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Résumé
Cet article fait suite au précédent : Introduction aux processus aléatoires discrets 1, qui in-
troduisait la notion de graphe probabiliste (et l’aspect matriciel correspondant), les règles
de parcours et de la valeur moyenne ainsi que les processus de réduction de tels graphes. Il
était notamment mis l’accent sur la notion d’état absorbant et sur la relation fondamentale
de Chapman-Komolgorov permettant de connaître l’état du système à l’instant n, connais-
sant celui-ci à l’instant initial. Dans cet article, nous étudierons particulièrement la notion de
fonction génératrice, en se basant sur la remarquable méthode de marquage de Van Dantzig.
L’aspect matriciel n’est pas oublié et donne lieu à quelques développements techniques. La
dualité graphe probabiliste-matrice de transition associée reste omniprésente et l’on étudie,
notamment à travers un exemple consistant, la complémentarité de telles approches. Enfin,
nous donnerons quelques compléments sur la notion d’état et détaillerons une règle pratique
permettant de traiter des graphes complexes : la formule de Mason.

1 Fonctions génératrices

1.1 Introduction

Yom avait passé le relai de ses réflexions à son vieil ami "Greg la mouette", qu’il avait pris
sous son aile depuis quelque temps déjà. Pas au point de lui donner la becquée ni de l’abreu-
ver d’hydromel, mais les deux compères s’entendaient comme larrons en foire. Greg pensait
justement :
Considérons une chaine de Markov absorbante. Nous savons qu’une particule, partant d’un
état donné, finit par être absorbée avec la probabilité 1.
Soit X la variable aléatoire réelle donnant le nombre de transitions avant l’absorption.
X(Ω) = [0;N ]∩N ou X(Ω) = N. Sans perte de généralité, on peut supposer X(Ω) = N quitte
à poser P (X = i) = 0 à partir d’un certain rang.

Notation 1-1-1 : on posera pi := P (X = i) et qi := P (X > i). La fonction i 7→ qi s’appelle
fonction de survie de la particule pour des raisons évidentes.

Remarque 1-1-2 : E(X) =
∑

i≥0

qi.

Décrivons maintenant la géniale méthode (dixit Maitre Yoda) inventée par le mathématicien
hollandais David Van Dantzig (1900-1959) pour donner un sens aux séries entières φ(t) =
∑

i≥0

pit
i, où (pi)i≥0 est une distribution de probabilité. En l’occurrence, nous considérerons

essentiellement ici la distribution de probabilité de la variable aléatoire X précédente.
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Méthode de Van Dantzig : Elle comporte deux étapes que nous allons décrire précisément.
Considérons un état intérieur d’une chaine de Markov absorbante. C’est le point de départ de
la particule.

1. Cette particule effectue une transition par unité de temps.

2. A chaque transition, on lance la roulette suivante :

⋆1−t

t

où la probabilité de tomber dans la zone marquée est 1 − t et celle de ne pas y tomber
est t.

En vertu de la formule des probabilités totales, avec le système complet d’événements
{(X = i)}i≥1, la probabilité de l’événement A : "avoir un parcours non marqué" est égale à

P (A) =
∑

i≥1

PX=i(A)P (X = i) =
∑

i≥1

tipi

par indépendance des lancers.
Notons que le conditionnement par un événement (X = i) suppose qu’il ne soit pas de proba-
bilité nulle, ce dont nous n’avons aucune idée pour i ≥ 1. Le raisonnement est donc purement
formel. D’autre part, étant donné que l’état initial est intérieur, on a p0 = 0. On peut poser
sans perte de généralité

∑

i≥0

pit
i, expression que nous noterons φX(t).

Remarque 1-1-3 : Dans certains cas, X ne comptera que certaines transitions particulières
(c.f le paragraphe Loi Binomiale). Plus généralement, donnons la méthode suivante :
on considère une variable aléatoire X qui prend les valeurs 0, 1, 2, . . . avec les probabilités p0,
p1, p2, . . .Ceci se modélise par une roulette comme celle ci-dessous que l’on fait tourner une fois.

0
1

. . .

i

i+ 1
. . .

Si X prend la valeur i, on fait ensuite tourner i fois la roulette marquée de Van Dantzig. La
probabilité de ne pas être marqué au cours de ces i lancers est égale à pit

i. Comme il nous
faut considérer toutes les valeurs de i, la probabilité de ne pas être marqué au cours de cette
expérience en deux temps est égale à

∑

i≥0

pit
i. Ce qui nous amène à la :
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Définition 1-1-4 : Soit (pi)i≥0 la distribution de probabilité d’une variable aléatoire X pre-
nant N comme valeurs. La série entière φX(t) :=

∑

i≥0 pit
i s’appelle la fonction génératrice

de X. On a d’après le théorème de transfert, φX(t) = E(tX).

Remarque 1-1-5 : Le rayon de convergence de φX est supérieur ou égal à 1.

Propriété 1-1-6 : Si RX > 1, on a

1. E(X) = φ′
X(1)

2. V (X) = φ′′
X(1) + φ′

X(1)− φ′
X(1)2

Voilà de jolis résultats ! se félicita Greg en avalant goulûment son verre de cidre. Mais comment
les appliquer concrètement ?

1.2 Applications simples

Loi géométrique : On note S̄ l’état "échec" et S l’état "succès" d’une expérience de Ber-
noulli donnée. On note p la probabilité de succès et q = 1−p la probabilité d’échec. On réitère
la même expérience aléatoire dans les mêmes conditions (indépendance supposée implicite-
ment) et on s’intéresse à la probabilité de premier succès. Autrement dit, on cherche à décrire

la réalisation des événements
n−1⋂

i=1

S̄i∩Sn, n ∈ N
∗, où Si désigne l’événement Succès à la i-ème

épreuve. Le cas n = 1 renvoie au succès dès la première épreuve.
Modéliser ceci à l’aide d’un arbre de probabilités comme celui ci-dessous (partiel) relève de la
gageure car l’événement "N’obtenir que des échecs" est à considérer, même si sa probabilité
est nulle ! La branche avec uniquement des S̄i est de longueur infinie.

S̄1
q

S̄2
q

S̄3
q

S3p
S2p

S1p

Arbre qui peut prendre une forme beaucoup plus compacte comme ci-dessous, appelée graphe

probabiliste :

S̄ S
p

q

Sans perte de généralité, nous pouvons supposer que l’état de départ est S̄. Ainsi, la boucle
reliant l’état S̄ à lui-même peut être parcourue entre 0 fois (succès à la première transition)
et une infinité de fois. Intéressons-nous maintenant à la fonction génératrice de cette loi.

N’oublions pas que la méthode de marquage de Van Dantzig comporte deux étapes : la tran-
sition d’états, accompagnée du lancement de la roue (avec marquage de probabilité 1 − t).
Ainsi, le graphe d’un parcours non marqué se modélise par :

S̄ S
pt

qt
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soit, en utilisant les règles de réduction de graphe :

S̄ S

pt
1−qt

La fonction caractéristique de X, loi géométrique de paramètre p s’écrit donc :

φX(t) =
pt

1− qt

Propriété 1-2-2-1 : On démontre facilement les résultats suivants :

1. X(Ω) = N
∗ et ∀i ∈ N

∗, P (X = i) = qi−1p

2. E(X) =
1

p

3. V (X) =
q

p2

Loi de Pascal : que l’on appelle aussi parfois loi binomiale négative . . .
La loi géométrique s’intéressait au premier succès lors d’une succession d’épreuves de Bernoulli
identiques et indépendantes. Nous allons nous intéresser ici au n-ième succès lors d’une suc-
cession de ces mêmes épreuves. Intuitivement, le graphe de cette nouvelle variable aléatoire
est la concaténation n fois du graphe précédent, où les états numérotés de 0 à n représentent
le nombre de succès obtenus :

0 1 2 3 . . . n− 1 nq
p

q

p

q

p

q
q

p

Le graphe d’un parcours non marqué s’écrit :

0 1 2 3 . . . n− 1 nqt
pt

qt

pt

qt

pt

qt
qt

pt

graphe équivalent à :

0 1 2 3 . . . n− 1 n

pt
1−qt

pt
1−qt

pt
1−qt

pt
1−qt

lui-même équivalent à :

0 n

(
pt

1−qt

)n

On vient ainsi de démontrer que la fonction caractéristique de cette loi, dite Loi binomiale
négative ou Loi de Pascal s’écrit :

φX(t) =

(
pt

1− qt

)n
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Cette information va nous permettre en développant en série entière (partie technique) la fonc-
tion précédente, de déterminer la loi recherchée.

Pour revoir quelques notions utiles sur le coefficient binomial généralisé et le développement
en série entière, consulter la partie compléments. On a :

φX(t) =

(
pt

1− qt

)n

= (pt)n(1− qt)−n

= pntn
∑

i≥0

(−n

i

)

(−qt)i

=
∑

i≥0

(−1)i
(−n

i

)

pnqitn+i

Or

(−1)i
(−n

i

)

= (−1)i
−n(−n− 1) . . . (−n− i+ 1)

i!

=
n(n+ 1) . . . (n+ i− 1)

i!

=

(
n+ i− 1

i

)

D’où :

(−1)i
(−n

i

)

pnqitn+i =

(
n+ i− 1

i

)

pnqitn+i

Ainsi :

φX(t) =
∑

i≥0

(
n+ i− 1

i

)

pnqitn+i =
∑

i≥n

(
i− 1

i− n

)

pnqi−nti

Propriété 1-2-2-2 : De ce qui précède, on en déduit que :

1. X(Ω) = [n; +∞[∩N

2. ∀i ∈ X(Ω), P (X = i) =

(
i− 1

i− n

)

pnqi−n

Propriété 1-2-2-3 : L’utilisation de la propriété 6-2-1-6 nous permet d’établir que :

1. E(X) =
n

p

2. V (X) =
nq

p2

Remarque 1-2-2-4 : On peut retrouver les deux résultats précédents de manière élémen-
taire. Notons en effet X1 la variable aléatoire égale au temps d’attente du premier succès et
Xi (1 ≤ i ≤ n) la variable aléatoire égale au temps d’attente entre le i − 1-ème succès et le
i-ème succès. Les Xi sont indépendantes et suivent chacune la loi géométrique de paramètre
p. Ainsi, pour tout entier naturel i, on a E(Xi) = 1/p et V (Xi) = q/p2. La loi de Pascal
d’attente du n-ième succès s’écrivant X = X1 +X2+ · · ·+Xn, nous obtenons immédiatement
les résultats annoncés.
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Loi binomiale : "Petite" différence par rapport au cas précédent : on ne marque éventuel-
lement que les succès lors d’une succession de n épreuves de Bernoulli identiques et indépen-
dantes (de paramètre p), autrement dit si une transition amène à un échec, on ne fait pas
tourner la roue de Van Dantzig. Ainsi, le graphe d’un parcours non marqué se modélise par :

0 1 2 3 . . . n− 1 n
pt+ q pt+ q pt+ q pt+ q

soit, en utilisant les règles de réduction de graphe :

0 n
(pt+ q)n

La fonction caractéristique de X, loi binomiale de paramètre p s’écrit donc :

φX(t) = (pt+ q)n =

n∑

i=0

(
n

i

)

piqn−iti

On retrouve ainsi la loi de probabilité de X :

1. X(Ω) = [0;n] ∩ N

2. ∀i ∈ X(Ω), P (X = i) =

(
n

i

)

piqn−i

Propriété 1-2-2-5 : Toujours grâce à la propriété 1-2-1-6 ou plus classiquement, nous ob-
tenons :

1. E(X) = np

2. V (X) = npq

1.3 Lire une fonction génératrice sur un graphe

Nous travaillerons toujours avec des chaines de Markov absorbantes, si bien que les règles de
réduction de graphes s’appliquent (cf l’article précédent). Traitons deux exemples :

Exemple 1-3-1 : On lance une pièce biaisée. La probabilité de faire Pile est de p. On posera
q = 1− p, probabilité de faire face. X est la variable aléatoire réelle égale au nombre d’essais
nécessaires pour obtenir pour la première fois une suite de 3 Piles consécutifs.

1. Dessiner un graphe probabiliste modélisant l’expérience précédente. En déduire le graphe
d’un parcours non marqué.

2. En réduisant le graphe précédent, donner l’expression de la fonction génératrice de X.

3. Généraliser au cas de n Piles consécutifs.

Exemple 1-3-2 : On reprend l’exemple des taulières de l’article précédent, dont nous re-
donnons le graphe probabiliste ci-dessous (p=1/2) :
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2 4

0 5

1 3

p

p

p

p

p

p

p

p

1. Donner le graphe d’un parcours non marqué et le réduire.

2. En déduire la fonction caractéristique de X, variable donnant le temps d’absorption.

3. Vérifier que le temps moyen d’absorption est égal à 2.

Solutions : Nous nous appuierons sur les méthodes de réduction de graphes étudiées au
chapitre 5.

Exercice 1 : Donnons d’abord un résultat préliminaire très utile. Nous laissons sa démons-
tration à la sagacité du lecteur.
Le graphe :

0 1

a

béquivaut à :

0 1ab
a

équivaut à :

0 1

a
1−ab

Question 1 :
Nous poserons 0 pour Face et 1 pour Pile. Sans perte de généralité, on peut supposer que l’état
initial est 0. Le graphe probabiliste associé à notre expérience aléatoire prend alors la forme :

0 1 11 111
p p p

q

q

q

Question 2 : Il suffit de multiplier chacune des probabilités indiquées par t, la probabilité de
ne pas être marqué en faisant tourner la roue de Van Dantzig.

0 1 11 111
pt pt pt

qt

qt

qt

équivaut à :
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0 1 11 111
pt pt pt

qt

qt+ pqt2

lui-même équivalent à :

0 11 111
p2t2 pt

qt

qt+ pqt2

qui équivaut à :

0 11 111
p2t2 pt

qt+ pqt2 + p2qt3

équivaut à :

0 111
p3t3

qt+ pqt2 + p2qt3

équivaut à :

0 111

p3t3

1−(qt+pqt2+p2qt3)

De plus, qt+ pqt2 + p2qt3 =
qt(1− p3t3)

1− pt
, d’où :

φX(t) =
(pt)3(1− pt)

1− pt− qt(1− (pt)3)
=

(pt)3(1− pt)

1− t+ qt(pt)3

soit :

φX(t) =
(1− pt)p3t3

1− t+ qp3t4

Question 3 :

On laisse le lecteur se persuader que φX(t) =
(1− pt)pntn

1− t+ qpntn+1
.

Exercice 2 : il y a deux états absorbants cette fois-ci.

Question 1 :
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2 4

0 5

1 3

pt

pt

pt

pt

pt

pt

pt

pt

équivaut à :

0 1 5
pt+ p2t2 p3t3 + p4t4

p4t4

lui-même équivalent à :

0 1 5

pt+p2t2

1−p4t4
p3t3+p4t4

1−p4t4

Question 2 :

On en déduit que φX(t) =
pt+ (pt)2 + (pt)3 + (pt)4

1− (pt)4
.

Mais pt+ (pt)2 + (pt)3 + (pt)4 =
pt(1− (pt)4)

1− pt
, d’où φX(t) =

pt

1− pt
.

Question 3 :
Il s’agit de calculer E(X) = φ′

X(1).

Or φ′
X(t) =

p

(1− pt)2
, d’où E(X) =

p

(1− p)2
= 2 (p = 1/2).

1.4 Fonctions génératrices et indépendance

Les résultats énoncés ici sont redoutables en efficacité. Par analogie avec le logarithme népé-
rien qui transforme des produits en sommes, nous allons exprimer les fonctions génératrices
de sommes de variables aléatoires discrètes indépendantes comme produit de leurs fonctions
génératrices.

Théorème 1-4-1 : Soit (Xi)1≤i≤n une suite de variables aléatoires réelles discrètes identi-

quement distribuées et indépendantes. Soit Sn =
n∑

i=1

Xi. Alors :

1. Xn et Sn−1 sont indépendantes,

2. φSn = φX1
. . . φXn

Démonstration : On supposera Xi(Ω) = N.

1. Résulte du résultat classique et extrêmement utile suivant : si les Xi (1 ≤ i ≤ n) sont
mutuellement indépendantes, alors pour tout k ∈ [1;n − 1] et pour toutes fonctions
boréliennes f : R

k → R et g : R
n−k → R, f(X1, . . . ,Xk) et g(Xk+1, . . . ,Xn) sont

indépendantes.
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2. Au vu du résultat précédent, il suffit de prouver que si X1 et X2 sont deux variables
aléatoires indépendantes, alors φX1+X2

= φX1
φX2

.
On rappelle le produit de deux séries absolument convergentes : Si a :=

∑

n≥0 an et
b :=

∑

n≥0 bn sont deux séries absolument convergentes, on définit la série c :=
∑

n≥0 cn

par cn :=
n∑

k=0

akbn−k. Alors c converge absolument et c = ab.

Sur ce, pour tout t < RX1
, on a :

φX1
(t)φX2

(t) =
∑

i≥0

i∑

k=0

P (X1 = k)P (X2 = i− k)ti

Par indépendance de X1 et X2, P (X1 = k)P (X2 = i− k) = P (X1 = k ∩X2 = i− k).
Posons X = X1 +X2.
L’événement (X = i) est la réunion disjointe

⋃i
k=0(X1 = k ∩ X2 = i− k).

D’où P (X = i) =
i∑

k=0

P (X1 = k ∩X2 = i− k) =
i∑

k=0

P (X1 = k)P (X2 = i− k).

Ainsi, φX(t) = φX1
(t)φX2

(t).

Remarque 1-4-2 : Nous pouvons donner une démonstration alternative au point 2 du
théorème précédent, basée sur la méthode de marquage de Van Dantzig. Nous avons vu à la
remarque 1-1-3 l’interprétation probabiliste de la fonction génératrice d’une variable aléatoire
X prenant tous les entiers naturels i comme valeurs avec les probabilités pi (i ≥ 0) :
on tourne une roue donnant les nombres 0, 1, 2, . . . avec les probabilités respectives pi. Si l’on
tombe sur i, on tourne i fois la roue marquée de Van Dantzig. La fonction génératrice de X

donnant la probabilité d’un parcours non marqué s’écrit φX(t) =
∑

i≥0

pit
i.

Nous effectuons n épreuves indépendantes de la sorte. La k-ième expérience n’est pas marquée
avec la probabilité φXk

(t). Si l’on pose X = X1 + · · ·+Xn, nous obtenons alors :

φX(t) =
n∏

k=1

φXk
(t)

La loi de Pascal se déduit ainsi de la loi géométrique de manière naturelle ! Ce que confirment
leurs graphes probabilistes comme vu auparavant.

1.5 Exercices d’application :

Un peu de calcul . . .

1. Soient X et Y deux variables aléatoires indépendantes suivant respectivement les lois de
Poisson de paramètre λ et µ. Prouver que X + Y suit une loi de Poisson de paramètre
λ+ µ.

2. Considérons une population constituée de n bactéries de même type. On dit qu’elle est
dans l’état n.
On suppose qu’à la génération 0, il y a un seul individu. On fait alors tourner la roue
suivante qui indique en combien d’individus k (avec la probabilité pk) se divise la bactérie
initiale.
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0
1

. . .

i

i+ 1
. . .

Nous obtenons la génération 1.
Pour chacune des k bactéries de la génération 1 on fait tourner la roulette précédente et
on obtient la génération 2. Le processus se poursuit ainsi. On l’appelle processus de
branchement.

(a) Soit Zn la variable aléatoire égale au nombre de bactéries présentes à la génération
n. On note φn la fonction génératrice de Zn. Justifier que φ0 ≡ 1 et que φ1(t) = t. On
posera φ = φ1.

(b) Déterminer une relation de récurrence entre Zn+1 et Zn à l’aide de φ.
(c) En déduire une expression de φn en fonction de φ.
(d) On pose µ = E(Z1) et σ2 = V (Z1). Exprimer E(Zn) et V (Zn) en fonction de µ

et de σ.
(e) Application : Un insecte éphémère (mourant lorsque la génération suivante nait)

donne naissance à 0, 1, 2 ou 3 insectes avec les probabilités respectives 0,05 ; 0,45 ; 0,3 ;
0,2. Calculer la probabilité d’extinction de la lignée de cet insecte.

2 Aspect matriciel

Comme nous l’avons vu dans l’article précédent avec le théorème de Chapman-Komolgorov,
l’étude des puissances successives de la matrice de transition nous permet de retrouver la loi
de X, variable aléatoire donnant le temps d’absorption, et donc sa fonction génératrice, songea
Greg. Rappelons son corollaire le plus usité :
Notons ~p0 l’état initial du système et ~pn son état après n transitions, tous deux écrits sous la
forme d’un vecteur ligne de longueur Card(S). Alors

~pn = ~p0(P)n

Maintenant que j’ai fait connaissance avec Monsieur Van Dantzig, l’idée est de traduire ma-
triciellement les graphes de parcours non marqués. Allez, je mets les mains dans le cambouis
pour vérifier quelques exemples . . .

2.1 Loi géométrique

Soit p le paramètre de la loi géométrique. La matrice de transition de l’état 0 (échec) à l’état
1 (succès) s’écrit :

(P) =

(
q p
0 1

)

donc celle d’un parcours non marqué est (en conservant la même notation) :

(P) =

(
qt pt
0 1

)
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Une récurrence immédiate nous permet de démontrer que pour tout entier naturel n non nul :

(P)n =

(
(qt)n

∑n−1
i=0 (qt)

ipt
0 1

)

soit :

(P)n =

(
(qt)n

∑n
i=1 q

i−1pti

0 1

)

On suppose |qt| < 1, de sorte que lim
n→+∞

(qt)n = 0. Ceci assure aussi la convergence de
∞∑

i=1

qi−1pti. Ainsi :

(P)∞ =

(
0
∑∞

i=1 q
i−1pti

0 1

)

On retrouve ainsi la fonction génératrice de la loi géométrique : φX(t) =

∞∑

i=1

qi−1pti, avec en

prime la loi : pas besoin de développer en série entière !

2.2 Loi de Pascal

Soient p et n les paramètres de la loi de Pascal. La matrice de transition d’un parcours non
marqué (P) ∈ Mn+1(R) s’écrit :

(P) =

(
Vn U
0 1

)

avec Vn =












qt pt 0 · · · 0

0 qt pt
. . .

...

0 0
. . . . . . 0

...
...

. . . . . . pt
0 0 0 · · · qt












et U = pten, où en est le n-ième vecteur de la base cano-

nique de R
n.

On en déduit que pour tout entier naturel m :

(P)m =

(
V m
n

∑m−1
i=0 V i

nU
0 1

)

avec la convention usuelle V 0
n = In.

Puisque eT1 est la distribution initiale, et sous réserve que lim
m→+∞

V m
n = 0, l’élément (P)∞1n nous

permet de retrouver la fonction génératrice associée à la loi de X.

Remarquons que Vn = qtIn + ptWn, où Wn ∈ Mn(R) s’écrit : Wn =












0 1 0 · · · 0

0 0 1
. . .

...

0 0
. . .

. . . 0
...

...
. . . . . . 1

0 0 0 · · · 0












Un exercice classique de premier cycle (très bon a refaire) nous assure que la matrice Wn est
nilpotente d’ordre n. De plus, pour tout 1 ≤ i ≤ n− 2, on a :
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W i
n =













0

i−1
︷︸︸︷· · · 1 · · · 0

0 0
. . .

. . . 0

0 0
. . . . . . 1

...
...

. . . . . .
...

0 0 0 · · · 0













et W n−1
n =






0 · · · 0 1
...

. . . 0 0
0 · · · 0 0






Or, In et Wn commutent, d’où : V m
n = (ptWn + qtIn)

m =
m∑

i=0

(
m

i

)

piW i
nq

m−itm.

De la nilpotence de Wn, on en tire que pour tout entier m ≥ n− 1 :

V m
n =

n−1∑

i=0

(
m

i

)

piqm−iW i
nt

m

Mais pour i = 0, . . . , n − 1 on a W i
nU = pten−i (1), n − i-ème vecteur de la base canonique

de R
n. Dans l’idée de réduction de graphe faisant "apparaître" la fonction caractéristique de

X, on fait tendre m vers +∞.
Considérons donc formellement la somme :

∑

i≥0

V i
nU =

∑

i≥0

i∑

j=0

(
i

j

)

pjqi−jW j
nUti

D’après (1), si j ≤ n − 1, W j
nU = pten−j et W j

n = 0 si j ≥ n. La somme précédente s’écrit
donc :

∑

i≥0

V i
nU =

∑

i≥0

n−1∑

j=0

(
i

j

)

pjqi−jpen−jt
i+1

Seul le terme colinéaire à e1 nous intéresse, ce qui revient à choisir j = n − 1. On est donc
ramené à étudier :

S :=
∑

i≥0

(
i

n− 1

)

pn−1qi−n+1ti+1p =
∑

i≥0

(
i

n− 1

)

pnqi−n+1ti+1

Comparons cette somme avec celle obtenue en développant en série entière φX(t) dans le
paragraphe précédent :

φX(t) =
∑

i≥0

(
n+ i− 1

i

)

pnqitn+i =
∑

i≥n

(
i− 1

i− n

)

pnqi−nti

Remarquons que pour i = 0, . . . , n − 2 on a
( i
n−1

)
= 0 ; ainsi

S =
∑

i≥n−1

(
i

n− 1

)

pnqi−n+1ti+1 =
∑

i≥n

(
i− 1

n− 1

)

pnqi−nti

Or (
i− 1

n− 1

)

=
(i− 1)!

(n− 1)!(i − n)!
=

(
i− 1

i− n

)

D’où l’égalité voulue !
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Remarque : Il n’y avait ici qu’un seul état absorbant. L’élément (P)∞1,n nous donnait alors
l’expression φX(t) écrite sous la forme d’une série. On a donc accès directement à la loi de
X au prix de quelques calculs. Quid s’il y a plusieurs états absorbants ? Quelle forme peut
alors prendre la matrice de transition (P) judicieusement écrite ? Nous en reparlerons dans la
sous-section Généralisation partielle.

Donnons pour finir un script version fréquentiste simulant la loi de Pascal :

def reussite(p):

alea=random()

if alea<=p:

succes=1

5 else:

succes=0

return succes

def Pascal(n):

10 S,nb_essais=0,0

while S<n:

S=S+reussite(p)

nb_essais=nb_essais+1

return nb_essais

15

def frequence(N):

S=0

for i in range(N):

S=S+Pascal(n)

20 return S/N

#Programme principal

from random import *
p=float(input("Probabilite de succes par experience ? "))

25 n=int(input("Nombre de succes souhaites ? "))

N=int(input("Nombre d'experiences ? "))

print("Nombre moyen d'essais avant d'obtenir",n,"succes",frequence(N))

2.3 Loi binomiale

Le graphe probabiliste est presque le même que celui associé à la Loi de Pascal, mais on se
limite au calcul de (P)n :

La matrice de transition d’un parcours non marqué (P) ∈ Mn+1(R) s’écrit :

(P) =

(
Vn U
0 1

)

avec Vn =












q pt 0 · · · 0

0 q pt
. . .

...

0 0
. . . . . . 0

...
...

. . . . . . pt
0 0 0 · · · q












et U = pten, où en est le n-ième vecteur de la base cano-

nique de R
n.
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Comme nous n’avons pas nécessairement absorption au bout de n transitions (seul cas fa-
vorable), nous observons cette fois-ci toute la première ligne de (P)n. En omettant le terme
tk, nous avons P (X = k) = (P)n1,k, où X compte le nombre de succès au cours de n transitions.

Effectuons quelques calculs :

La probabilité d’avoir n succès est égale au coefficient de
n−1∑

i=0

V i
nU colinéaire à e1, soit :

n−1∑

i=0

n−1∑

j=0

(
i

n− 1

)

pnqi−n+1 = pn

La probabilité d’avoir k < n succès est égale (exercice) à eT1 V
n
n ek+1.

Or :

V n
n =

n−1∑

j=0

(
n

j

)

pjqn−jW j
n

D’où pour tout entier 0 ≤ k ≤ n− 2 :

eT1 V
n
n ek+1 =

n−1∑

j=0

(
n

j

)

pjqn−jeT1 W
j
nek+1 =

(
n

k + 1− 1

)

pk+1−1qn−(k+1−1)

Soit pour 0 ≤ k ≤ n− 1 :

P (X = k) =

(
n

k

)

pkqn−k

égalité restant vraie pour k = n, d’où : φX(t) =

n∑

k=0

(
n

k

)

pkqn−ktk.

2.4 Généralisation partielle

Dans ce paragraphe, nous ne considérons pas des parcours non marqués, mais les matrices de
transition telles quelles. Il semble que toute chaine de Markov absorbante puisse être mise sous
la forme matricielle :

(P) =

(
V U
0 Ir

)

où V est une matrice carrée (n−r)× (n−r) telle que lim
n→+∞

V n = 0, U une matrice (n−r)×r

telle que lim
n→+∞

n−1∑

k=0

V kU existe et soit finie (pour une norme matricielle donnée quelconque).

La matrice identité Ir regroupe les r états absorbants de la chaine de Markov.
De plus, la matrice In−r − V n’est pas singulière i.e In−r − V est inversible. Ceci résulte du
résultat classique suivant :

Théorème 2-4-1 : Soit A ∈ Mn(C). Les propriétés suivantes sont équivalentes :

1. ρ(A) < 1 (où ρ(A) désigne la plus grande en module des valeurs propres de A),

2. lim
k→+∞

Ak = 0,

3. In −A est inversible et
∑

k≥0

Ak = (In −A)−1.
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Souvenons-nous que la matrice de transition (P) d’un graphe probabiliste est une matrice
stochastique (la somme des coefficients de ses lignes est égale à 1). Si c’est celle d’une chaine
de Markov absorbante, on peut regrouper les états absorbants comme annoncé juste avant.
Ainsi, (P) s’écrit :

(P) =

(
V U
0 Ir

)

Choisissons une norme ‖.‖ sur Mn(R) telle que ‖V ‖ < 1 (comme V est stochastique, on peut
prendre par exemple ‖V ‖ = max

1≤i,j≤n−r
vi,j).

En appliquant le théorème 2-4-1, la matrice In−r − V n’est pas singulière et son inverse est
égale à

∑

n≥0

V n. D’où lim
n→+∞

V n = 0.

De plus, ∀n ∈ N
∗,

n−1∑

k=0

V kU =

(
n−1∑

k=0

V k

)

U , d’où l’existence (et l’unicité) de
∑

k≥0

V kU =

(In−r − V )−1U .
Ceci justifie a posteriori tous les calculs effectués précédemment.

Mais quid de la fonction génératrice ? C’est bien là notre sujet d’étude, se reprit Greg en pi-
quant un far . . . dans son frigo.
Première remarque : mon état initial, en numérotant bien les sommets de mon graphe afin
d’avoir la décomposition par blocs annoncée peut s’écrire sous la forme ~p0 = (p1, p2, . . . , pn−r, 0, . . . , 0)
comme je pars d’un état intérieur. Ce qui me permet d’identifier ce vecteur-ligne de R

n à un
vecteur-ligne de R

n−r : (p1, p2, . . . , pn−r) que je noterai toujours ~p0 ;
Deuxième remarque, la matrice de transition (Pt) d’un parcours non marqué s’écrit donc :

(Pt) =

(
tV tU
0 Ir

)

si bien que :

(Pt)
∞ =

(
0 t(In−r − tV )−1U
0 Ir

)

Chapman & Komolgorov me permettent alors de conclure que :

φX(t) =

r∑

j=1

(
n−r∑

i=1

pi[t(In−r − tV )−1U ]i,j

)

Si i est l’état de départ, la loi initiale est simplement (0, . . . , 1, . . . , 0) où le 1 est situé en i-ème

position et l’on obtient l’expression plus sympathique : φX(t) =
r∑

j=1

[t(In−r − tV )−1U ]i,j

2.5 Exercices d’application

1. Est-il plus probable en lançant autant de fois que nécessaire une pièce équilibrée d’obte-
nir pour la première fois (Face,Face,Face) ou (Pile,Pile,Face) ?
(a) Dessiner un graphe probabiliste modélisant la situation,
(b) Écrire la matrice de transition associée sous une forme adaptée et calculer si possible
ses puissances successives ou utiliser ce qui précède,
(c) Conclure.
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2. Deux compartiments A et B contiennent à eux deux, N particules numérotées de 1 à N.
À chaque instant, on choisit un nombre de 1 à N, avec la probabilité 1/N. L’ensemble
des états est S = {0, 1, . . . , N}. Le processus est dit être dans l’état j si le compartiment
A contient j particules. Si le processus est dans l’état 0 (resp. dans l’état N), alors la
probabilité de passer dans l’état 1 (resp. dans l’état N − 1) est égale à 1.
(a) Dessiner un graphe probabiliste modélisant la situation,
(b) Écrire la matrice de transition associée,
(c) On suppose qu’à l’instant initial, le compartiment A contient les N particules. Soit
Xn la variable aléatoire égale au nombre de particules présentes dans le compartiment
A à chaque instant. Décrire le processus (Xn).

3 Une histoire de rencontre (suite)

Rappelons l’histoire de nos scarabées proposée à la sagacité du lecteur à titre d’exercice-défi
dans l’article précédent.

On étudie la première rencontre entre deux scarabées situés symétriquement sur un polygone
à 2p (p ≥ 2) côtés. Le jeu se déroule ainsi :

– À l’instant initial, deux scarabées sont situés symétriquement par rapport à O, centre
d’un polygone régulier à 2p côtés.

– Chaque seconde on lance une pièce pour chacun des scarabées. Si la pièce tombe sur pile
le scarabée concerné tourne dans le sens des aiguilles d’une montre, sinon il tourne dans
le sens inverse des aiguilles d’une montre.

3.1 Approche fréquentiste

Question 1 : Écrire un programme en Python (éventuellement sous la forme d’une fonction)
qui modélise la marche des 2 scarabées sur un carré jusqu’à temps qu’ils se rencontrent pour
la première fois. Vous utiliserez la notion de congruence via la commande modulo % pour
construire la condition de (non) rencontre des scarabées : Tant que ceux-ci ne sont pas sur le
même sommet leur promenade continue.

Question 2 : Modifier le programme précédent pour tester le script précédent sur N marches
(N choisi par l’utilisateur) et évaluer le temps moyen de rencontre des scarabées. Vous le tes-
terez avec N =10000.

Nous répondons maintenant à la question posée initialement. Considérons donc un polygone
régulier à 2p (p ≥ 2) côtés dont les sommets sont numérotés de 0 à 2p − 1.

Question 3 : Le scarabée 1 est situé au sommet numéroté 0. Le scarabée 2 est le symétrique
du scarabée 1 par rapport à O, centre du polygone. Quel est le numéro du sommet sur lequel
il est situé ?

Question 4 : Écrire une fonction Python marche(p) qui prend comme paramètre p, qui
modélise la marche aléatoire des 2 scarabées sur le polygone régulier à 2p côtés et qui renvoie
comme valeur le temps de première rencontre.

Question 5 : En vous servant de la fonction précédemment créée, écrire un programme qui
demande à l’utilisateur de saisir N, nombre de marches à effectuer par les scarabées, et qui
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renvoie le temps moyen de rencontre sur ces N essais. Vous testerez votre programme plusieurs
fois avec N=100 000 pour compléter le tableau suivant :

Valeur de p Nombre de sommets Temps moyen Tp de rencontre
2
3
4
5
6

Question 6 : Subodorer une relation fonctionnelle entre p et T , c’est-à-dire trouver l’ex-
pression d’une fonction f telle que Tp = f(p).

Solution : Détaillons les solutions des questions précédentes de ce problème qui a été donné
en projet informatique à des élèves d’une classe de première S en 2012.

Question 1 : Modélisation d’une expérience

def rencontre():

tempsRencontre=0

position1,position2=0,2

while (position2-position1)%4!=0:

5 alea1,alea2=randint(1,2),randint(1,2)

if alea1==1:

position1=position1+1

else:

position1=position1-1

10 if alea2==1:

position2=position2+1

else:

position2=position2-1

tempsRencontre=tempsRencontre+1

15 return tempsRencontre

Remarque : La condition (position2−position1)%4 !=0 signifie que les valeurs de position1 et
de position2 de chacun des scarabées, qui peuvent devenir négatives au cours de leur évolution
dans l’algorithme, correspondent à des sommets du carré différents. On peut comprendre cette
condition en visualisant le mouvement des scarabées avec un jeu de Pile ou Face. Comme en
trigonométrie usuelle où l’on travaille modulo 2π, à un même sommet du carré on associe une
infinité de valeurs qui diffèrent toutes d’un multiple de 4.

Question 2 : Temps moyen de rencontre des deux scarabées

from random import randint

N=int(input("Combien d'experiences a effectuer ? "))

tempsTotal=0

for i in range(N):

5 tempsTotal=tempsTotal+rencontre()

print("Temps moyen de premiere rencontre :",tempsTotal/N)

Question 3 : Le second scarabée est situé initialement au sommet 2p/2 = 2p−1.
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Question 4 : Le script est presque identique à celui de la question 2 mais on travaille cette
fois-ci modulo 2p.

def marche(p):

tempsRencontre=0

position1,position2=0,2**(p-1)

while (position2-position1)%2**p!=0:

5 alea1,alea2=randint(1,2),randint(1,2)

if alea1==1:

position1=position1+1

else:

position1=position1-1

10 if alea2==1:

position2=position2+1

else:

position2=position2-1

tempsRencontre=tempsRencontre+1

15 return tempsRencontre

Question 5 : Calcul du temps moyen de rencontre

from random import randint

p=int(input("p = ? "))

N=int(input("Combien d'experiences a effectuer ? "))

tempsTotal=0

5 for i in range(N):

tempsTotal=tempsTotal+marche(p)

print("Temps moyen de premiere rencontre :",tempsTotal/N)

Question 6 : Avec N = 10 000, on trouve des valeurs du type (car fluctuation d’échantillon-
nage !) :

Valeur de p Nombre de sommets Temps moyen Tp de rencontre
2 4 1.99
3 8 8.005
4 16 32.016
5 32 127.48
6 64 514.475

On peut remarquer que 1 = 2× 2− 3 et que T2 ≈ 21 ; que 3 = 2× 3− 3 et que T3 ≈ 23 ; que
5 = 2× 4− 3 et que T4 ≈ 25, etc. On peut donc supposer que Tp = 22p−3.

Nous allons maintenant prouver rigoureusement ce que notre intuition TICE nous a permis
de subodorer, mais en changeant de point de vue.

3.2 Première modélisation

Définissons les états pour commencer : on s’intéresse au nombre de segments du chemin le
plus court joignant les deux scarabées le long du polygone à un instant donné. Initialement ce
nombre est 2p−1, à chaque seconde il peut :

– rester constant si les deux pièces donnent le même résultat (probabilité 1
2) ;

– diminuer de 2 si le résultat des lancers font que les scarabées se rapprochent (probabilité
1
4 )
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– augmenter de 2 si le résultat des lancers font que les scarabées s’éloignent (probabilité
1
4 )

sauf lorsque les scarabées sont diamétralement opposés ou au même point. Dans le premier
cas le nombre de segments séparant les scarabées reste constant ou diminue de 2 de façon
équiprobable. L’état 0 est par définition absorbant. Il y a ainsi (petit exercice sur les suites
arithmétiques) 2p−2 + 1 états : 0, 2, 4, . . . , q := 2p−1.
Le but du problème est toujours d’étudier la variable aléatoire Tp donnant le temps avant la
première rencontre des deux scarabées.
La remarque précédente conduit au graphe suivant :

q q−2 q−4 q−6 . . . 2 01/2

1
2

1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
2

1
4

1

Le graphe d’un parcours non marqué par la roulette de Van Dantzig est donc :

q q−2 q−4 q−6 . . . 2 01
2t

1
2t

1
4t

1
2t

1
4t

1
4t

1
2t

1
4t

1
4t

1
2t

1
2t

1
4t

1

Le graphe semble difficile à réduire ! Il est tentant d’utiliser l’approche matricielle pour en
déduire lim

n→+∞
(P)n, où (P) est la matrice de transition d’un parcours non marqué. A titre

d’exemple, faisons-le pour p = 3 (nous avons 23 = 8 côtés, soit un octogone).

(P) =





t/2 t/2 0
t/4 t/2 t/4
0 0 1





Posons V =

(
t/2 t/2
t/4 t/2

)

et U =

(
0

t/4

)

, de sorte que (P) =

(
V U
0 1

)

. XCas donne :

V n =







√
2·t

(

t

−2
√

2+4

)n

t·2
√
2

+

√
2·t

(

t

2
√

2+4

)n

t·2
√
2

2·t
(

t

−2
√

2+4

)n

t·2
√
2

−
2·t

(

t

2
√

2+4

)n

t·2
√
2

(

t

−2
√

2+4

)n

2
√
2

−
(

t

2
√

2+4

)n

2
√
2

√
2
(

t

−2
√

2+4

)n

2
√
2

+

√
2
(

t

2
√

2+4

)n

2
√
2







si bien que :

V nU =







t(
2· 1

2
·t
(

t

−2
√

2+4

)n

√
2·t −

2· 1
2
·t
(

t

2
√

2+4

)n

√
2·t )

4
,
t(

√
2· 1

2

(

t

−2
√

2+4

)n

√
2

+

√
2· 1

2

(

t

2
√

2+4

)n

√
2

)

4







T

Intéressons-nous uniquement au premier terme de V nU . En effet, (P)n =

(
V n

∑n−1
i=0 V iU

0 1

)

.

Posons α(t) =
t

−2
√
2 + 4

et β(t) =
t

2
√
2 + 4

, de sorte que :

n−1∑

i=0

V iU =
t

4
√
2

[
α(t)n − 1

α(t)− 1
− β(t)n − 1

β(t)− 1

]
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On a 4 + 2
√
2 > 4− 2

√
2 > 1, donc pour |t| < 4− 2

√
2, lim

n→+∞
α(t)n = lim

n→+∞
β(t)n = 0.

Ainsi,

φX(t) =

∞∑

i=0

V iU =
t

4
√
2

[ −1

α(t) − 1
+

1

β(t)− 1

]

=
∑

n≥0

(α(t)n − β(t)n)
t

4
√
2

Soit :

φX(t) =
∑

n≥0

[
1

(4− 2
√
2)n

− 1

(4 + 2
√
2)n

]
tn+1

4
√
2

Le calcul de φ′
X(1) et de φ′′

X(1) à l’aide d’un logiciel de calcul formel nous permet de conclure
que E(X) = 8 et V (X) = 40.
Il semble délicat de généraliser, la difficulté venant du calcul de V n ; dans le cas général, V est
en effet tridiagonale presque symétrique :

V =

















a a 0 0 . . . . . . 0

b a b 0
...

0 b a b
. . .

...
...

. . . . . . . . . . . . . . . 0
...

. . .
. . .

. . .
. . . 0

...
. . . . . . a b

0 . . . . . . . . . 0 b a

















avec b = a/2.

C’est ce presque qui nous ennuie. Il y a cependant une petite astuce basée sur la nature
particulière du graphe pour s’en sortir. Nous y reviendrons.
Pour le moment, reformulons-donc le problème (méthode due à Jean-Michel Dardié) :

3.3 Seconde modélisation

Question 1 : La position du deuxième scarabée est repérée dans un repère dont le premier
est l’origine et l’unité vaut 2 côtés du polygone, vérifier que la situation peut être décrite à l’aide
d’une marche aléatoire sur Z dont vous préciserez les probabilités de transitions. Formuler dans
ce contexte la variable aléatoire Tk correspondant à un polygone à 4k côtés.

Question 2 : On généralise la question en supposant que la position à l’instant 0 n’est
pas nécessairement k mais un entier i compris entre 0 et 2k, on note toujours Tk la variable
aléatoire donnant le temps de première arrivée en 0 ou en 2k. Pour n ∈ N et r ∈ Z, exprimer
la probabilité PX0=i (Xn = r) en conditionnant par rapport à la variable aléatoire X1.
Justifier que PX0=i (Xn = r) = PX1=i (Xn+1 = r), en déduire que pour tous entiers naturels n
et i, 0 < i < 2k,

PX1=i (Tk = n) = PX0=i (Tk = n− 1)

en déduire une relation sur les PX0=i (Tk = n).

Question 3 : On fixe k pour simplifier les notations et on note φi la fonction définie sur
[0, 1] pour tout entier i compris entre 0 et 2k par :

φi (x) =

∞∑

n=0

PX0=i (Tk = n)xn
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en particulier Φk = φk est la fonction génératrice des probabilités de la variable aléatoire Tk du
temps de première rencontre entre les deux scarabées sur un polygone à 4k côtés. En utilisant
la question 2 montrer que pour x 6= 0 les φi (x) sont solution d’une équation de récurrence
linéaire d’ordre 2, préciser φ0 et φ2k puis déterminer Φk.

Question 4 : Déterminer l’espérance mathématique et la variance de Tk.

Solution : C’est parti !

Question 1 : Dans ce repère initialement le (deuxième) scarabée est à la position k, si on
note Xn sa position à l’instant n, alors Xn+1 prend l’une des valeurs Xn+1, Xn ou bien Xn−1
et pour tout i ∈ Z







PXn=i (Xn+1 = i+ 1) = 1
4

PXn=i (Xn+1 = i) = 1
2

PXn=i (Xn+1 = i− 1) = 1
4

La variable Tk dans ce contexte est le temps de première arrivée en 0 ou en 2k.

Question 2 : D’après la question 1, on a :
PX0=i (Xn = r) = PX1=i+1 (Xn = r) · PX0=i (X1 = i+ 1) +
PX1=i (Xn = r) · PX0=i (X1 = i) + PX1=i−1 (Xn = r) · PX0=i (X1 = i− 1)
= 1

4PX1=i+1 (Xn = r) + 1
2PX1=i (Xn = r) + 1

4PX1=i−1 (Xn = r)

D’autre part si on connaît la position à un instant donné, les positions antérieures n’inter-
viennent plus dans les probabilités des positions postérieures, la différence entre les deux
écritures se réduit donc à un décalage d’indice. La deuxième relation vient de ce que l’événe-
ment : la première arrivée en 0 ou 2k est au temps n sachant que X1 = i signifie que sous
l’hypothèse X1 = 1 on a Xn égal à 0 ou 2k et pour j < n, 0 < Xj < 2k. Il suffit ensuite
d’utiliser la relation précédente.
Finalement on obtient :

PX0=i (Tk = n) =
1

4
PX1=i+1 (Tk = n) +

1

2
PX1=i (Tk = n) +

1

4
PX1=i−1 (Tk = n)

=
1

4
PX0=i+1 (Tk = n− 1) +

1

2
PX0=i (Tk = n− 1) +

1

4
PX0=i−1 (Tk = n− 1)

Question 3 : D’après la question 2, on a pour n > 0

PX0=i (Tk = n)xn =
1

4
PX0=i+1 (Tk = n− 1) xn+

1

2
PX0=i (Tk = n− 1) xn+

1

4
PX0=i−1 (Tk = n− 1) xn

l’événement Tk = 0 étant certain si i vaut 0 ou 2k et impossible si non. Comme toutes ces
séries sont absolument convergentes, il vient :

φi (x) =
x

4
φi+1 (x) +

x

2
φi (x) +

x

4
φi−1 (x)

on a donc : {
x
4φi+1 (x)−

(
1− x

2

)
φi (x) +

x
4φi−1 (x) pour 0 < i < 2k

φ0 (x) = φ2k (x) = 1

et donc :

Φk (x) =
2

Rk (x) +R−k (x)
avec R (x) =

1− x
2 −

√
1− x

x
2
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On a en particulier Φ1 (x) =
x
2

1− x
2

qui confirme que la loi du temps de rencontre sur un carré

est géométrique de probabilité 1
2 .

Question 4 : Calcul de la dérivée Φ′
k,

Φ′
k = −2k

R′

R
· Rk −R−k

(Rk +R−k)
2 = −2k

R′ (R−R−1
)

R
· Sk

(Rk +R−k)
2 = k

Φ′
1

Φ1
2 · SkΦk

2

où si k = 2p + 1, Sk = 1 + 2

p
∑

i=1

1

Φ2i
et si k = 2p, Sk = 2

p−1
∑

i=0

1

Φ2i+1
. Comme Φi (1) = 1 pour

tout i , on a dans tous les cas Sk (1) = k. De plus Φ′
1 (1) = E (T1) = 2, il vient

E (Tk) = Φ′
k (1) = 2k2

Calcul de la dérivée seconde Φ′′
k :

Φ′′
k = k

Φ′′
1Φ1 − Φ′

1
2

Φ1
3 · SkΦk

2 + k
Φ′
1

Φ1
2 ·
(
S′
kΦk

2 + 2SkΦ
′
kΦk

)

la seule fonction nouvelle est S′
k. En observant que S′

k (1) est à un facteur près la somme des
carrés des entiers pairs ou impairs suivant le cas, on obtient S′

k (1) = −2
3k
(
k2 − 1

)
, d’où :

Φ′′
k (1) = 4k4 +

8

3
k2
(
k2 − 1

)

V (Tk) = Φ′′
k (1)− Φ′

k (1) + Φ′
k (1)

2 =
8

3
k4 − 2

3
k2

Dans le cas des polygones à 2p cotés : E (Tp) = 22p−3 et V (Tp) =
1
3

(
24p−5 − 22p−3

)
.

3.4 Première modélisation (suite)

Greg avançant tel Hercule Poirot dans son enquête eut un éclair de génie :
L’état initial q = 2p−1 du graphe probabiliste est particulier. C’est lui qui casse la symétrie
observée tout au long du graphe ! Matriciellement, cela se traduit par le tridiagonal presque

symétrique. L’idée est donc, comme nous l’avons déjà vu en exercice de prolongement au
concours C 2012, de déplier le graphe pour obtenir un graphe équivalent concernant la va-
riable aléatoire X : temps d’absorption, mais avec deux états absorbants. Re-numérotons les
sommets efficacement en regroupant les états absorbants : q, 1, 2, . . . , , q/2, . . . , q−1, q+1

q 1 . . . q/2−1 q/2 q/2+1 . . . q−1 q+11
1
4

1
2

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
2

1

1
4

"Bizarre . . . Bizarre ! Il me semble que nous retombons sur la modélisation précédente. Conti-
nuons notre enquête, mais matriciellement", marmonna Greg en mâchouillant un caramel au
beurre salé.

Ainsi, la matrice de transition d’un parcours non marqué s’écrit (P) =

(
V U
0 I2

)

avec :
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V =

















a b 0 0 . . . . . . 0

b a b 0
...

0 b a b
. . .

...
...

. . . . . . . . . . . . . . . 0
...

. . . . . . . . . . . . 0
...

. . .
. . . a b

0 . . . . . . . . . 0 b a

















où a = t/2, b = t/4 et U =











b 0
0 0
...

...
...

...
0 b











Purée de nouilles et de brocolis : V est symétrique réelle, donc diagonalisable dans une base
orthonormée de vecteurs propres ! Dans le cas présent, on peut même préciser tout ce petit
monde.

Problème 3-4-1 : L’algèbre linéaire en secours . . .

1. On désigne par (Dn)n≥0 la suite définie par : D0 = 1, D1 = a et pour tout n ≥ 2, Dn =
det(V ). Exprimer Dn à l’aide d’une relation de récurrence liant Dn, Dn−1 et Dn−2. En
déduire Dn pour tout n ≥ 0.

2. Prouver que le système (E1) : V X = λX (X 6= 0), où X =








x1
x2
...
xn








se ramène à la

résolution d’une suite récurrente linéaire d’ordre 2 dont l’équation caractéristique peut
s’écrire :

(E2) : r2 +

(
a− λ

b

)

r + 1 = 0

3. Prouver que (E1) n’a pas de solutions si λ /∈]0; 2a[.
4. On suppose donc λ ∈]0; 2a[. Prouver que pour tout entier naturel 1 ≤ j ≤ n, xj est de

la forme 2iA sin(jθm), avec θm =
mπ

n+ 1
, m = 1, 2, . . . , n (m = 0 exclus).

5. En déduire que les valeurs propres de V sont au nombre de n (ainsi on retrouve le fait
que V est diagonalisable) et s’écrivent : λm = a (1 + cos (θm)).

6. Notons B la base canonique de R
n et B′ la base {X1; . . . Xn}, où Xj =








sin(θj)
sin(2θj)

...
sin(nθj)








.

En remarquant que θj = jθ1 = j π
n+1 , donner le terme générique pij de P .

7. Notons D = diag (a(1 + cos(θi))). Exprimer V m en fonction de m, P, D, et de P−1.

8. Démontrer que ‖Xk‖2 = n+1
2 indépendamment de k.

9. Calculer P TP et en déduire l’expression de P−1 en fonction de P .

10. Démontrer que lim
n→+∞

V m = 0.

11. Déterminer la i-ème ligne de la matrice V mU et calculer la somme S
(m)
i (t) de ses (deux)

composantes.

12. Justifier que l’état de départ peut s’identifier à la matrice ligne eT2p−2 de R
2p−1−1 et que

φX(t) =
∑

m≥0

S
(m)
2p−2(t).
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13. En déduire que φX(t) =
∑

m≥0

αmtm+1, où :

αm =
1

2p−1

2p−2−1∑

j=0

(1 + cos((2j + 1)θ1))
m

2m
(−1)j sin((2j + 1)θ1)

.

14. Application au cas p = 3 : retrouver le résultat du paragraphe précédent :

φX(t) =
∑

n≥0

[
1

(4− 2
√
2)n

− 1

(4 + 2
√
2)n

]
tn+1

4
√
2

15. Donner un équivalent de αm au voisinage de l’infini.

Conclusion : En regardant bien un graphe probabiliste, nous constatons qu’il n’est nul besoin
de se ruer vers les matrices ! La fonction génératrice n’est jamais bien loin, du moment que l’on
puisse symétriser ou simplifier le problème à l’aide du graphe. En outre, ceci incite à choisir
(et c’est ici la difficulté) une modélisation du problème élégante, quand cela est possible. Bien
des calculs lourds sont ainsi évités. L’approche matricielle a cependant pour intérêt de donner
directement la loi de la variable aléatoire réelle considérée. Comme cela nécessite le calcul
des puissances successives (ou de l’inverse) d’une matrice, les techniques visant à réduire la
difficulté de cette opération (diagonalisation ou trigonalisation) sont mises en œuvre. Pour
autant, selon le cas considéré, les calculs peuvent s’avérer lourds et compliqués.
Ci-joint les graphes (nous laissons le script écrit à l’aide du module numpy de Python à la
sagacité du lecteur) donnant les distributions de probabilités de la loi "Premier temps de
rencontre sur un polygone à 2p côtés pour p = 3, 4, 5, 6 :

0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
p = 3

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025

0.030
p = 4

0 200 400 600 800 1000 1200
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
p = 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.0000

0.0005

0.0010

0.0015

0.0020
p = 6

loi de probabilite de Tp
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La décroissance semble exponentielle, ce qui se vérifie en utilisant une échelle logarithmique :

0 10 20 30 40 50 60 70
10-6

10-5

10-4

10-3

10-2

10-1

100
p = 3

0 50 100 150 200 250 300
10-6

10-5

10-4

10-3

10-2

10-1
p = 4

0 200 400 600 800 1000 1200
10-7

10-6

10-5

10-4

10-3

10-2
p = 5

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2
p = 6

loi de probabilite de Tp

Remarquons que la seconde règle des parcours nous permet malgré tout de calculer rapidement
le temps moyen d’absorption :
Notons m0,m1, . . . ,m2p−2 les temps moyens d’absorption à partir de l’état q = 2p−1 jusqu’à
l’état 0, comme figuré dans le graphe probabiliste (non symétrisé) modélisant le problème que
nous rappelons, en mettant à l’intérieur des disques chaque temps moyen d’absorption. Posons
r = 2p−2 pour simplifier.

m0 m1 m2 m3 . . . mr−1 mr1/2

1
2

1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
2

1
4

On en déduit en utilisant la seconde règle des parcours que :







m0 = 1 + 1
2m0 +

1
2m1, soit m0 = 2 +m1

mi = 1 + 1
2mi +

1
4(mi+1 +mi−1), soit mi−1 − 2mi +mi+1 = −4 (1 ≤ i ≤ r − 1)

mr = 0 (condition au bord).

L’équation caractéristique de la suite récurrente linéaire associée à la suite récurrente affine
d’ordre 2 : mi−1 − 2mi +mi+1 = −4 (1 ≤ i ≤ 2p−2 − 1) s’écrit x2 − 2x + 1 = 0 qui a pour
unique solution x = 1. Ainsi, les solutions de l’équation linéaire homogène associée sont de la
forme ũn = (An + B)1n = An + b. D’autre part, on remarque aisément que wn = −2n2 est
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une solution particulière de notre équation initiale.
Ainsi, pour tout entier naturel n tel que 1 ≤ n ≤ 2p−2 − 1, on a : mn = An+B − 2n2.
Ruse classique : posons m−1 = m1, de sorte que l’équation mn−1 − 2mn +mn+1 = −4 reste
valable pour n = 0. Ainsi, m0 = B. Or m0 = 2 +m1 = A+B, d’où A = 0.
De plus, m2p−2 = 0 ; on aimerait donc bien écrire que B − 2.22p−4 = 0, ce qui donnerait la
valeur de B. Mais la relation mn−1 − 2mn +mn+1 = −4 est vraie pour 0 ≤ n ≤ 2p−2 − 1
Ceci dit, en choisissant n = 2p−2 − 1 et en utilisant le fait que m2p−2 = 0, on obtient que
m2p−2−2−2m2p−2−1 = −4, soit B−2(2p−2−2)2−2[B−2(2p−2−1)2] = −4, qui conduit après
un bref calcul à B = 22p−3 i.e m0 = 22p−3.
Résultat que nous avions d’abord subodoré puis prouvé lors de la seconde modélisation.

4 Plus sur les chaines de Markov

4.1 Classification des états

Considérons une chaine de Markov, absorbante ou non. On note toujours (P) sa matrice de
transition. Nous allons répartir les états en classes à l’aide de (P).

Définition 4-1-1 : On dit que l’état j est accessible à partir de l’état i s’il existe un entier
naturel n tel que p

(n)
ij > 0. On note i j.

Propriété 4-1-2 : La relation d’accessibilité entre états est réflexive (i.e i i) et transitive
(i.e si i j et j  k, alors i k).

Propriété 4-1-3 : Soient i et j deux états. Les propositions suivantes sont équivalentes :

1. L’état j est accessible à partir de l’état i, soit i j.

2. Le processus, partant de i, passe par j avec une probabilité strictement positive.

La propriété 4-1-2 ne dit cependant pas que la relation d’accessibilité est symétrique. Par
exemple, si la chaine de Markov est absorbante, tout état du bord est accessible, mais une fois
atteint, il n’y a plus de retour possible.

Définition 4-1-4 : On dit que deux états i et j communiquent si i  j et j  i. On note
i! j.

Propriété 4-1-5 : La relation de communication entre états est une relation d’équivalence.
On notera Ci la classe d’équivalence de l’état i.
Nous en déduisons que l’ensemble de états S est partitionné en classes (non vides et
disjointes), dites classes indécomposables, dont on peut trouver un système de représentants.

Remarque 4-1-6 : À l’intérieur de chaque classe, tous les états communiquent. En parti-
culier, tout état communique avec lui-même.
Si C1 et C2 sont deux classes distinctes, on peut éventuellement relier un état de C1 à un état
de C2, mais le retour n’est pas possible.
Certaines classes peuvent ne comporter qu’un seul élément, par exemple :

– un état de non-retour i : p(0)i,i = 1, p
(n)
i,i = 0 pour n ≥ 1,

– un état absorbant i : p(0)i,i = 1, p
(n)
i,i = 1 pour n ≥ 1.
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Définition 4-1-7 : Une chaine de Markov qui ne possède qu’une seule classe d’équivalence
(i.e tous les états communiquent) est dite irréductible.

Exemple 4-1-8 : Le graphe suivant est irréductible : tous les états communiquent.

0 1 2

1/2

1/4

1/3

1/2

1/2

5/12

1/2

Alors que celui-ci ne l’est pas :

0 1 2 3
1

1/2

1/2

1/2
1

1/2

Les états 0, 1 et 2 ne sont visités qu’un nombre fini de fois ; l’état 0 est un état de non-
retour, l’état 3 est absorbant. En tout, il y a trois classes : {0}, {1, 2} et {3}.
Remarquons que la matrice de transition de ce graphe s’écrit :

(P) =







0 1 0 0
0 1/2 1/2 0
0 1/2 0 1/2
0 0 0 1







L’état de non-retour 0 est caractérisé par une première colonne nulle.

4.2 Temps d’atteintes et de retour

Greg prit sa plus belle voix d’outre-tombe et déclama devant son miroir comme jadis Flaubert
le faisait afin de peaufiner ses textes :
Dans ce paragraphe, nous allons préciser la notion de temps d’atteinte, ce qui nous permettra de
généraliser la méthode et les concepts employés lors de la seconde modélisation du problème
de première rencontre des deux scarabées. Nous retrouverons également la géniale seconde
règle de la valeur moyenne vue dans l’article précédent. Et comme je suis généreux, nous
disserterons également sur la probabilité de retour d’un état à lui-même, et sur le nombre
moyen de tels retours, tout ceci de la manière la plus élémentaire qui soit. Pas de tribu, pas de
vocabulaire cauchemardesque : états récurrents, transients . . . bien que ces derniers ne soient
plus maintenant . . . hors d’atteinte !

Définition 4-2-1 : Pour tout état j, on appelle temps d’atteinte de la chaine (Xn)n≥0 dans
l’état j à partir de l’instant 1, l’entier (éventuellement infini pour le moment) :

Tj := inf{n ≥ 1;Xn = j}

Remarquons que (Tj = n) = (X1 6= j)∩(X2 6= j)∩· · ·∩(Xn−1 6= j)∩(Xn = j). Cet événement
ne dépend donc que de X1, . . . ,Xn. Il n’y a pas d’hypothèse sur l’état j (intérieur, absorbant,
etc.). Cependant, si l’état j est absorbant, on a vu que Tj < ∞ (le bord est atteint avec la
probabilité 1).
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Notation 4-2-2 : Posons a
(n)
i,j := P (Tj = n|X0 = i) pour tout entier n ≥ 1, que l’on note

aussi P i(Tj = n) en prenant comme loi initiale eTi .

Ainsi, a(n)i,j est la probabilité pour que le processus, partant de l’état i, atteigne l’état j pour
la première fois, à l’instant n. Pour tout couple d’états (i, j), on pose conventionnellement

a
(0)
i,j := 0.

Théorème 4-2-3 : Pour tout entier n ≥ 1, on a :

p
(n)
i,j =

n∑

k=0

a
(k)
i,j p

(n−k)
j,j

avec la convention p
(0)
i,j = δi,j.

Démonstration (abrégée) : Le processus passe de l’état i à l’état j en n étapes s’il passe de i
à j pour la première fois en k étapes (0 ≤ k ≤ n) et s’il passe ensuite de j à j en les (n − k)
étapes suivantes. Ces chemins, sont, pour des k distincts, disjoints, et la probabilité pour un
chemin fixé est égale à a

(k)
i,j p

(n−k)
j,j .

Théorème et définition 4-2-4 : L’espérance mathématique de Tj par rapport à la loi P i

est notée Mi,j. C’est le temps moyen d’atteinte de j à partir de i.
La quantité Mi,i est appelée temps de retour moyen dans i.
On a :

Mi,j = 1 +
∑

k 6=j

pi,kMk,j

Remarque 4-2-5 : Posons M = (Mi,j), U la matrice dont tous les coefficients sont égaux à
1, et ∆ = Diag(Mi,i). Matriciellement, l’égalité précédente se réécrit :

M = U + (P)(M −∆)

On en déduit que : (I − (P))M = U − (P)∆.
Attention, si la chaine de Markov est absorbante, la matrice I − P est singulière.

Continuons notre étude des chaines de Markov absorbantes, songea Greg. Cette écriture par
blocs que peut prendre la matrice de transition (P), je sens qu’il est possible de l’exploiter
encore plus ! Allez, hop ! un verre de Guillevic 1 et tout ceci va apparaître au grand jour ! On a 2 :

(P) =

(
V U
0 Ir

)

où V est une matrice carrée (n−r)× (n−r) telle que In−r−V soit inversible, d’inverse
∑

k≥0

V k

et U une matrice (n − r) × r. La matrice identité Ir regroupe les r états absorbants de la
chaine de Markov. Si bien que, en passant à la limite sur les puissances successives de (P) :

(P)∞ =

(
0 (In−r − V )−1U
0 Ir

)

Notons :

1. La Guillevic est une variété réputée de pomme à cidre

2. section Généralisation partielle
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– I = {1, 2, . . . , n− r} l’ensemble des états intérieurs,
– mi le nombre moyen de sauts jusqu’à l’absorption, partant de l’état i,
– ti,j le nombre moyen de passage en j en partant de i.

Théorème et définition 4-2-6 : Pour tout (i, j) ∈ I2, on a :

ti,j = δi,j +
∑

k∈I
pi,ktk,j

soit sous forme matricielle si l’on pose T = (ti,j) :

T = I + V T

relation de laquelle on tire (puisque I − V n’est pas singulière) :

T = (I − V )−1

La matrice T s’appelle la matrice fondamentale de la chaine de Markov absorbante.

Corollaire 4-2-7 : Soit i ∈ I.

mi =
∑

k∈I
ti,k

Autrement dit, mi est égale à la somme des éléments de la i−ème ligne de la matrice T .

Démonstration : Soit i ∈ I l’état de départ. Notons Di la durée de séjour en I et Xi la variable
aléatoire réelle "nombre de pas avant absorption". On a clairement Di = Xi, donc E(Di) = mi.

Mais par définition des ti,j, on a E(Di) =
∑

k∈I
ti,k. Comme quoi, changer de point de vue est

encore une fois bénéfique !

Théorème 4-2-8 : Notons B le bord de la chaine de Markov absorbante. Soit (i, j) ∈ I×B.
Notons bi,j la probabilité d’être absorbé en j en partant de i. Alors :

bi,j = pi,j +
∑

k∈I
pi,kbk,j

soit sous forme matricielle, si l’on pose B = (bi,j) :

B = U + V B

qui se réécrit aisément :

B = (I − V )−1U i.e B = TU

4.3 Comportement asymptotique

Définition 4-3-1 : La distribution de probabilité ~p = (p0, p1, . . . , pn) est dite stationnaire

si ~p(P) = ~p.

Définition 4-3-2 : Une matrice de transition (P) est dite régulière s’il existe un entier
naturel m tel que (P)m ait tous ses éléments strictement positifs.
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Remarque 4-3-3 : Ceci implique entre autres que tous les états communiquent i.e que la
chaine de Markov associée est irréductible. En particulier, il n’y a aucun état absorbant.

Théorème 4-3-4 : Soit (P) une matrice régulière.

1. (P)∞ := lim
n→+∞

(P)n existe, et est une matrice stochastique dont toutes les lignes sont

identiques,

2. Soit ~p = (p1, p2, . . . , pn) une telle ligne. Toutes les composantes de ce vecteur sont stric-
tement positives. C’est de plus l’unique distribution stationnaire de (P),

3. Le temps moyen de retour à l’état i est égal à Mi,i =
1

pi
.

Remarque 4-3-5 : Comme pour la convergence simple et la convergence uniforme d’une
suite de fonctions en analyse où l’inversion des quantificateurs est cruciale, si (P) est une
matrice régulière, alors il existe un entier m tel que pour tout état i, on atteint l’état j en
exactement m transitions. Il est maintenant temps de relier la notion de chaine de Markov
irréductible à la notion de matrice de transition régulière . . .

Définition 4-3-6 : Soit S une chaine de Markov irréductible. Sa matrice de transition (P)
est, elle-aussi, dite irréductible.

Définition 4-3-7 : Soit (P) une matrice irréductible. Soit d = inf{n ∈ N; pni,i > 0}. d est le
PGCD de tous les temps de retour possibles à l’état i.

1. on l’appelle d la période de l’état i,

2. (P) est dite apériodique si d = 1,

Théorème 4-3-8 : Soit une chaine de Markov irréductible. Alors tous les états i ont la
même période.

Théorème 4-3-9 : Une matrice (P) est régulière si elle est irréductible et apériodique.

Corollaire 4-3-10 : De ce qui précède, on en déduit que :

1. lim
n→+∞

pni,j = pj, indépendamment de l’état initial i,

2. Pour tout entier naturel n, ~p(P)n = ~p,

Les exemples d’application fourmillent dans les sujets de baccalauréat "spécialité mathéma-
tiques" du bac ES, aussi nous renvoyons le lecteur intéressé vers les annales disponibles sur le
site de l’APMEP : https://www.apmep.fr/.
Revenons, juste pour le plaisir, sur le concours C 2017 dont nous redonnons ci-dessous le
graphe probabiliste, s’esclaffa Greg dans un grand rire psychédélique :

10

11 00

01

1/2

2/3 2/3

1/3

1/21/2

1/2 1/3
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Il est clair que le graphe G de la chaine de Markov est irréductible.
Nous avions re-numéroté les états 11, 10, 01, 00 respectivement par 1, 2, 3, 4. La matrice de
transition s’écrivait alors :

(P) =














2

3

1

3
0 0

0 0
1

2

1

2
1

2

1

2
0 0

0 0
1

3

2

3














Recherchons donc un état stationnaire ~p. D’après le théorème 4-3-4, un tel état existe, il est
unique et il vérifie : ~p = ~p(P)∞ (dont l’existence est assurée).
Il nous faut donc déterminer (P)∞. C’est très limite comme question !
Repoussons-la avec notre meilleure alliée . . . la force ! Non, XCas. Nous obtenons sans sour-
ciller :

(P)∞ =







0, 3 0, 2 0, 2 0, 3
0, 3 0, 2 0, 2 0, 3
0, 3 0, 2 0, 2 0, 3
0, 3 0, 2 0, 2 0, 3







La distribution stationnaire apparait immédiatement : ~p = (0, 3; 0, 2; 0, 2; 0, 3).

4.4 La formule de Mason

Nous ne nous étendrons pas sur les fondements théoriques de la notion de déterminant d’un
endomorphisme, ni sur l’étude détaillée du groupe des permutations. Nous renvoyons le lecteur
intéressé aux ouvrages classiques de premier cycle, par exemple [1] ou [2], qui sont d’excellentes
références.

Notons Sn le groupe des permutations de {1, 2, . . . , n}.
Soit f un endomorphisme de E = R

n muni d’une base quelconque B et A la matrice de f dans

cette base. On appelle déterminant de A dans la base B le réel detB(A) :=
∑

σ∈Sn

ǫσ

n∏

i=1

ai,σ(i),

où ǫσ désigne la signature de la permutation σ.
Le déterminant est invariant par changement de base. On peut donc parler sans ambiguïté du
déterminant de l’endomorphisme f .

Théorème 4-4-1 : Soit A ∈ Mn(R) une matrice vérifiant det(A) 6= 0. Alors A est inversible
et on a :

A−1 =
1

det(A)
com(A)T

Le théorème que nous allons énoncer maintenant est très utilisé en automatique et même en
chimie. On peut consulter par exemple :
http://www.lassc.ulg.ac.be/webCheng00/SYST011/Dyna03_fTransfert.pdf

ou :
http://public.iutenligne.net/automatique-et-automatismes-industriels/

verbeken/cours_au_mv/chapitre5/chap52.html
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ou encore :
https://cel.archives-ouvertes.fr/cel-00156394/file/Chapitre5.pdf

Définition 4-4-2 : Soit S l’ensemble des états d’une chaine de Markov absorbante et G son
graphe associé. On appelle déterminant du graphe G le réel défini par :

∆ = 1−
∑

Li +
∑

LiLj −
∑

LiLjLk + . . .

La première sommation porte sur toutes les boucles, la seconde sur toutes les paires de boucles
disjointes, la troisième sur tous les triplets de boucles disjointes, etc.
Remarquons que ∆ = det(I − V ) dans la décomposition par blocs de la matrice de transition
(P) du graphe G.

Théorème 4-4-3 (Formule de Mason) : Ti,j (avec T = (I − V )−1) est égal à :

1

∆

∑

k

Pk∆k

où Pk est la probabilité de transition d’un chemin direct de i vers j et ∆k le cofacteur du
chemin k, i.e le déterminant des éléments de G non touchés par le chemin k.

Remarque 4-4-4 : il ne s’agit rien d’autre que de la formule de Cramer ! Nous pouvons en
déduire la méthode d’application qui suit :

1. calculer le déterminant ∆ du graphe complet,

2. déterminer les K chemins directs reliant l’état i à l’état j,

3. calculer la probabilité de transition Pk de chacun des K chemins directs,

4. calculer pour chaque chaine directe le déterminant ∆k du graphe obtenu en supprimant
tous les nœuds de la k-ième chaine directe,

5. calculer enfin Ti,j par la formule de Mason.

Exemple 4-4-5 : Détaillons le raisonnement précédent sur un exemple un peu "tête de
nœud", comme l’exemple 1-3-1 dont nous redonnons le graphe probabiliste :

0 1 11 111
p p p

q

q

q

En re-numérotant les états 0, 1, 11, 111 par 1, 2, 3, 4, nous allons calculer T1,i pour i = 1, 2, 3, 4.

1. Le graphe comporte trois boucles : 0 → 0, 0 → 1 → 0, 0 → 1 → 11 → 0. Il n’y a donc
aucune boucle disjointe. On obtient donc :

∆ = 1− q − pq − p2q = 1− q(1 + p+ p2)

soit ∆ = 1− q 1−p3

1−p = p3

2. Il n’y a qu’un seul chemin direct menant de l’état 1 à l’état 2, et il a pour probabilité p ;
celui (unique aussi) menant de l’état 1 à l’état 3 est de probabilité p2.
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3. Chacun de ces trois chemins directs touchent chacune des boucles donc ∆1 = ∆2 =
∆3 = 1,

4. On en déduit d’après la formule de Mason que :

T1,2 =
p

p3
=

1

p2
, T1,3 =

p2

p3
=

1

p

Remarquons que T1,1 =
1
p3

car il n’existe qu’un seul chemin menant du nœud 1 à lui-même, et
donc p1 = 1, et en le supprimant on voit que ∆0 = 1. Le temps moyen d’absorption, partant

de l’état 1 est donc égal à : m1 =
3∑

j=1

T1,j =
1

p
+

1

p2
+

1

p3
=

1

q

[(
1

p

)3

− 1

]

.

Exemple pédagogique 4-4-6 : Le retour des scarabées !
Étudions, à l’aide de la formule de Mason le temps moyen de première rencontre de nos deux
scarabées sur un polygone à 24 = 16 côtés. Selon les résultats établis précédemment, on doit
trouver 22×4−3 = 32. Dans ce qui suit, il y a une grossière erreur. À vous de la trouver !
Le graphe probabiliste modélisant le problème est le suivant :

1 2 3 4

1/2

1/4

1/4

1/4

1/4
1/2

1/2 1/2

Ce graphe comporte un certain nombre de boucles :

– 1 → 1, 2 → 2, 3 → 3, toutes de probabilité
1

2
,

– 2 → 3 → 2, de probabilité

(
1

4

)2

,

– 1 → 2 → 1, de probabilité
1

4
× 1

2
,

– 1 → 2 → 3 → 2 → 1, de probabilité
1

2

(
1

4

)3

,

On en déduit immédiatement le déterminant du graphe :

∆ = 1−
(

3× 1

2
+

(
1

4

)2

+
1

4
× 1

2
+

1

2

(
1

4

)3

)

)

+

(

3×
(
1

2

)2

+
1

4
×
(
1

2

)2

+
1

2
×
(
1

4

)2
)

−
(
1

2

)3

soit :

∆ =
3

128

Il y a un seul chemin menant de l’état 1 à lui-même : 1 → 1. Comme vu avant, t1,1 =
∆1

∆
. En

enlevant le nœud 1, il reste trois boucles :
– 2 → 2 et 3 → 3, disjointes et de probabilité 1

2 ,
– 2 → 3 → 2, de probabilité 1

16 .

Ainsi, ∆1 = 1−
(

2× 1

2
+

1

16

)

+

(
1

2

)2

=
3

16
.

On en déduit t1,1 =
128

3
× 3

16
= 8.

De même, on laisse le soin au lecteur de vérifier que t1,2 =
128

3
× 1

4
=

32

3
et que t1,3 =

34



128

3
× 1

8
=

16

3
.

Il vient que le temps moyen d’absorption, en partant de l’état 1, est égal à :

m1 =

3∑

j=1

t1,j = 24

Mais alors, où est l’erreur ? ? ? (exercice)

4.5 Un dernier exemple d’application

Reprenons, à une légère modification près l’exercice 1 de la section 2-5.
On lance une pièce équilibrée jusqu’à l’obtention de (Face,Face,Face) ou de (Face,Pile,Pile).
Nous allons nous intéresser, en variant les points de vue :

1. à la loi de probabilité de ce jeu,

2. à la probabilité de chacun des événement considérés,

3. au temps moyen de jeu.

Notons 0 pour Pile et 1 pour Face. Les états absorbants sont donc 111 et 100. Comme tous les
deux débutent par 1 (Face), on peut, sans perte de généralité, supposer que l’état de départ
est 0, ce qui nous conduit au graphe probabiliste suivant :

0 1 10 100

11 111

1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

Afin d’étudier la loi de probabilité de la variable aléatoire X : nombre de pas avant l’absorption,
nous pouvons considérer indifféremment :

– la matrice de transition du graphe et ses puissances successives, de manière à appliquer
la relation de Chapman-Komolgorov ou de manière équivalente

– déterminer sa fonction génératrice φX

Notons que la seconde approche peut être assouplie en réduisant préalablement le graphe,
mais il nous faudra en contrepartie effectuer un développement en série entière, ce qui n’est
pas nécessaire avec l’approche matricielle, à condition bien entendu, que le calcul de puissances
successives de la matrice de transition soit aisé.

Approche 1 : Tout matriciel !
La matrice de transition du graphe peut s’écrire (avec p = 1/2) :

(P) =











p p 0 0 0 0
0 0 p p 0 0
0 p 0 0 p 0
0 0 p 0 0 p
0 0 0 0 1 0
0 0 0 0 0 1










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soit :

(P) =

(
V U
0 I2

)

où V =







p p 0 0
0 0 p p
0 p 0 0
0 0 p 0







et U =







0 0
0 0
p 0
0 p







.

X-Cas donne une expression immonde pour V n. Même en essayant de diagonaliser V . Il semble
tentant de tenter l’approche "fonctions génératrices".

Approche 2 : Fonctions génératrices.
La matrice de transition d’un parcours non marqué peut s’écrire (avec p = 1/2) :

(P) =











pt pt 0 0 0 0
0 0 pt pt 0 0
0 pt 0 0 pt 0
0 0 pt 0 0 pt
0 0 0 0 1 0
0 0 0 0 0 1











soit :

(P) =

(
V U
0 I2

)

où V =







pt pt 0 0
0 0 pt pt
0 pt 0 0
0 0 pt 0







et U =







0 0
0 0
pt 0
0 pt







.

La loi initiale est eT1 . D’où, en utilisant les résultats de la section Généralisation Partielle :

φX(t) =

2∑

j=1

[(I4 − V )−1U ]1,j

Greg éclata de rire en repensant à ses longs exercices de calculs d’inverses de matrice au cours
de sa tendre enfance mathématique. Comme je te X-Cas ça maintenant ! ! !
On obtient aisément la première ligne de [(I4 − V )−1U ] :

(
t(2 · t3 + 4 · t2)

2(t4 − 4 · t2 − 8 · t+ 16)
,

2 · t3
t4 − 4 · t2 − 8 · t+ 16

)

Cette dernière nous permet deux options :

1. Calculer directement les probabilités d’être absorbé en 100 et en 111,

2. Donner l’expression explicite de φX(t), puis en calculant φ′
X(1), d’en déduire le temps

moyen d’absorption.

On a en remplaçant t par 1 :
– P (absorption en 100) = [(I4 − V )−1U ]1,1 = 3/5
– P (absorption en 111) = [(I4 − V )−1U ]1,2 = 2/5

36



puis en sommant les deux colonnes :

φX(t) =
t4 + 4t3

t4 − 4t2 − 8t+ 16

En utilisant la propriété 1-1-6, on trouve à l’aide d’un logiciel de calcul formel que E(X) = 28/5
et que V (X) = 188/25.
Utilisons encore X-Cas pour déterminer la matrice fondamentale T de notre chaine de Markov :

T =







2 8
5

6
5

4
5

0 8
5

6
5

4
5

0 4
5

8
5

2
5

0 2
5

4
5

6
5







On a en utilisant le corollaire 4-2-7, que le temps moyen d’absorption, en partant de l’état 0,
est égal à 2 + 8

5 +
6
5 +

4
5 = 28

5 . Tout colle bien !

Mais pour "gagner" la loi de X, il convient de développer en série entière φX(t).
Remarquons que (merci X-Cas) :

φX(t) = 1 +
6

t− 2
− 2

t2 + 6t+ 8

t3 + 2t2 − 8

L’équation t3+2t2−8 = 0 a trois solutions : une solution réelle : α ≈ 1, 5098 et deux solutions
complexes conjuguées : β, β̄ ≈ −1, 7549 ± 1, 4897i.

La fonction rationnelle F (t) :=
t2 + 6t+ 8

t3 + 2t2 − 8
, considérée comme une fonction de la variable

complexe, s’écrit sous la forme : F (t) =
A

t− α
+

B

t− β
+

C

t− β̄
.

Classiquement :

– A = lim
t→α

(t− α)F (t) =
α2 + 6α+ 8

α2 − 2αℜ(β) + |β|2 ,

– B = lim
t→β

(t− β)F (t) =
β2 + 6β + 8

(β − α)(β − β̄)
,

– C = B̄.
Rappelons que pour a ∈ C

∗ et pour |t| < |a|, on a :

∑

n≥0

1

an+1
tn =

1

a− t

On a :

φX(t) = 1− 3
1

1− t/2
+ 2A

1

α− t
+ 2B

1

β − t
+ 2B̄

1

β̄ − t

donc pour |t| < min(2, α, |β|) = α :

φX(t) = 1− 3
∑

n≥0

(
t

2

)n

+ 2A
∑

n≥0

1

αn+1
tn + 2B

∑

n≥0

1

βn+1
tn + 2B̄

∑

n≥0

1

β̄n+1
tn

soit :

φX(t) = 1 +
∑

n≥0

(−3

2n
+

2A

αn+1
+ 4ℜ

(
B̄βn+1

|β|2(n+1)

))

tn

En particulier, on vérifie que P (X = 0) = P (X = 1) = P (X = 2) = 0, ce qu’indiquait le
graphe probabiliste.
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La loi de probabilité de X est donc définie par :







X(Ω) = [3;+∞[∩N
∀n ∈ X(Ω), P (X = n) =

−3

2n
+

2A

αn+1
+

4

|β|2(n+1)
ℜ(B̄βn+1)

Remarque : Nous pouvions également nous servir de la formule de Mason afin de déterminer
le temps moyen d’absorption.
Posons p = 1/2 et re-numérotons les sommets 0, 1, 10, 11, 100, 111 respectivement par 1, 2,
3, 4, 5, 6.
Les boucles du graphe sont :

– S1 : 1 → 1, de probabilité p,
– S2 : 2 → 3 → 2, de probabilité p2,
– S3 : 2 → 4 → 3 → 2, de probabilité p3

Remarquons que le premier chemin S1 est disjoint des deux autres, qui eux ne le sont pas entre
eux.
On en déduit que le déterminant du graphe est égal à : ∆ = 1−(p+p2+p3)+(p3+p4) = 5/16.
Calculons t1,j pour j = 1, 2, 3, 4. Ainsi, nous en déduirons le temps moyen d’absorption partant

de l’état 1 : m1 =

4∑

j=1

t1,j.

Commençons par remarquer que pour tout état i, il existe un unique chemin allant de i à i.

Ainsi, ti,i =
∆i

∆
. On a donc t1,1 =

∆1

∆
.

– Calcul de t1,1 : S\{1} n’a aucune paire de boucles disjointes, donc ∆1 = 1−(p2+p3) =
5

8
.

On en déduit que t1,1 =
5

8
× 16

5
= 2.

– Calcul de t1,2 : il y a un seul chemin direct menant de 1 à 2 : 1 → 2, qui est de probabilité
p. En supprimant les noeuds 1 et 2 de S, il n’y a plus de boucles donc ∆2 = 1. D’où

t1,2 =
1

2
× 16

5
=

8

5
.

– Calcul de t1,3 : il y a deux chemins directs menant de 1 à 3 : 1 → 2 → 3, de probabilité
p2, et 1 → 2 → 4 → 3, de probabilité p3. Comme précédemment, les cofacteurs associés

sont égaux à 1, de sorte que t1,3 =

(
1

4
+

1

8

)

× 16

5
=

6

5
.

– Calcul de t1,4 : on laisse le lecteur vérifier que t1,4 =
4

5
.

On retrouve bien la première ligne de T = (I − V )−1. Ainsi, m1 =
28

5
.

Greg se frotta les mains en vidant une bouteille d’hydromel dans le bac de tri situé en bas de
sa demeure.
"Je crois que nous avons pas mal tourné autour du pot jusqu’à l’ivresse", songeait-il. Une
étoile filante traversa alors le ciel de novembre en laissant une traînée argentée persistante qui
tardait à s’effacer.
"Je crois qu’il est temps de passer le flambeau . . . Et pour diluer ces réflexions, rien de tel que
de se diriger vers les bords d’eau. Vers Bordeaux où mon ami "Lolo" a beaucoup à dire avec
sa faconde légendaire. Les sièges de ce bar Salsa, proche de la place de la Victoire murmurent
encore son nom en rougissant. Encore plus qu’à Nevers . . . , au bien nommé "l’Agricole". Allez,
il est temps de brancher ! Pour la postérité . . .
Au prochain article, nous étudierons en détail les Processus de branchement, étudiant notam-
ment la persistance d’une lignée.
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5 Compléments

5.1 Coefficient binomial généralisé

Définition : Soit n un entier naturel et a un nombre complexe. La factorielle montante est

définie par : (a)n :=

{

1 si n = 0,

a(a+ 1) . . . (a+ n) si n ≥ 1

Définition : Le coefficient binomial
(
a
n

)
(où n un entier naturel et a un nombre complexe)

est défini par : (
a

n

)

:=
a(a− 1) . . . (a− n+ 1)

n!
= (−1)n

(−a)n
n!

5.2 Séries entières

Lemme d’Abel : Considérons une série entière
∑

n≥0

anz
n. On suppose qu’il existe z0 ∈ C

tel que (anz
n
0 )n≥0 soit bornée. Alors pour tout z ∈ C tel que |z| < |z0|,

∑

n≥0

anz
n converge

absolument.

Théorème et définition : Soit
∑

n≥0

anz
n une série entière. Alors il existe R ∈ [0;+∞]

vérifiant les conditions équivalentes suivantes :

1. R = sup{|z| ;
∑

n≥0

anz
n converge absolument}

2. R = sup{|z| ;
∑

n≥0

anz
n converge}

3. R = sup{|z| ; (anz
n) tend vers 0}

4. R = sup{|z| ; (anz
n) est bornée}

R s’appelle le rayon de convergence de la série entière
∑

n≥0

anz
n.

Calcul du rayon de convergence : Le théorème précédent donne à lui seul des moyens
pratiques de calcul du rayon de convergence. La place des suites géométriques dans une échelle
de comparaison à l’infini est également fort utile :

(ln(n))α << nβ << tn << eγn, β, γ > 0, t > 1

Citons néanmoins deux théorèmes classiques de calcul du rayon de convergence :

Formule de Hadamard : Soit
∑

n≥0

anz
n une série entière de rayon de convergence R non

nul. Alors R =
1

limn→+∞ |an|1/n
.

Formule de Cauchy : Soit
∑

n≥0

anz
n une série entière de rayon de convergence R. On

suppose qu’à partir d’un certain rang an 6= 0, alors :
1

R
= lim

n→+∞
|an+1|
|an|

.
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Quelques résultats utiles : Soient
∑

n≥0

anz
n et

∑

n≥0

bnz
n deux séries entières de rayons de

convergences respectifs R1 et R2. Alors :

1. Le rayon de convergence R de
∑

n≥0

(an + bn)z
n vérifie R ≥ min{R1;R2}, avec égalité si

R1 6= R2.

2. Le rayon de convergence R de




∑

n≥0

anz
n








∑

n≥0

bnz
n



 vérifie R ≥ min{R1;R2}, avec

égalité si R1 6= R2.

3. La fonction f(z) =
∑

n≥0

anz
n est indéfiniment dérivable à l’intérieur du disque ouvert de

convergence DR et pour tout entier naturel p, on a :

f (p)(z) =
∑

n≥p

n(n− 1) . . . (n− p+ 1)zn−p

Remarquons qu’une série entière et ses dérivées ont même rayon de convergence.

Développement en série entière : Après avoir défini le principe, nous donnerons un for-
mulaire succinct de quelques développements classiques. Notons qu’il s’agit là de la démarche
inverse du calcul explicite de l’expression d’une série de fonctions. On a par exemple, pour

|t| < 1 :
∑

k≥0

tk =
1

1− t
.

Inversement, le développement en série entière de la fonction définie sur ]−1; 1[ par f(t) =
1

1− t
est f(t) =

∑

k≥0

tk.

Définition : On dit qu’une fonction f : C → C, définie sur un voisinage de z0 ∈ C, est
développable en série entière en z0, si et seulement s’il existe une série entière

∑

n≥0

anz
n, de

rayon de convergence R > 0 telle que :

∃α ∈]0;R[ ; z ∈ B(z0, α) ⇒ f(z) =
∑

n≥0

an(z − z0)
n

Remarque : Par translation, on peut supposer z0 = 0.
Ce développement est unique, et est précisément égal à la série de Mac-Laurin de f :

∑ 1

n!
f (n)(0)zn

Nous ne nous étendrons pas sur les conditions nécessaires pour une fonction d’être dévelop-
pable en série entière. [1] le fait très bien dans son tome 4.
Nous considérons par ailleurs très souvent des fonctions de la variable réelle. Le tableau des
développements usuels peut s’écrire . . .

comme dans le lien ci-dessous !
http://www.panamaths.net/Documents/Formulaires/FORMU_DSEUSUELS.pdf
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