nous pouvons supposer que ce dernier est
I’état initial (la boucle au-dessus pouvant étre parcourue 0, 1, 2, .. .fois).

35/216 20/216

Rejouer

161/216
2

graphe qui peut se réduire (c.f annexe) a :

Si 'on note X la variable aléatoire qui prend pour valeur 1 si Gain et 0 si Perte, on constate

2
que X suit la loi de Bernoulli de paramétre p = £ =~ 0, 3636.

Définissons maintenant la variable aléatoire Y égale & la durée d’une partie. En regardant le
premier graphe probabiliste représentant le jeu nous pouvons constater que : Y () = N* et
que pour tout entier naturel n > 1 :

161>"_1 55

P(Y =n) = P(faire n — 1 boucles suivi de perte ou de gain) = <m X 375

Le décalage "n — 1" est di au fait que ’on peut gagner ou perdre dés le premier lancer de dés.

Pour calculer 'espérance de Y, nous pouvons utiliser la seconde régle de la valeur moyenne
(c.f annexe). Notons respectivement 0, 1 et 2 les états "Perte", "Rejouer" et "Gain" et m; le
délai moyen d’absorption partant de 1’état 4 :

m0:m2:0

m—1+@m +£m —I—ﬂm
72T 916 216 0" 216 2

216
D’ot = — =~ 3.927.
ou mq 55

1.2 Modélisation du jeu avec les fonctions génératrices

Nous pouvons bien entendu nous servir de la loi de Y pour retrouver sa fonction génératrice :

55 161\"!
t) = — — t".
ov(t) =516 n; (216) .
La méthode de marquage de Van Dantzig est plus élégante et plus pratique pour le calcul qui

va suivre; nous la rencontrerons en exercice.

216

Quoi qu’il en soit, le rayon de convergence de cette série entiére est égal &8 R = — > 1.

161
On en déduit (c.f annexe) que E(Y) = ¢/ (1).

¢ 161¢\ "
Or, ¢Y(t):%xz< 0) , soit pour [t < R :

216
n>1
55t 1 55t
t) = —— = .
v(D) = 37 | 611~ 216 — 161¢
216

216
Un bref calcul nous assure alors que ¢4 (1) = —.

Nous retrouvons sans surprise le résultat précédent.

1.3 Loi de probabilité de la somme de trois dés

Il est évident que S(Q2) = {3;4;...;18}. Calculons Card(S =n), 3 <n < 18. Il ne s’agit rien
d’autre que de résoudre ’équation entiére

1 txetaxz=mn, 1<x,20,23 <6, 3<n<18

Solutions de I’équation x1 +x2+x3 =n : La méthode visuelle expliquée ici est a retenir.
Tout comme sa modification pour répondre au probléme donné.

Considérons 1’équation entiére :
r1+axa+ax3=mn, x; ENyn>3 (1)

Nous cherchons & déterminer le nombre de solutions D3, de cette équation. Signalons que
I'ordre dans lequel sont rangés les x; compte.

Nous distinguerons par exemple n+04+0=n; 0+n+0=n; 04+ 0+ n = n. Ceci nous
incite a remplacer les symboles "plus" par des "séparateurs" | et les nombres placés entre les
séparateurs par des cercles o.

Par exemple, la solution (1,2,4) de x1 + x9 + x3 = 7 est représentée par o|ooloooo

Autre exemple : la solution (0, 5,2) de la méme équation est représentée par [ooooo|oo
Nous pouvons dés lors mettre en bijection ’ensemble des solutions de I’équation entiére
x1 + x2 + x3 = n avec 'ensemble des mots constitués de deux séparateurs | et de n cercles o.
Le cardinal de I’ensemble de ces mots est égal & D3, = (";2) (choix des places des 2 sépara-
teurs parmi les n + 2 places possibles).

Attention! Ce résultat implique que des variables x; peuvent étre nulles, ce qui n’est pas le
cas ici. Nous devons avoir 1 < x; < 6 (1 < i < 3). Il convient donc de modifier le résultat
précédent.

Considérons maintenant I’équation :
yity2tys=n, y, €N ,n>3 (2)

Il est clair qu’en posant z; = y; — 1, on se rameéne a 1’équation précédente (1). Le nombre D3,
des solutions de (2) est alors :
n—1

Loi de la somme S de nos trois dés : Ce qui précéde, nous permet de conclure par
S(Q) ={3;4;5;...;18}
équiprobabilité que : ("—1) (n—1)(n—2)

Vn e S(Q) P(S=n)= 623 = 132

(on a remplacé n par n — 3).

2 Simulation de ce jeu

Je remercie chaleureusement mon collégue Jean-Michel Dardié pour sa contribution numpy a
cette partie.

10

15

20

25

1. Nous commencerons par présenter la simulation de la variable aléatoire S : somme des
trois dés, étudiée de maniére théorique auparavant.

2. Nous simulerons ensuite la loi de X, puis la loi de Y et calculerons une valeur approchée

21
de B(Y) = 5—56

2.1 Avec ’hypothése d’équiprobabilité

Loi simulée de S : L’intérét de simuler la loi de S tient au fait que celle-ci est difficile
a appréhender de maniére théorique pour des éléves du secondaire. Programmer un script la
simulant n’est néanmoins pas simple, et il faut parfois se contenter de le présenter en justifiant
son intérét et en le décortiquant dans les grandes lignes. En voici un en "pur Python".

#Simulation de la loi de S : somme de trois des equilibres
def Lancer3Des():

from random import randint

return sum([randint(1,6) for i in range(3)])

def frequence (N) : #Frequence d'apparition de chaque somme
L=[0 for i in range(3,19)] #Sommes de 3 a 18 inclus
for i in range(N) :
alea=Lancer3Des () #on lance nos 3 des et on releve la somme

for j in range(3,19):
if alea==7:
L[j-3]1+=1 #Attention au decalage !
return [L[i]/N for i in range (len (L))]

#Programme Principal

N=int (input ("Combien de lancers ? "))
X=[1i for i in range(3,19)]
Y=frequence (N)

import matplotlib.pyplot as plt

plt.figure ()

plt.bar (X,Y, width=0.5)

plt.title("Loi de probabilite simulee de S")
plt.xlabel ('Valeurs de la somme du lancer des 3 des')
plt.ylabel ('Frequences simulees')

plt.grid()

plt.show ()

Loi de probabilite de la somme de 3 des truques

012 n

0.10 A I I

0.08 -

Frequences simulees

04] n
0.02 | “
0.00 -

2 4 6 8 10 12 14 16 18

Valeurs de la somme du lancer des 3 des

10

15

20

25

30

Notons que puisque nous avons calculé la loi exacte de 9, il est facile de tracer son histogramme.
Notamment en utilisant la bibliothéque numpy (exercice laissé au lecteur).

Loi simulée de X : Explicitons d’abord un script donnant la loi simulée de X et sa repré-
sentation sous forme d’histogramme pour 10000 essais.

import matplotlib.pyplot as plt

def unePartie():

from random import randint
S=sum([randint (1,6) for i in range(3)])
while 8<=S<=14:

S=sum([randint (1,6) for i in range(3)])
if S<=7:

return 1
else:

return 0

def frequence (N) :
Gain=0 #nombre de gains et nombre d'essais avant fin de partie
for i in range (N) :
Gain+=unePartie ()
return Gain/N

#Programme principal

N=int (input ("Nombre de parties ? "))

#print ("La duree moyenne d'une partie est de : ",frequence(N)[1])
X=[0,1] #0 pour perte et 1 pour gain
Y=[1-frequence (N), frequence (N)]

plt.figure ()

plt.bar (X,Y,width=0.4, color='b"')
plt.title("Loi de probabilite simulee de X")
plt.xlabel ('Perte :0 ou Gain : 1'")
plt.ylabel ('Frequences simulees')

plt.grid()

plt.show ()

Loi de probabilite simulee de X

0.6

0.5

0.4

0.31

Frequences simulees

0.14

0.0 -

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Perte :0 ou Gain: 1

-
N

Pour 10000 parties, nous trouvons une fréquence de gain d’environ 0,36. Ce qui corrobore
notre calcul initial & I'aide du graphe probabiliste.

Loi simulée de Y : Observons maintenant la loi de Y (variable aléatoire qui peut a priori
prendre une infinité de valeurs : 1, 2, 3, ...) et estimons son espérance.

import matplotlib.pyplot as plt
import numpy as np

def unePartie():
from random import randint
S=sum([randint (1,6) for i in range(3)])
compteur=1 #nombre de coups par partie
while 8<=S<=14:
S=sum([randint (1,6) for i in range(3)])
compteur+=1
return compteur

def 1loi(N):
L=[unePartie () for i in range (N)]
return np.bincount (L,minlength=20) [1:]/N #explications plus tard

def frequence (N) :
coups=0 #duree d'une partie
for i in range (N) :
coupst=unePartie ()
return coups/N

#Programme principal

N=int (input ("Nombre de parties ? "))

print ("La duree moyenne d'une partie est de : ", frequence (N))
Y=1o01 (N)

X=[1 for i in range(l,len(Y)+1)]
plt.figure ()

plt.bar (X,Y,width=0.5, color='b"')
plt.title("Loi de probabilite simulee de Y")
plt.xlabel ("Duree d'une partie")

plt.ylabel ('Frequences simulees')

plt.grid()

plt.show()

Loi de probabilite simulee de Y

0.25 1
0.20 1

0.15 4
0.10 i
0.05 1 |

0.00

Frequences simulees

T T

|,
"||I|,||.....
10 20 30 40

Duree d'une partie

10

15

20

25

30

35

Pour 10000 parties, nous trouvons une fréquence de durée d’environ 3,92. Ce qui corrobore
notre calcul initial & I'aide de la seconde régle de la valeur moyenne ou des fonctions généra-
trices.

2.2 Sans I’hypothése d’équiprobabilité

Premiére généralisation : nous supposons notre dé truqué de la maniére suivante :

La probabilité de faire 1, 2 ou 3 est de 1/4; celle de faire 4, 5 ou 6 de 1/12.

Il convient de modifier les scripts précédents pour mettre en ceuvre ceci. La notion de liste est
alors mise & profit, ainsi que les méthodes qui s’y rattachent : liste définie par compréhension,
somme, slicing.

Loi de S : Commengons par la loi de S.

#Simulation de la loi de S : somme de trois des truques
def De():
from random import random
1=[1/4,1/4,1/4,1/12,1/12,1/12] #probas d'obtenir 1, 2, 3, 4, 5, 6
C=[sum(L[:1+1]) for i in range(len(L))] #probas cumulees croissantes
alea=random () #jet du de
for i in range(len(C)) :
if alea<=C[i]:
return i+1 #numero sorti
break #on sort de la boucle des la premiere condition vraie

def Lancer3Des() :

return sum([De() for i in range(3)]) #somme obtenue pour un lancer
def frequence (N) : #Frequence d'apparition de chaque somme
L=[0 for i in range(3,19)] #Sommes de 3 a 18 inclus
for i in range (N) :
alea=Lancer3Des () #Jet de 3 des

for j in range(3,19):
if alea==7:
L[j-3]1+=1 #Attention au decalage !
return [L[i]/N for i in range(len (L))]

#Programme Principal

N=int (input ("Combien de lancers ? "))
X=[1i for i in range(3,19)]
Y=frequence (N)

import matplotlib.pyplot as plt

plt.figure ()

plt.bar(X,Y, width=0.5)

plt.title("Loi de probabilite de la somme de 3 des truques")
plt.xlabel ('Valeurs de la somme du lancer des 3 des')
plt.ylabel ('Frequences simulees')

plt.grid()

plt.show()

Avec 10000 expériences, nous obtenons l’histogramme des fréquences suivant (loi simulée
de S) :

10

15

Loi de probabilite de la somme de 3 des truques

0.14

0.12 A

0.10 A

0.08 A

0.06

Frequences simulees

0.00 -M
2 4 6 8 10 12 14 16 18
Valeurs de la somme du lancer des 3 des

0.04 A

Mais il y a beaucoup plus rapide grace aux méthodes spécifiques de la bibliothéque (ou module)
numpy. Détaillons celles qui vont étre mises en ceuvre dans le script qui suit :

1. La bibliothéque numpy posséde une "étagére" random (module pour les générateurs

aléatoires), avec plein de livres traitant sur le hasard et ses simulations. Cette étagére
posséde a son tour un "livre" qui porte le méme nom : random. Ce livre, en fait
une fonction, permet de simuler la loi uniforme sur [0; 1[. Par exemple, la commande
np.random.random() renverra un réel pseudo-aléatoire compris entre 0 et 1. Mais il y
a d’autres options :

(a) On peut utiliser un alias pour simplifier I’écriture : import numpy.random as npr.
Ainsi, npr.random() équivaut & numpy.random.random() !

(b) npr.random(a,b) renvoie une matrice a x b avec tirages uniformes dans [0;1].

. Linstruction npr.choice([ay, az, ..., ay], p = [p1,p2,---,Pnl, size = (L,C)) génére une
matrice L x C' de tirages indépendants dans A = [ay,aq,...,ay], de loi [p1,pa, ..., pnls

3. L’instruction np.sum(tableau L x C, axis=0) renvoie un tableau 1-D constitué des

sommes des colonnes du tableau d’entrée,

4. L’instruction np.bincount(tableau 1-D, options) compte le nombre d’occurrences d’un

tableau 1-dimensionnel d’entiers naturels.

import numpy as np
import numpy.random as npr
import matplotlib.pyplot as plt

def frequence (k,N): #k nombre de des

tirage=npr.choice (np.arange(l,7),p=[1/4,1/4,1/4,1/12,1/12,1/12]
size= (k,N))

#simule N lancers de k des avec la loi du de

#on obtient une matrice k*N

lancer=np.sum(tirage,axis=0) #1'option axis=0 somme chaque colonne
return np.bincount (lancer,minlength=6+k+1) [k:]/N

#le decalage est traite comme tel

#Programme Principal

k=3

N=int (input ("Combien de lancers ? "))

20

25

10

15

un tableau numpy offre plus de souplesse qu'une liste
#X=tuple (i for i in range (k, 6*%k+1)) est remplace par
X=np.arange (k, 6xk+1)

Y=frequence (k,N)

plt.figure ()

plt.bar (X,Y,width=0.5, color='zr"')

plt.title("Loi de probabilite de la somme des des truques")
plt.xlabel ('Valeurs de la somme du lancer des des')
plt.ylabel ('Frequences simulees')

plt.grid()

plt.show ()

Avec 10000 expériences, nous obtenons 'histogramme des fréquences suivant (loi simulée de

S) :

Loi de probabilite de la somme des des truques

0.14 A

0.12 A

0.10 A

0.08 -

0.06 A

Frequences simulees

0.04 4

0.02 A I II I
0.00 M
2 4 6 8 10 12 14 16 18
Valeurs de la somme du lancer des des

Nous pouvons maintenant simuler notre jeu de maniére optimale en créant les lois simulées
des variables aléatoires X (1 si gain et 0 si perte), et Y : durée d’une partie.

Loi de X : Petite modification du script avec équiprobabilité.

#Loi de X avec 3 des truques
import numpy as np

import numpy.random as npr
import matplotlib.pyplot as plt

def De():
from random import random
L=[0,1/4,1/4,1/4,1/12,1/12,1/12] #probas d'obtenir 0, 1,
#11 est Iimportant de commencer a zero
C=np.cumsum (L) #probas cumulees croissantes
alea=random () #jet du de
return np.searchsorted(C,alea) #classification du numero obtenu

2, 3, 4, 5, 6

def LancerkDes (k) :

return sum([De () k) 1)

for i in range(

10

#somme obtenue pour un lancer de k des

20

25

30

35

40

def unePartie (k) :
S=LancerkDes (k)
while 8<=S<=14:
S=LancerkDes (k)
if S<=7:
return 1

else:

return O

def frequence (k,N):

Gain=0

#nombre de gains et nombre d'essais avant fin de partie

for i in range(N) :

Gain+=unePartie (k)

return Gain/N

#Programme principal

k=3

N=int (input ("Nombre de parties ? "))

X=[0,1]

Y=[1-frequence (k,N), frequence (k,N)]

plt.figure ()

plt.bar (X,Y, width=0.5,

color="r")

plt.title("Loi de probabilite simulee de X")
plt.xlabel ('Valeurs de la somme du lancer des des')
plt.ylabel ('Frequences simulees')

plt.grid()
plt.show ()

Loide Y :

Loi de probabilite simulee de X

1.0

0.8 1

0.6

0.4

Frequences simulees

0.2

0.0-
-0.2

(mini-)Défi 1.

0.0

0.2 0.4 0.6 0.8 1.0 1.2
Valeurs de la somme du lancer des des

11

3 Somme de k dés

3.1 Aspect théorique (cas équiprobable)

Le raisonnement effectué en lancant trois dés se généralise aisément au cas de k > 4 dés par-
faits.

Nous pouvons mettre en bijection ’ensemble des solutions de I’équation entiére x1 +x9+-- -+
xr = n avec 'ensemble des mots constitués de k — 1 séparateurs | et de n cercles o.

Le cardinal de I’ensemble de ces mots est égal a Dy, ,, = ("Zﬁ[l) (choix des places des k — 1
séparateurs parmi les n + k — 1 places possibles).

Comme avant, ce résultat implique que des variables x; peuvent étre nulles, ce qui n’est pas
le cas ici. Nous devons avoir 1 < z; <6 (1 <i < k). Il convient donc de modifier le résultat

précédent.

Considérons maintenant 1’équation :
ity tye=n, y €N n>k (%)

Il est clair qu’en posant x; = y; — 1, on se raméne a I’équation précédente (1). Le nombre D
des solutions de (*) est alors :
n—1
Dy, =

Loi de la somme S de nos k£ dés : Ce qui précéde, nous permet de conclure par équipro-
S(Q) ={k;k+1;k+2;...;6k}
babilité que : (”—1)

Yn e S(Q) P(S=n)= kﬁg

(on a remplacé n par n — k).

3.2 Simulation

En situation d’équiprobabilité : Modifier le script avec 3 dés.

En situation de non équiprobabilité : Le script correspondant au lancer de k£ dés a
déja été donné précédemment. Il suffit de changer la valeur de k& pour obtenir ’histogramme
correspondant.

4 Exercices

4.1 Enoncés

Exercice 1 : Une urne contient 2 boules rouges et 3 boules noires. On préléve successivement
et sans remise une boule de cette urne jusqu’a temps que son contenu soit unicolore. Soit T la
variable aléatoire temps d’attente (nombre de tirages nécessaires).

1. Simulez a I’aide de 'approche fréquentiste la loi de T. Vous testerez ceci sur 10000
expériences et afficherez le résultat sous la forme d’un diagramme en barres, ainsi que
le nombre moyen de tirages effectués.

2. Retrouvez le résultat de maniére théorique.

12

10

15

20

25

30

Exercice 2 : On lance une piéce biaisée. La probabilité de faire Pile est de p. On posera
q = 1 — p, probabilité de faire face. X est la variable aléatoire réelle égale au nombre d’essais
nécessaires pour obtenir pour la premiére fois une suite de trois Piles consécutifs.

1. Dessiner un graphe probabiliste modélisant I’expérience précédente. En déduire le graphe
d’un parcours non marqué.

2. En réduisant le graphe précédent, donner I'expression de la fonction génératrice de X.
3. Généraliser au cas de n Piles consécutifs.
4. En déduire en fonction de n et de p le temps moyen d’attente. Appliquer avec n = 3 et
p=0,25.
5. Ecrire un script qui demande a utilisateur :
(a) de saisir la probabilité p de faire Pile,
(b) de saisir le nombre n de Piles consécutifs souhaité,

¢) Et qui simule la variable aléatoire temps moyen T, , d’attente sur N = 10000 essais.
q p Yy P
Appliquer avec n = 3 et p = 0, 25.

4.2 Solutions

Exercice 1 : Nous donnons ici un script "pur Python".

#Une urne contient 2 boules rouges et 3 boules noires

#on preleve successivement et sans remise 1 boule de cette urne

#jusqu'a temps que son contenu soit unicolore.

#Soit T la variable temps d'attente. Nous simulerons la loi approchee de T
#et en deduirons une valeur approchee de E(T).

def experience():
from random import randint
compteur=0
nb_noires, nb_rouges=3, 2
while (nb_noires!=0 and nb_rouges!=0) :
alea=randint (1, nb_noires+nb_rouges)
if alea<=nb_noires:
nb_noires—-=1
else:
nb_rouges—=1
compteur+=1
return compteur

def frequence(N) :
1L=[0,0,0]
for i in range (N) :
alea=experience ()
for j in range(2,5):
if alea==7:
L[j-2]+=1
return [el/N for el in L]

#Programme Principal
N=int (input ("Combien de lancers ? "))
X=tuple (i for i in range(2,5))

Y=frequence (N)

#nombre moyen de tirages effectues

13

35

40

45

nb_tirages=0
for i in range(N) :
nb_tiragest=experience ()
print ("nombre moyen de tirages : ",nb_tirages/N)

#Histogramme de la loi simulee de T

import matplotlib.pyplot as plt
plt.figure ()

plt.bar (X,Y, width=0.5)

plt.title("Loi de probabilite de T")
plt.xlabel ('Nombre de tirages avant arret')
plt.ylabel ('Frequences simulees')
plt.grid()

plt.show ()

Loi de probabilite de T

0.6 1

0.5 A

Frequences simulees
© o
w >
))

o
[N)
!

0.114

0.0 -
1.5 2.0 2.5 3.0 3.5 4.0 4.5

Nombre de tirages avant arret

La solution théorique n’est pas lourde & mettre en ceuvre (un arbre de probabilités convient)
et nous la laissons & la sagacité du lecteur. Vous devez trouver :

i 2 | 3 | 4
P(X=x)01]03]06

Exercice 2 : Donnons d’abord un résultat préliminaire trés utile. Nous laissons sa démons-
tration & la sagacité du lecteur.

Le graphe : a
équivaut a : b

équivaut a :

14

Question 1 :
Nous poserons 0 pour Face et 1 pour Pile. Sans perte de généralité, on peut supposer que I’état
initial est 0. Le graphe probabiliste associé a notre expérience aléatoire prend alors la forme :

Question 2 : Il suffit de multiplier chacune des probabilités indiquées par t, la probabilité de
ne pas étre marqué en faisant tourner la roue de Van Dantzig.

pt

111

équivaut a :

pt pt pt
qt + pqt> 0 O, (i1) 111
qt
lui-méme équivalent a :
2,2
pt pt
gt + pqt? 0 (11) 111
qt
qui équivaut a :
2,2
Pt pt
qt + pqt® + p*qt?® 0 (11) 111
\/

équivaut a :

2 2 143 p37f3
qt + pqt” + p=qt 0 111

15

10

15

20

équivaut a :

p3t3
1—(gt+pqt?+p2qt3)

(0) 111

t(1 — p3t3
De plus, gt + pqt? + p°qt> = w, d’ou :
1—pt
by (t) = w)*(L—pt) _ (pt)’(1—pt)
L—pt—qt(l—(pt)®) 1—t+qt(pt)?
soit : () 3.3
1 — pt)p°t
ox(t) =T =1
—t+gp°t
Question 3 :
(1 —pt)p"t"

On laisse le lecteur se persuader que t) = .
p que ¢x (t) = 7 ST

Question 4 :

Le développement en série entiére de ¢x (t) est laborieux. Ceci dit, le calcul de ¢’y (1), méme

plus simple, 'est aussi. X-Cas étant notre ami, demandons-lui un petit coup de pouce!
/ l—p—gp" _1-p"

EX)=¢x(1)=—F—=—7—

q ap

Avec n = 3 et p = 0,25, nous trouvons un temps moyen d’attente de 84 lancers.

Question 5 : Nous allons utiliser un peu numpy.

#Temps d'attente du motif 111...11 (n fois "1")
#probabilite a chaque lancer de faire "1" : p
import numpy as np

import numpy.random as npr

import matplotlib.pyplot as plt

def Lancers(p,n):
compteur,motif, chaine=0,"1"xn,""
while chaine.count (motif)==
alea=npr.random/()
if alea<=p:
chaine+="1"
else:
chaine+="0"
compteur+=1
return compteur

def loi(p,n,N):
L=[Lancers(p,n) for i in range (N)]
return np.bincount (L, minlength=20) [n:]/N

#Programme Principal

n,p=3,0.25
N=int (input ("Combien de lancers ? "))

16

25

30

10

15

20

Y=1o0i (p,n,N)
X=np.arange (n, len (Y) +n)

plt.figure ()

plt.bar (X, Y, width=0.8)

plt.title("Loi de probabilite d'attente de '111'" ")
plt.xlabel ('Nombre de lancers')

plt.ylabel ('Frequences simulees')

plt.grid()

plt.show ()

Loi de probabilite d'attente de '111"

0.014 4

0.012

©
o
=t
S
!

Frequences simulees
o o
o o
o o
[} ©
))

0.004 -

0.002 A

0.000 _Wﬂm b ! !

0 200 400 600 800
Nombre de lancers

Bonus : Le tracé de la surface qui pour N = 1000 essais, avec n variant de 0 & 5, et p variant
de 0 & 1 (pas de 0,1), renvoie le temps moyen d’attente. Ceci utilise matplotlib en 3D!

import numpy as np

import numpy.random as npr

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

def Lancers(p,n):
compteur, motif=0,0
while motif<n:
alea=npr.random/()
if alea<=p:
motif+=1
else:
motif=0
compteur+=1
return compteur #le nombre d'essais avant arret

def frequence(p,n,N):
attente=0
for i in range(N) :
attente+=Lancers (p,n)
return attente/N #nombre moyen d'essais sur N experiences

17

25

30

35

40

#Programme principal

x=np.linspace (0, 5, num=6) #nombre de Piles consecutifs (0 a 5)
y=np.linspace (0,1, num=11) #probabilite de faire Pile
N=1000 #nombre d'experiences

tableaul=np.zeros ((6,11))
np.set_printoptions(precision=3, suppress=True)
for n in x:

for p in y:
if int (n)==0 or p==0.: #pour eviter une boucle infinie
tableaul [int (n) ,int (10xp) 1=0
else:
tableaul [int (n) ,int (10xp)]=frequence (p, int (n) , N)

fig=plt.figure()

ax=fig.add_subplot (111,projection="'3d")

xv, yv=np.meshgrid(x,y)

ax.scatter (xv,yv,tableaul .T,c="r',marker="'0")
ax.plot_wireframe(xv,yv,tableaul.T, rstride=1, cstride=1)
ax.set_xlabel ('nombre de piles consecutifs')
ax.set_ylabel ('probabilite de faire Pile')
ax.set_zlabel ('nombre moyen de lancers')

plt.show ()

Nous n’avons pas utilisé de chaine de caractére dans ce script modifié (plus rapide :

Jean-Michel) !

5 Annexes

5.1 Graphes probabilistes

Nous sommes habitués lors de la modélisation probabiliste d’un énoncé faisant intervenir une
expérience aléatoire, d’introduire les notions d’univers, d’événement et de variable aléatoire
(réelle ou vectorielle). Il en ressort néanmoins une impression statique de 'expérience aléatoire
considérée. Le point de vue qui sera adopté ici est celui de la dynamique, avec une évolution

dans le temps.

Considérons par exemple la trajectoire d’une poussiére sur la surface d’'une nappe d’eau. On

18

peut découper cette surface en n carrés élémentaires puis observer la présence de la poussiére
dans chacun de ces carrés au cours du temps, qui lui-méme peut étre discrétisé. Nous obtenons
alors ce que nous définirons plus loin comme un processus aléatoire discret. Ainsi, nous qua-
lifierons plus volontiers 'univers €2 d’espace des états, en référence aux systémes dynamiques,
plutot qu’ensemble des événements.

L’étude des transitions de la particule d’un état a 'autre a des représentations commodes : &
I’aide de graphes orientés et pondérés ou bien matriciellement. Ces deux approches sont com-
plémentaires et 1'utilisation de 'une plutot que l'autre dépend avant tout du cas considéré.
Notons que généralement, il est préférable de commencer par 'approche graphe probabiliste
avant de passer & I'approche matricielle dans un souci de visualisation des états et de leurs
transitions.

5.1.1 Arbres de probabilités

Nous sommes tous familiers de l'utilisation d’arbres de probabilités pour modéliser une si-
tuation dynamique : tirages successifs avec ou sans remise notamment. Rappelons les régles
usuelles :

Régle 1 : La probabilité, partant d’un noeud donné de ’arbre de réaliser un parcours donné,
est égale au produit de toutes les probabilités de transition (inscrites sur les segments) le long
de ce parcours.

Régle 2 : La probabilité d’aller de A & B est la somme des probabilités de tous les chemins
conduisant de A 4 B.

Régle 3 : La somme des probabilités des segments issus d’'un méme nceud est égale a 1.

Remarque :

1. Larégle 1 n’est rien d’autre que la traduction de la formule des probabilités composées :

Si P(A;NAyN---NA,) >0, alors :

P(AiNAyN---NAy1) = P(A1)Pa,(A2)Painas(As) - .. Payn..a, (Antt)

2. La régle 2 n’est que la traduction de P(C) = Z P(z;),ou Q ={z; ; i€}
{i;2:€C}
3. La régle 3 est la traduction de la formule des probabilités totales.

Exemple : Un détaillant achéte ses produits chez deux fournisseurs dont le premier, noté
A lui fournit 10% de ses articles. Parmi les articles fournis par A, 99% n’ont pas de défaut de
fabrication : événement B. Parmi les articles fournis par le second fournisseur, 98% n’ont pas
de défaut de fabrication.
On préléve au hasard un article du stock du détaillant. Calculez la probabilité qu’il n’ait pas
de défaut de fabrication.

19

A (B)P(ANB) =0,099_

@ P(B) = P(A)P4(B) + P(A)Pz(B) = 0,981

Le calcul sus-mentionné est une application immeédiate de la formule des probabilités totales.
Avantage de ’arbre : nous percevons la dynamique du processus! Généralisons-donc un peu...
de maniére heuristique en gardant les mémes régles de parcours.

5.1.2 Un exemple modéle

Yom suait & grosses gouttes. Faut dire qu’il n’avait pas fait les choses & moitié en marchant
activement depuis le ministére de ’agriculture, situé a deux pas des Invalides. L’été parisien
commengcait tout juste & poindre le bout de son nez qu’il en avait asséché sa gorge. Vite, se
désaltérer... Une terrasse accueillante prés de I’hotel de ville lui tendait les bras. La chaise en
osier craqua subrepticement lorsqu’il s’assit nonchalamment en étirant ses membres alourdis.
Ses lévres frémissantes saluérent le demi pression qu’il savoura goulument... jusqu’au moment
fatidique de ’addition! Cing euros!

"Bigre! Diantre! Purée de forficules! Paris sera toujours Paris!" se dit-il en essuyant sa mous-
tache du revers de 'index.

Il farfouilla dans sa poche pour y trouver sa bourse en cuir élimée par les ans. Mais celle-ci
ne contenait plus qu’un seul et malheureux euro. En regardant le nom du troquet : "Pie et
Matou", un frisson glacé parcourut son échine. Un de ses collégues venant d’Ardéche et dans
la déche y avait vécu un moment douloureux face aux trois tauliéres : Brigida, dite Bri la
géometre ; Christelle, dite Cricri 'aréne, et Nathalie, dite Nath I’Aligot.

Mais les trois amazones semblérent compréhensives lorsqu’il leur déclara ne pouvoir leur resti-
tuer leur dii qu’a hauteur d’un euro ; d’autant que les distributeurs alentours étaient en panne
comme de par hasard!

— C’est pas grave mon biquet, déclara Brigida un sourire en coin. Je te propose un petit
jeu qui va te plaire.

— Lequel ? demanda Yom les lévres séches.

— J’ai une piéce parfaitement honnéte comme moi, dit Brigida d’un air entendu. Tu vas
la lancer autant de fois que nécessaire pour gagner mon dii de cing euros. Si tu fais Pile,
tu gagnes la manche, sinon tu la perds. Voici les régles : tant que tu disposes d’un ou
deux euros, tu joues ton pécule. Si tu as trois ou quatre euros, tu joues le complément
& cinq euros... & moins que tu ne perdes entre temps. Mais si tu perds...

— Quoi? interrogea Yom le regard hagard.

— Je réaliserai ton réve d’artiste : tu entreras en Seine!

Yom sortit un papier de sa poche afin de calculer ses chances de rester au sec. Rien de tel
qu’un bon petit graphe pour se détendre. Voici ce qu’il scribouilla :

L’état de départ est noté 1 (comme un euro, ce dont je dispose) et ceux de fin (appelés états
absorbants) sont notés 0 et 5 (comme zéro et cing euros). Entre-temps, je peux passer par les

20

états 2, 4 et 3. En construisant le graphe petit & petit en fonction du résultat obtenu a chaque
tour, j’obtiens donc :

Ok! Ok! Les chemins menant au gain sont ceux qui partant de 1 ont pour terminaison 5,

soit :

— C1:1—2—4—5

— (Cy:1—2—4—3—5
tout ceci précédé de n boucles, ot n est un entier naturel éventuellement nul et la boucle le

4
1

chemin 1 — 2 — 4 — 3 — 1, de probabilité (5 =16
Bon, ¢a m’étonnerait que je boucle une infinité de fois, mais je dois quand méme le prendre
en considération. Résumons donc tout ca...

R T N A L | 1
n=0 , n=0 \ ,
n boucles suivi de Cp n boucles suivi de Cs

Comme dirait Cambronne : M. ..E! Ca sent la mise en biére tout ¢a! marmonna Yom. Je suis
vraiment mouillé dans une drole d’histoire!

5.1.3 Chaines de Markov

1. On note S l'ensemble des états qu’il est possible de visiter au cours de notre suite
d’expériences aléatoires. On supposera que cet ensemble est fini ou infini dénombrable.

2. On appelle probabilité de transition de i vers j, et on note p;; la probabilité de passer
de I'état i a I’état j au cours d'un pas de temps. A priori, p;; dépend de n et I'on de-
vrait noter p;;(n), mais nous travaillerons uniquement sur des probabilités de transition
indépendantes de I'instant considéré.

3. Un état ¢ est dit absorbant s’il vérifie p; = 1. On note B ’ensemble des états absorbants
de S et on I'appelle le bord de S.

4. On appelle état intérieur un élément de S\ B.

Définition :
— Définition naive : La donnée de S, ensemble des états, des p;;, probabilités de transitions
entre états, ainsi que de I’état initial (ag, a1, ...) définit une chaine de Markov.

N

— Définition plus rigoureuse : Soit (X,)n,>0 une suite de variables aléatoires a valeurs
dans I'ensemble S des états que 'on peut supposer égal & N. On dit que cette suite

est une chaine de Markov si pour tout entier n > 1 et toute suite (ig,...,in—1,1%,/)

d’éléments de S tel que P(B,,) def P(Xog=ipN--NXp—1=ip_1NX,=1) >0, on ait

Pp,(Xpnt1 = j) = Px,=i(Xnt1 = j)-

On peut comprendre ceci comme : dans ’évolution au cours du temps, I'état du pro-
cessus & l'instant n + 1 ne dépend que de celui-ci & I'instant n précédent, mais non de
ses états antérieurs. Le processus est sans mémoire.

21

Définition :
1. Une chaine de Markov est dite absorbante si son bord B est non vide : il y a au moins
un état absorbant.

2. Une chaine de Markov est dite homogéne (en temps) si la probabilité Py, —;i(X,+1 = J)
ne dépend pas de n > 0. On la note p;; et on 'appelle probabilité de transition (en une
étape) de l'état ¢ a l'état j.

Remarque : Dans ce chapitre, nous étudierons les deux cas : chaines de Markov absorbantes,
et chaines sans bord. Dans tous les cas, elles seront supposées homogénes.

Propriété :
1. Pour tout couple d’entiers (,7) on a p;; > 0,

2. Pour tout ¢ € S, Zpij =
JeS

Remarque : La propriété précédente ne dit rien d’autre que pour chaque i € S, 'application
B> jes Pij définit une mesure de probabilité sur S.

Reégles de parcours Les régles présentées ici ont une importance pratique capitale! La régle
3, dont nous donnerons une autre version ultérieurement, se différencie des deux autres qui
sont identiques & celles présentées pour les arbres de probabilité, car elle permet de calculer
non pas une probabilité, mais une durée moyenne de parcours i.e une espérance.

Régle 1 : La probabilité, partant d’'un état donné du graphe de réaliser un parcours donné,
est égale au produit de toutes les probabilités de transition le long de ce parcours.

Reégle 2 : La probabilité, partant d’'un état intérieur ¢ donné, d’atteindre un quelconque
sous ensemble 1" du bord B est égale a la somme des probabilités de tous les chemins menant
de i & T'. Cette régle reste valable entre deux états intérieurs i et j.

Reégle 3 : La durée moyenne m,; des parcours aléatoires allant de I'état ¢ au bord B est la
moyenne pondérée des longueurs des parcours de ¢ & B, chaque longueur de parcours £, étant
pondérée par la probabilité p; de ce parcours.

Régles de la valeur moyenne Ces outils permettent de simplifier les régles de parcours
présentées précédemment. Notamment la régle 3 de durée moyenne de parcours. On note
S =1{1,2,...,n} Pensemble des états.

Définition : On appelle fonction de probabilité la fonction définie sur S a valeurs dans [0; 1],
qui & chaque état i associe sa probabilité d’étre absorbée dans un sous-ensemble 7" C B. On

(T)

la note p;”’ o, si aucune confusion n’est a craindre p;.

La formule des probabilités totales nous dit alors que pour tout état intérieur i :

n
pi = Zpikpk
k=1

Pour le bord : p; =1sii€Tetp;=0siic B\T.

22

Théoréme fondamental :

1.

Premicére régle de la valeur moyenne : La valeur de la fonction de probabilité en un état
intérieur 7 est la moyenne pondérée de ses valeurs en les états voisins de 3.

. Seconde régle de la valeur moyenne : La valeur du délai d’absorption en un état

intérieur ¢ est de 1 plus la moyenne pondérée des délais d’absorption en les états voisins.

5.1.4 Reéduction de graphes

Les premiéres et secondes régles de parcours nous permettent de simplifier avantageusement
certains graphes probabilistes. Citons notamment :

(a) Suppression d’un noeud : La régle 1 de parcours se traduit par :

équivaut & :

(b) Réunions de branches en paralléles : La régle 2 de parcours se traduit par :

équivaut & : b

(c) Réunions de boucles issues d’un méme nceud : Ce n’est qu'un cas particulier de
ce que nous avons vu en (b).

O D0
équivaut & : @

b

O—D—@
O

a+b

(d) Synthése : Simplification de graphes faisant intervenir des boucles :

G

Cas fréquent 1 :
équivaut a :

Cas fréquent 2 :

O—D——0@
équivaut a : ®

Appliquons ces résultats pour retrouver la probabilité de gain au jeu des tauliéres en simpli-
fiant petit a petit le graphe. Nous poserons p =1/2 :

L’état 1 est fondamental.

Regroupons les branches 1 — 0 et 1 — 2 — 0 de probabilités respectives p et p? qui ménent
a l'état absorbant O; les branches 1 — 2 — 4 — 5et1 — 2 — 4 — 3 — 5 de
probabilités respectives p? et p? qui ménent a 1’état absorbant 5, sans oublier la seule boucle
du graphe 1 — 2 — 4 — 3 — 1, de probabilité p*. Nous obtenons le graphe suivant :

lui-méme équivalent & :

On en déduit P(Gain) = plgjlff = 0,2. Pas de surprise!

24

Théoréme : Sile bord B d'une chaine de Markov est non vide, la probabilité, partant d’un
état intérieur quelconque, d’atteindre B est égale a 1.

5.2 Fonctions génératrices

Considérons une chaine de Markov absorbante. Nous savons qu’une particule, partant d’un
état donné, finit par étre absorbée avec la probabilité 1.

Soit X la variable aléatoire réelle donnant le nombre de transitions avant ’absorption.

X(2) =[0; NJNN ou X () = N. Sans perte de généralité, on peut supposer X (2) = N quitte
a poser P(X =1i) =0 a partir d’un certain rang.

Notation 1-1-1 : on posera p; := P(X =1i) et ¢; := P(X > i). La fonction i — ¢; s’appelle
fonction de survie de la particule pour des raisons évidentes.

Remarque : E(X) = ZQi'

i>0
Décrivons maintenant la géniale méthode (dixit Maitre Yoda) inventée par le mathématicien
hollandais David Van Dantzig (1900-1959) pour donner un sens aux séries entiéres ¢(t) =
Z pitt, ol (pi)i>o est une distribution de probabilité. En I'occurrence, nous considérerons
i>0
essentiellement ici la distribution de probabilité de la variable aléatoire X précédente.

Méthode de Van Dantzig: Elle comporte deux étapes que nous allons décrire précisément.
Considérons un état intérieur d’une chaine de Markov absorbante. C’est le point de départ de
la particule.

1. Cette particule effectue une transition par unité de temps.

2. A chaque transition, on lance la roulette suivante :

ol la probabilité de tomber dans la zone marquée est 1 — ¢ et celle de ne pas y tomber
est t.

En vertu de la formule des probabilités totales, avec le systéme complet d’événements
{(X =1)}i>1, la probabilité de I'événement A : "avoir un parcours non marqué" est égale a

P(A) =) Px—i(A)P(X =i)=> t'p;
i>1 i>1

par indépendance des lancers.

Notons que le conditionnement par un événement (X = i) suppose qu’il ne soit pas de proba-
bilité nulle, ce dont nous n’avons aucune idée pour ¢ > 1. Le raisonnement est donc purement
formel. D’autre part, étant donné que I’état initial est intérieur, on a pg = 0. On peut poser
sans perte de généralité Z pit!, expression que nous noterons ¢x (t).

i>0

25

Remarque: Dans certains cas, X ne comptera que certaines transitions particuliéres (comme
avec la loi binomiale). Plus généralement, donnons la méthode suivante :

on considére une variable aléatoire X qui prend les valeurs 0, 1, 2, ... avec les probabilités po,
1, P2, - - .Ceci se modélise par une roulette comme celle ci-dessous que 1’on fait tourner une fois.

el

Si X prend la valeur i, on fait ensuite tourner ¢ fois la roulette marquée de Van Dantzig. La
probabilité de ne pas étre marqué au cours de ces i lancers est égale & p;t*. Comme il nous
faut considérer toutes les valeurs de i, la probabilité de ne pas étre marqué au cours de cette

expérience en deux temps est égale a E pit'. Ce qui nous ameéne a la :
>0

Définition : Soit (p;);>0 la distribution de probabilité d’une variable aléatoire X prenant N
comme valeurs. La série entiére ¢x (t) := Y, pit’ s’appelle la fonction génératrice de X.

On a d’aprés le théoréme de transfert, ¢x (t) = E(tX).
Remarque : Le rayon de convergence de ¢x est supérieur ou égal a 1.

Propriété : Si Rx >1,on a

L B(X) = ¢x(1)

2. V(X) = ¢% (1) + ¢ (1) — ¢ (1)
Remarque importante : Développer en série entiére la fonction génératrice d’une variable
aléatoire X a valeurs entiéres nous permet ainsi de connaitre précisément sa loi de probabilité.

Il s’agit cependant souvent d’un exercice technique qui peut s’avérer ardu. C’est la contrepartie
du gain obtenu !

26

	Aspect théorique d'un jeu probabiliste
	Modélisation du jeu avec les graphes probabilistes
	Modélisation du jeu avec les fonctions génératrices
	Loi de probabilité de la somme de trois dés

	Simulation de ce jeu
	Avec l'hypothèse d'équiprobabilité
	Sans l'hypothèse d'équiprobabilité

	Somme de k dés
	Aspect théorique (cas équiprobable)
	Simulation

	Exercices
	Énoncés
	Solutions

	Annexes
	Graphes probabilistes
	Arbres de probabilités
	Un exemple modèle
	Chaines de Markov
	Réduction de graphes

	Fonctions génératrices

