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Résumé

Cet article fait suite au précédent : Introduction aux processus aléatoires discrets 1, qui in-
troduisait la notion de graphe probabiliste (et I’aspect matriciel correspondant), les régles
de parcours et de la valeur moyenne ainsi que les processus de réduction de tels graphes. 11
était notamment mis ’accent sur la notion d’état absorbant et sur la relation fondamentale
de Chapman-Komolgorov permettant de connaitre ’état du systéme a l'instant n, connais-
sant celui-ci & I'instant initial. Dans cet article, nous étudierons particuliérement la notion de
fonction génératrice, en se basant sur la remarquable méthode de marquage de Van Dantzig.
L’aspect matriciel n’est pas oublié et donne lieu & quelques développements techniques. La
dualité graphe probabiliste-matrice de transition associée reste omniprésente et ’on étudie,
notamment a travers un exemple consistant, la complémentarité de telles approches. Enfin,
nous donnerons quelques compléments sur la notion d’état et détaillerons une régle pratique
permettant de traiter des graphes complexes : la formule de Mason.

1 Fonctions génératrices

1.1 Introduction

Yom avait passé le relai de ses réflexions a son vieil ami "Greg la mouette", qu’il avait pris
sous son aile depuis quelque temps déja. Pas au point de lui donner la becquée ni de ’abreu-
ver d’hydromel, mais les deux compéres s’entendaient comme larrons en foire. Greg pensait
justement :

Considérons une chaine de Markov absorbante. Nous savons qu’une particule, partant d’un
état donné, finit par étre absorbée avec la probabilité 1.

Soit X la variable aléatoire réelle donnant le nombre de transitions avant 1’absorption.

X(2) =[0; NJNN ou X () = N. Sans perte de généralité, on peut supposer X (2) = N quitte
a poser P(X =1i) =0 a partir d'un certain rang.

Notation 1-1-1 : on posera p; := P(X =) et ¢; :== P(X > i). La fonction i — ¢; s’appelle
fonction de survie de la particule pour des raisons évidentes.

Remarque 1-1-2 : E(X) = ZQi'

i>0
Décrivons maintenant la géniale méthode (dixit Maitre Yoda) inventée par le mathématicien
hollandais David Van Dantzig (1900-1959) pour donner un sens aux séries entiéres ¢(t) =
Z pitt, ot (pi)i>o0 est une distribution de probabilité. En I'occurrence, nous considérerons
i>0
essentiellement ici la distribution de probabilité de la variable aléatoire X précédente.



Méthode de Van Dantzig : Elle comporte deux étapes que nous allons décrire précisément.
Considérons un état intérieur d’'une chaine de Markov absorbante. C’est le point de départ de
la particule.

1. Cette particule effectue une transition par unité de temps.

2. A chaque transition, on lance la roulette suivante :

ou la probabilité de tomber dans la zone marquée est 1 — t et celle de ne pas y tomber
est t.

En vertu de la formule des probabilités totales, avec le systéme complet d’événements
{(X =1)}i>1, la probabilité de I’événement A : "avoir un parcours non marqué" est égale a

P(A) =) Px—i(A)P(X =i)=> t'p;

i>1 i>1

par indépendance des lancers.
Notons que le conditionnement par un événement (X = i) suppose qu’il ne soit pas de proba-
bilité nulle, ce dont nous n’avons aucune idée pour ¢ > 1. Le raisonnement est donc purement
formel. D’autre part, étant donné que I’état initial est intérieur, on a pg = 0. On peut poser
sans perte de généralité Z pit!, expression que nous noterons ¢x (t).

i>0

Remarque 1-1-3 : Dans certains cas, X ne comptera que certaines transitions particuliéres
(c.f le paragraphe Loi Binomiale). Plus généralement, donnons la méthode suivante :

on considére une variable aléatoire X qui prend les valeurs 0, 1, 2, ... avec les probabilités pg,
1, P2, - - .Ceci se modélise par une roulette comme celle ci-dessous que 1’on fait tourner une fois.

el

Si X prend la valeur i, on fait ensuite tourner ¢ fois la roulette marquée de Van Dantzig. La
probabilité de ne pas étre marqué au cours de ces i lancers est égale a p;t'. Comme il nous
faut considérer toutes les valeurs de i, la probabilité de ne pas étre marqué au cours de cette
expérience en deux temps est égale a Z pit'. Ce qui nous ameéne a la :

i>0



Définition 1-1-4 :  Soit (p;)i>0 la distribution de probabilité d’une variable aléatoire X pre-
nant N comme valeurs. La série entiére ¢x (t) :== > ;o pit’ s’appelle la fonction génératrice
de X. On a d’aprés le théoréme de transfert, ¢x (t) = E(t¥).

Remarque 1-1-5 : Le rayon de convergence de ¢x est supérieur ou égal a 1.

Propriété 1-1-6 : Si Rx > 1,on a
1. B(X) =¢x(1)
2. V(X) = ¢ (1) + ¢y (1) — ¢y (1)

Voila de jolis résultats ! se félicita Greg en avalant gouliiment son verre de cidre. Mais comment
les appliquer concrétement ?

1.2 Applications simples

Loi géométrique : On note S 'état "échec" et S 'état "succés" d’une expérience de Ber-
noulli donnée. On note p la probabilité de succés et ¢ = 1 — p la probabilité d’échec. On réitére
la méme expérience aléatoire dans les mémes conditions (indépendance supposée implicite-

ment) et on s’intéresse a la probabilité de premier succés. Autrement dit, on cherche & décrire
n—1

la réalisation des événements SiNSy,, n € N* ou S; désigne I’événement Succeés a la i-éme
(2 ny Y 7
i=1
épreuve. Le cas n = 1 renvoie au succés dés la premiére épreuve.
Modeéliser ceci a ’aide d’un arbre de probabilités comme celui ci-dessous (partiel) reléve de la
gageure car I’événement "N’obtenir que des échecs" est a considérer, méme si sa probabilité
est nulle! La branche avec uniquement des S; est de longueur infinie.

Arbre qui peut prendre une forme beaucoup plus compacte comme ci-dessous, appelée graphe

probabiliste :
p
(O ®

Sans perte de généralité, nous pouvons supposer que 1’état de départ est S. Ainsi, la boucle
reliant ’état S a lui-méme peut étre parcourue entre 0 fois (succés a la premiére transition)
et une infinité de fois. Intéressons-nous maintenant & la fonction génératrice de cette loi.

N’oublions pas que la méthode de marquage de Van Dantzig comporte deux étapes : la tran-
sition d’états, accompagnée du lancement de la roue (avec marquage de probabilité 1 — ¢t).
Ainsi, le graphe d’un parcours non marqué se modélise par :




soit, en utilisant les régles de réduction de graphe :

La fonction caractéristique de X, loi géométrique de paramétre p s’écrit donc :

pt

bx(t) = T gt

Propriété 1-2-2-1 : On démontre facilement les résultats suivants :
1. X(Q =NetVie N, P(X =i)=¢""1p

2. B(X) =

3. V(X) =

’BM|Q’BIH

Loi de Pascal : que 'on appelle aussi parfois loi binomiale négative ...

La loi géométrique s’intéressait au premier succés lors d’une succession d’épreuves de Bernoulli
identiques et indépendantes. Nous allons nous intéresser ici au n-iéme succeés lors d’une suc-
cession de ces mémes épreuves. Intuitivement, le graphe de cette nouvelle variable aléatoire

est la concaténation n fois du graphe précédent, ol les états numérotés de 0 & n représentent
le nombre de succés obtenus :

p p p p
q® f\l @ 23 0
q
3
qt

q q

Le graphe d’un parcours non marqué s’écrit :

pt pt pt

qt qt
graphe équivalent & : qt
_pt_ pt pt pt
1—qt 1—qt 1—qt 1—qt
OO0 ()0
lui-méme équivalent a : < ot \"
1—qt)

On vient ainsi de démontrer que la fonction caractéristique de cette loi, dite Loi binomiale
négative ou Loi de Pascal s’écrit :
pt \"
t) =
Px(t) (1 — qt>




Cette information va nous permettre en développant en série entiére (partie technique) la fonc-
tion précédente, de déterminer la loi recherchée.

Pour revoir quelques notions utiles sur le coefficient binomial généralisé et le développement
en série entiére, consulter la partie compléments. On a :

ox() = (12)
— >“<1 N

7,>0

~ Y (1 < ”) ngign i

>0
Or
i(—n\ ;i—n(-n—-1)...(—n—i+1)
~nn+1)...(n+i—1)
— ;
_ n+it—1
N 7
D’ou : -
AW n+1— 1 i pnti
(—1)<.>pqt+=< ) >pqt+
7 7
Ainsi :

ox(t) Z (n —I—;’ — 1>pnqitn+i _ Z (Z : i>pnqi—nti

i>0 i>n

Propriété 1-2-2-2 :  De ce qui précéde, on en déduit que :
1. X(Q) = [n;+oo]NN

2. Vie X(Q), P(X=i)= (Z - 1>pnqi—n

Propriété 1-2-2-3 : L’utilisation de la propriété 6-2-1-6 nous permet d’établir que :

n

1. E(X) = —
(X) p
nq

2. V(X)=—
(X) p

Remarque 1-2-2-4 : On peut retrouver les deux résultats précédents de maniére élémen-
taire. Notons en effet X la variable aléatoire égale au temps d’attente du premier succés et
X; (1 <4< n)la variable aléatoire égale au temps d’attente entre le i — 1-éme succés et le
i-éme succeés. Les X; sont indépendantes et suivent chacune la loi géométrique de paramétre
p. Ainsi, pour tout entier naturel i, on a E(X;) = 1/p et V(X;) = ¢q/p?. La loi de Pascal
d’attente du n-iéme succeés s’écrivant X = X7+ X9+ - - -+ X,,, nous obtenons immédiatement
les résultats annoncés.



Loi binomiale : "Petite" différence par rapport au cas précédent : on ne marque éventuel-
lement que les succés lors d’une succession de n épreuves de Bernoulli identiques et indépen-
dantes (de paramétre p), autrement dit si une transition améne & un échec, on ne fait pas
tourner la roue de Van Dantzig. Ainsi, le graphe d’un parcours non marqué se modélise par :

pt+q pt+q pt+q pt+q

O——O—O—06 - ®

soit, en utilisant les régles de réduction de graphe :

(pt + )"

© ®

La fonction caractéristique de X, loi binomiale de paramétre p s’écrit donc :

ox(t) = (pt+q)" = Zn: (?) pigit

=0

On retrouve ainsi la loi de probabilité de X :
1. X(Q)=[0;n]NN

7

2. Vie X(Q), P(X =)= <n>piqn—i

Propriété 1-2-2-5 :  Toujours grace a la propriété 1-2-1-6 ou plus classiquement, nous ob-
tenons :

1. BE(X)
2. V(X)

np
npq

1.3 Lire une fonction génératrice sur un graphe

Nous travaillerons toujours avec des chaines de Markov absorbantes, si bien que les régles de
réduction de graphes s’appliquent (cf l'article précédent). Traitons deux exemples :

Exemple 1-3-1 : On lance une piéce biaisée. La probabilité de faire Pile est de p. On posera
q = 1 — p, probabilité de faire face. X est la variable aléatoire réelle égale au nombre d’essais
nécessaires pour obtenir pour la premiére fois une suite de 3 Piles consécutifs.

1. Dessiner un graphe probabiliste modélisant I’expérience précédente. En déduire le graphe
d’un parcours non marqué.

2. En réduisant le graphe précédent, donner I’expression de la fonction génératrice de X.

3. Généraliser au cas de n Piles consécutifs.

Exemple 1-3-2 : On reprend 'exemple des tauliéres de 'article précédent, dont nous re-
donnons le graphe probabiliste ci-dessous (p=1/2) :



1. Donner le graphe d’un parcours non marqué et le réduire.
2. En déduire la fonction caractéristique de X, variable donnant le temps d’absorption.

3. Vérifier que le temps moyen d’absorption est égal a 2.

Solutions : Nous nous appuierons sur les méthodes de réduction de graphes étudiées au
chapitre 5.

Exercice 1 : Donnons d’abord un résultat préliminaire trés utile. Nous laissons sa démons-
tration & la sagacité du lecteur.

Le graphe : a
équivaut a : b
a
o (D——0
équivaut a :
a
1—ab

Question 1 :
Nous poserons 0 pour Face et 1 pour Pile. Sans perte de généralité, on peut supposer que I’état
initial est 0. Le graphe probabiliste associé a notre expérience aléatoire prend alors la forme :

Question 2 : Il suffit de multiplier chacune des probabilités indiquées par t, la probabilité de
ne pas étre marqué en faisant tourner la roue de Van Dantzig.

pt pt pt
gt 0 (1) (11) 111
U
qt

équivaut a :



pt pt
qt + pqt? 0 ), (1) 111

lui-méme équivalent a :

242
pt pt
gt + pqt? 0 (11) 111
qt
qui équivaut a :
242
p°t pt
2,23 (11)
qt +pqt” +pqt @ (1) 111
équivaut a :
343
pt
qt + pat® + p*qt’ @@ 111
équivaut a :
p3t3

1—(gt+pqt?+p2qt3)

(0) 111

t(1 — p3t3
De plus, gt + pqt? + p°qt> = w, d’ou :
1—pt
@) -pt) ()’ —pt)
ox(t) = 3y 3
1—pt—qt(l—(pt)’) 1—1t+qt(pt)
soit : ( ) 5.3
1 — pt)p°t
)= — 2
ox(t) 1 —t+ gp3tt
Question 3 :
(1 —pt)p"t"

On laisse le lecteur se persuader que ¢x(t) = =g
- ap

Exercice 2 : il y a deux états absorbants cette fois-ci.

Question 1 :



équivaut a :
4

lui-méme équivalent a :

Question 2 :

2 3 4
On en déduit que ¢x(t) = pt+ (pt)” + (pt)° + (pt)

1—(pt)*

: 2 3 g _ptd—(pt)) o __pt
Mais pt + (pt)” + (pt)° + (pt)* = T d’ou ¢x(t) = T
Question 3 :

Il ’agit de calculer E(X) = ¢y (1).
P N P
Or ¢y () = —2  don B(X)= —2_ —2 (p=1/2).

1.4 Fonctions génératrices et indépendance

Les résultats énoncés ici sont redoutables en efficacité. Par analogie avec le logarithme népé-
rien qui transforme des produits en sommes, nous allons exprimer les fonctions génératrices
de sommes de variables aléatoires discrétes indépendantes comme produit de leurs fonctions
génératrices.

Théoréme 1-4-1 : Soit (X;)1<i<n une suite de variables aléatoires réelles discrétes identi-

n
quement distribuées et indépendantes. Soit .5,, = ZXZ" Alors :
i=1

1. X,, et S,_1 sont indépendantes,
2. 95, = 0xy - OX,

Démonstration : On supposera X;(2) = N.

1. Résulte du résultat classique et extrémement utile suivant : si les X; (1 <4 < n) sont
mutuellement indépendantes, alors pour tout k € [1;n — 1] et pour toutes fonctions
boréliennes f : R¥ — Ret g : R** = R, f(Xy,...,X3) et g(Xpt1,...,X,) sont
indépendantes.



2. Au vu du résultat précédent, il suffit de prouver que si X7 et Xo sont deux variables
aléatoires indépendantes, alors ¢x,+x, = ¢x,9x,-
On rappelle le produit de deux séries absolument convergentes : Si a = ), <;an €t
b=, <0bn sont deux séries absolument convergentes, on définit la série ¢ := 3", ¢,
n

par ¢, := Z agb,,—i. Alors ¢ converge absolument et ¢ = ab.

Sur ce, pou; tout t < Rx,, on a:

6x,(D0x,(1) = Y > P(X1 = k)P(Xy = i — k)t

120 k=0

Par indépendance de X et Xy, P(X; =k)P(Xo=i—k)=P(X;1 =kNXy=1i—k).
Posons X = X7 + Xo. '
L’événement (X = i) est la réunion disjointe _o(X1 =k N Xo =i — k).

Dot P(X =)= P(X1=kNXy=i—k)=> P(X1=k)P(Xy=1i-k).
k=0 k=0

Ainsi, ¢x(t) = ¢x, (t)dx, (1).

Remarque 1-4-2 : Nous pouvons donner une démonstration alternative au point 2 du
théoréme précédent, basée sur la méthode de marquage de Van Dantzig. Nous avons vu a la
remarque 1-1-3 l'interprétation probabiliste de la fonction génératrice d’une variable aléatoire
X prenant tous les entiers naturels ¢ comme valeurs avec les probabilités p; (i > 0) :
on tourne une roue donnant les nombres 0, 1, 2, ... avec les probabilités respectives p;. Si I’'on
tombe sur ¢, on tourne ¢ fois la roue marquée de Van Dantzig. La fonction génératrice de X
donnant la probabilité d’'un parcours non marqué s’écrit ¢ x(t) = Zp,-ti.

i>0
Nous effectuons n épreuves indépendantes de la sorte. La k-iéme expérience n’est pas marquée
avec la probabilité ¢x, (t). Si 'on pose X = X; + --- + X,,, nous obtenons alors :

ox(t) =[] éx.(®)
k=1

La loi de Pascal se déduit ainsi de la loi géométrique de maniére naturelle! Ce que confirment
leurs graphes probabilistes comme vu auparavant.

1.5 Exercices d’application :

Un peu de calcul ...

1. Soient X et Y deux variables aléatoires indépendantes suivant respectivement les lois de
Poisson de paramétre A\ et u. Prouver que X + Y suit une loi de Poisson de paramétre
A+ .

2. Considérons une population constituée de n bactéries de méme type. On dit qu’elle est
dans I'état n.
On suppose qu’a la génération 0, il y a un seul individu. On fait alors tourner la roue
suivante qui indique en combien d’individus k (avec la probabilité py) se divise la bactérie
initiale.

10



il

Nous obtenons la génération 1.
Pour chacune des k bactéries de la génération 1 on fait tourner la roulette précédente et
on obtient la génération 2. Le processus se poursuit ainsi. On ’appelle processus de
branchement.

(a) Soit Z,, la variable aléatoire égale au nombre de bactéries présentes a la génération
n. On note ¢,, la fonction génératrice de Z,,. Justifier que ¢g9 = 1 et que ¢1(t) = t. On
posera ¢ = ¢1.

(b) Déterminer une relation de récurrence entre Z, 11 et Z, a laide de ¢.

(¢) En déduire une expression de ¢, en fonction de ¢.

(d) On pose u = E(Zy) et 0? = V(Z1). Exprimer E(Z,) et V(Z,) en fonction de p
et de o.

(e) Application : Un insecte éphémeére (mourant lorsque la génération suivante nait)
donne naissance a 0, 1, 2 ou 3 insectes avec les probabilités respectives 0,05; 0,45; 0,3 ;
0,2. Calculer la probabilité d’extinction de la lignée de cet insecte.

2 Aspect matriciel

Comme nous 'avons vu dans 'article précédent avec le théoréme de Chapman-Komolgorov,
I’étude des puissances successives de la matrice de transition nous permet de retrouver la loi
de X, variable aléatoire donnant le temps d’absorption, et donc sa fonction génératrice, songea
Greg. Rappelons son corollaire le plus usité :

Notons py ’état initial du systéme et p;, son état aprés n transitions, tous deux écrits sous la
forme d’un vecteur ligne de longueur Card(S). Alors

Pn = Po(P)"
Maintenant que j’ai fait connaissance avec Monsieur Van Dantzig, 'idée est de traduire ma-
triciellement les graphes de parcours non marqués. Allez, je mets les mains dans le cambouis

pour vérifier quelques exemples . ..

2.1 Loi géométrique

Soit p le paramétre de la loi géométrique. La matrice de transition de 1’état 0 (échec) a I'état

1 (succes) s’écrit :
_ (49 P

donc celle d’'un parcours non marqué est (en conservant la méme notation) :
_(qt pt

11



Une récurrence immédiate nous permet de démontrer que pour tout entier naturel n non nul :

Py = ((qt)" Z?;ol(qt)"pt>

0 1

soit :
Py = ()" > ¢t

0 1

On suppose |gt| < 1, de sorte que liIJIrl (gt)" = 0. Ceci assure aussi la convergence de
n——+0oo

[o¢]
qu_lptl. Ainsi :
i=1

(P)* = (8 Z?ilclli_lpti>

o

On retrouve ainsi la fonction génératrice de la loi géométrique : ¢x (t) = Z ¢ Ipt!, avec en
i=1

prime la loi : pas besoin de développer en série entiére!

2.2 Loi de Pascal

Soient p et n les paramétres de la loi de Pascal. La matrice de transition d’un parcours non

marqué (P) € My, 1(R) s’écrit :
Vo U

qgt pt 0 --- 0
0 qt pt :
avec V, =10 0o -. -. 0o | et U = pte,, ou e, est le n-iéme vecteur de la base cano-
oo " . pt
o 0 0 - gqt

nique de R™.

On en déduit que pour tout entier naturel m :
0 1

avec la convention usuelle V.0 = I,,.

Puisque ef est la distribution initiale, et sous réserve que lim V" = 0, I'élément (P)$S nous
m—+00

permet de retrouver la fonction génératrice associée a la loi de X.

01 0 0
00 1
Remarquons que V,, = qtI,, + ptW,,, o W,, € M, (R) s’écrit : W, = | o 0 0
P |
o0 o ---0

Un exercice classique de premier cycle (trés bon a refaire) nous assure que la matrice W), est
nilpotente d’ordre n. De plus, pour tout 1 <i<n —2, on a:

12



0 1 0
o0 0 S0
Wt = t Wi+ =1:
S I AL 000
0 - 00
0 0 0 -0

=0
De la nilpotence de W,,, on en tire que pour tout entier m > n —

n—1
v =% (Z >p’qm_ZW:Ltm

1=0

m
Or, I, et W,, commutent, d’ou : V" = (ptW,, + qtI,)" = Z (m)ﬁWqum_itm.
, i
1:

Mais pour i = 0,...,n — 1 on a WiU = pte,_; (1), n — i-éme vecteur de la base canonique
de R™. Dans I'idée de réduction de graphe faisant "apparaitre" la fonction caractéristique de
X, on fait tendre m vers +oo.

Considérons donc formellement la somme :

i,
Sviv =5 (F)wdwive
i>0 >0 j=0
D’aprés (1), si j < n—1, WiU = pte,_j et Wi =0 si 7 > n. La somme précédente s’écrit

donc : .
YViU=3> (;)qui_jpen—jt”l

i>0 i>0 j=0

Seul le terme colinéaire & e; nous intéresse, ce qui revient & choisir j = n — 1. On est donc
ramené a étudier :

S .— Z (n Z_ 1>pn—1qi—n+1ti+1p _ Z <n Z_ 1>pnqi—n+1ti+1
i>0 i>0

Comparons cette somme avec celle obtenue en développant en série entiére ¢x(t) dans le
paragraphe précédent :

ox(t) Z (n —I—Z — 1>pnqitn+i _ Z (Z : i>pnqi—nti

i>0 i>n
Remarquons que pour ¢ =0,...,n —2on a (nl_l) = 0; ainsi
S = Z i pnqi—n—i-lti-‘rl — Z i—1 pnqi—nti
. n—1 ; n—1
i>n—1 >n
Or

<7i: 11) " —(Zi)_!(il')i n)l (Z _ i)

D’ou I'égalité voulue!

13
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Remarque : Il n’y avait ici qu'un seul état absorbant. L’élément ('P)‘ff’n nous donnait alors
I'expression ¢x(t) écrite sous la forme d’une série. On a donc accés directement a la loi de
X au prix de quelques calculs. Quid s’il y a plusieurs états absorbants ? Quelle forme peut
alors prendre la matrice de transition (P) judicieusement écrite 7 Nous en reparlerons dans la
sous-section Généralisation partielle.

Donnons pour finir un script version fréquentiste simulant la loi de Pascal :

def reussite(p):
alea=random ()
if alea<=p:
succes=1
else:
succes=0
return succes

def Pascal (n):
S,nb_essais=0,0
while S<n:
S=S+reussite (p)
nb_essais=nb_essais+1
return nb_essais

def frequence (N) :
S=0
for i in range (N):
S=S+Pascal (n)
return S/N

#Programme principal

from random import =

p=float (input ("Probabilite de succes par experience ? "))

n=int (input ("Nombre de succes souhaites ? "))

N=int (input ("Nombre d'experiences ? "))

print ("Nombre moyen d'essais avant d'obtenir",n, "succes", frequence (N))

2.3 Lol binomiale

Le graphe probabiliste est presque le méme que celui associé a la Loi de Pascal, mais on se
limite au calcul de (P)" :
La matrice de transition d’un parcours non marqué (P) € M,,4+1(R) s’écrit :

(%)

0 q pt :

avec V, = [ o 0 0 | et U = pte,, ou e, est le n-iéme vecteur de la base cano-
Do " . pt
00 0 - ¢

nique de R™.

14



Comme nous n’avons pas nécessairement absorption au bout de n transitions (seul cas fa-
vorable), nous observons cette fois-ci toute la premiére ligne de (P)™. En omettant le terme
tk. nous avons P(X = k) = (P)} &, ot X compte le nombre de succes au cours de n transitions.

Effectuons quelques calculs :
n—1

La probabilité d’avoir n succés est égale au coefficient de g VU colinéaire a e, soit :
i=0
n—1n—1

Z Z (n i 1>pnqi—n+1 — pn

i=0 j=0

La probabilité d’avoir k < n succés est égale (exercice) a el V1.

Or : .
Vi = Z <n>p]qn_]wg

2.4 Geénéralisation partielle

Dans ce paragraphe, nous ne considérons pas des parcours non marqués, mais les matrices de
transition telles quelles. Il semble que toute chaine de Markov absorbante puisse étre mise sous

la forme matricielle :
vV U
® =y 1)

ou V est une matrice carrée (n—r) x (n—r) telle que 11141_1 V"™ =0, U une matrice (n—r) xr
n—-+0oo
n—1
telle que lim Z VFU existe et soit finie (pour une norme matricielle donnée quelconque).
n——+o0o

k=0
La matrice identité I, regroupe les r états absorbants de la chaine de Markov.

De plus, la matrice I,,_, — V n’est pas singuliére i.e I,,_, — V est inversible. Ceci résulte du
résultat classique suivant :

Théoréme 2-4-1 : Soit A € M,,(C). Les propriétés suivantes sont équivalentes :

1. p(A) <1 (ou p(A) désigne la plus grande en module des valeurs propres de A),

2. lim AF =0,
k——+o00
3. I, — A est inversible et ZAk = (I, — A)_l.

k>0
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Souvenons-nous que la matrice de transition (P) d’'un graphe probabiliste est une matrice
stochastique (la somme des coefficients de ses lignes est égale a 1). Si c’est celle d’une chaine
de Markov absorbante, on peut regrouper les états absorbants comme annoncé juste avant.

Ainsi, (P) s’écrit :
vV U
® =y 1)

Choisissons une norme ||.|| sur M,,(R) telle que |V|| < 1 (comme V est stochastique, on peut
prendre par exemple ||V| = max v;;).
1<i,j<n—r

En appliquant le théoréme 2-4-1, la matrice I,,_,. — V n’est pas singuliére et son inverse est
égale a Z V*. Dou lim V" =0.

n——+o0o
n>0

n—1 n—1

De plus, Vn € N, ZV’“U — <Z Vk> U, d’ou l'existence (et l'unicité) de ZVkU =
k=0 k=0 k20

(In_, — V)7 IU.

Ceci justifie a posteriori tous les calculs effectués précédemment.

Mais quid de la fonction génératrice ? C’est bien 1a notre sujet d’étude, se reprit Greg en pi-
quant un far ... dans son frigo.
Premiére remarque : mon état initial, en numérotant bien les sommets de mon graphe afin

d’avoir la décomposition par blocs annoncée peut s’écrire sous la forme py = (p1,p2, - -, Pn—r,0, . ..

comme je pars d'un état intérieur. Ce qui me permet d’identifier ce vecteur-ligne de R™ a un
vecteur-ligne de R"™" : (p1,pa,...,Pn—r) que je noterai toujours py;
Deuxiéme remarque, la matrice de transition (P;) d’un parcours non marqué s’écrit donc :

= (4 )

(Pe)> = <8 t(In—r _IrtV)_lU>

Chapman & Komolgorov me permettent alors de conclure que :

si bien que :

Px(t) = Z < _ pilt(In—r — tV)_lU]i,])
1

j=1 \i=

Si ¢ est I’état de départ, la loi initiale est simplement (0,...,1,...,0) o le 1 est situé en i-éme
T

position et 'on obtient 1’expression plus sympathique : ¢x (t) = Z[t(]n_r — tV)_lU]i,j
j=1

2.5 Exercices d’application

1. Est-il plus probable en lancant autant de fois que nécessaire une piéce équilibrée d’obte-
nir pour la premiére fois (Face,Face,Face) ou (Pile,Pile,Face) ?
(a) Dessiner un graphe probabiliste modélisant la situation,
(b) Ecrire la matrice de transition associée sous une forme adaptée et calculer si possible
ses puissances successives ou utiliser ce qui précéde,
(c) Conclure.
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2. Deux compartiments A et B contiennent & eux deux, N particules numérotées de 1 & N.
A chaque instant, on choisit un nombre de 1 & N, avec la probabilité 1 /N. L’ensemble
des états est S = {0,1,..., N}. Le processus est dit étre dans I’état j si le compartiment
A contient j particules. Si le processus est dans I’état 0 (resp. dans 'état N), alors la
probabilité de passer dans 'état 1 (resp. dans I'état N — 1) est égale a 1.

(a) Dessiner un graphe probabiliste modélisant la situation,

(b) Ecrire la matrice de transition associée,

(c) On suppose qu’a l'instant initial, le compartiment A contient les N particules. Soit
X, la variable aléatoire égale au nombre de particules présentes dans le compartiment
A a chaque instant. Décrire le processus (X,).

3 Une histoire de rencontre (suite)

Rappelons 'histoire de nos scarabées proposée a la sagacité du lecteur & titre d’exercice-défi
dans l'article précédent.

On étudie la premiére rencontre entre deux scarabées situés symétriquement sur un polygone
a 2P (p > 2) cotés. Le jeu se déroule ainsi :
— A D'instant initial, deux scarabées sont situés symétriquement par rapport a O, centre
d’un polygone régulier & 2P cotés.
— Chaque seconde on lance une piéce pour chacun des scarabées. Si la piéce tombe sur pile
le scarabée concerné tourne dans le sens des aiguilles d’une montre, sinon il tourne dans
le sens inverse des aiguilles d’'une montre.

3.1 Approche fréquentiste

Question 1 : Ecrire un programme en Python (éventuellement sous la forme d’une fonction)
qui modélise la marche des 2 scarabées sur un carré jusqu’'a temps qu'’ils se rencontrent pour
la premiére fois. Vous utiliserez la notion de congruence via la commande modulo % pour
construire la condition de (non) rencontre des scarabées : Tant que ceux-ci ne sont pas sur le
méme sommet leur promenade continue.

Question 2 : Modifier le programme précédent pour tester le script précédent sur N marches
(N choisi par l'utilisateur) et évaluer le temps moyen de rencontre des scarabées. Vous le tes-
terez avec N =10000.

Nous répondons maintenant a la question posée initialement. Considérons donc un polygone
régulier a 2P (p > 2) cotés dont les sommets sont numérotés de 0 a 2P — 1.

Question 3 : Le scarabée 1 est situé au sommet numéroté 0. Le scarabée 2 est le symétrique
du scarabée 1 par rapport a O, centre du polygone. Quel est le numéro du sommet sur lequel
il est situé?

Question 4 : FEcrire une fonction Python marche(p) qui prend comme paramétre p, qui
modélise la marche aléatoire des 2 scarabées sur le polygone régulier & 2P cotés et qui renvoie
comme valeur le temps de premiére rencontre.

Question 5 : En vous servant de la fonction précédemment créée, écrire un programme qui
demande a l'utilisateur de saisir N, nombre de marches & effectuer par les scarabées, et qui
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renvoie le temps moyen de rencontre sur ces N essais. Vous testerez votre programme plusieurs
fois avec N=100 000 pour compléter le tableau suivant :

Valeur de p | Nombre de sommets | Temps moyen 7}, de rencontre

O U = | W DN

Question 6 : Subodorer une relation fonctionnelle entre p et T, c’est-a-dire trouver 'ex-
pression d’une fonction f telle que T), = f(p).

Solution : Détaillons les solutions des questions précédentes de ce probléme qui a été donné
en projet informatique a des éléves d’une classe de premiére S en 2012.

Question 1 : Modélisation d’une expérience

def rencontre() :
tempsRencontre=0
positionl, position2=0,2
while (position2-positionl)$4!=0:
aleal,alea2=randint (1, 2),randint (1, 2)
if aleal==1:
positionl=positionl+l
else:
positionl=positionl-1
if alea2==1:
position2=position2+1
else:
position2=position2-1
tempsRencontre=tempsRencontre+l
return tempsRencontre

Remarque : La condition (position2—positionl)%4 !=0 signifie que les valeurs de positionl et
de position2 de chacun des scarabées, qui peuvent devenir négatives au cours de leur évolution
dans l'algorithme, correspondent & des sommets du carré différents. On peut comprendre cette
condition en visualisant le mouvement des scarabées avec un jeu de Pile ou Face. Comme en
trigonométrie usuelle ot 'on travaille modulo 27, & un méme sommet du carré on associe une
infinité de valeurs qui différent toutes d’un multiple de 4.

Question 2 : Temps moyen de rencontre des deux scarabées

from random import randint
N=int (input ("Combien d'experiences a effectuer ? "))
tempsTotal=0
for i in range (N) :
tempsTotal=tempsTotal+rencontre ()
print ("Temps moyen de premiere rencontre :",tempsTotal/N)

Question 3 : Le second scarabée est situé initialement au sommet 27 /2 = 2P~1,
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Question 4 : Le script est presque identique a celui de la question 2 mais on travaille cette
fois-ci modulo 2P.

def marche (p) :
tempsRencontre=0
positionl, position2=0,2x* (p—-1)
while (position2-positionl)$2xxp!=0:
aleal,alea2=randint (1, 2),randint (1, 2)
if aleal==1:
positionl=positionl+l
else:
positionl=positionl-1
if aleaz2==1:
position2=position2+1
else:
position2=position2-1
tempsRencontre=tempsRencontre+l
return tempsRencontre

Question 5 : Calcul du temps moyen de rencontre

from random import randint
p=int (input ("p = ? "))
N=int (input ("Combien d'experiences a effectuer ? "))
tempsTotal=0
for i in range (N) :
tempsTotal=tempsTotal+marche (p)
print ("Temps moyen de premiere rencontre :",tempsTotal/N)

Question 6 : Avec N = 10 000, on trouve des valeurs du type (car fluctuation d’échantillon-
nage!) :

Valeur de p | Nombre de sommets | Temps moyen 7T}, de rencontre
2 4 1.99

3 8 8.005

4 16 32.016

5 32 127.48

6 64 514.475

On peut remarquer que 1 =2 x 2 —3 et que Th ~2'; que 3 =2 x 3 — 3 et que T3 =~ 23; que
5=2x4—3et que Ty = 25 etc. On peut donc supposer que T, = 22p—3,

Nous allons maintenant prouver rigoureusement ce que notre intuition TICE nous a permis
de subodorer, mais en changeant de point de vue.

3.2 Premiére modélisation

Définissons les états pour commencer : on s’intéresse au nombre de segments du chemin le
plus court joignant les deux scarabées le long du polygone & un instant donné. Initialement ce
nombre est 271 & chaque seconde il peut :

— rester constant si les deux piéces donnent le méme résultat (probabilité %) ;

— diminuer de 2 si le résultat des lancers font que les scarabées se rapprochent (probabilité

1)
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— augmenter de 2 si le résultat des lancers font que les scarabées s’éloignent (probabilité
1)

sauf lorsque les scarabées sont diamétralement opposés ou au méme point. Dans le premier
cas le nombre de segments séparant les scarabées reste constant ou diminue de 2 de fagon
équiprobable. L’état 0 est par définition absorbant. Il y a ainsi (petit exercice sur les suites
arithmétiques) 2P~2 4+ 1 états : 0, 2, 4, ..., g := 2P~ L,
Le but du probléme est toujours d’étudier la variable aléatoire 7}, donnant le temps avant la
premiére rencontre des deux scarabées.
La remarque précédente conduit au graphe suivant :

Le graphe semble difficile & réduire! Il est tentant d’utiliser 'approche matricielle pour en
déduire ligl (P)", oit (P) est la matrice de transition d’un parcours non marqué. A titre
n—-+00

d’exemple, faisons-le pour p = 3 (nous avons 2% = 8 c6tés, soit un octogone).

t/2 t/2 0
(P)=[t/4 t/2 t/4
0 0 1

(12 )2 /0 (VU _
Posons V' = (t/4 t/2> et U= <t/4>’ de sorte que (P) = <0 1>. XCas donne :

V() V)t 2m) 2 esm)

V= +2v2 T 22 22 Y
<72\;§+4)7 _ (2\/%+4)7 ﬁ(ﬁy ﬁ(TgHy
_|_
2v2 2v2 2v2 2v2
si bien que :
n n n n T
t(2%t<72\;§+4> _ 2'%'t<2\/%+4> ) t(ﬁ%<ﬁ> + \/5%<2\/%+4> )
VU = V2t V2t V2 V2
4 ’ 4

Ve S viu
0 1 '

Intéressons-nous uniquement au premier terme de V"U. En effet, (P)" = (

6 B(t) = —~

Posons a(t) = 7 de sorte que :

t
— €
—2/2+4

e T L) s S ()
;VU‘m[am—l‘mw—l]
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On a 4 +2v2 >4 —2v/2 > 1, donc pour |t| < 4 —2v/2, lig_l at)" = lim B(t)" =0.
n——+00

n—-+00
Ainsi,
it ~1 1 B " ot
ox(t)= V0 = 1t | o+ ) = Ster 807 5
Soit : . . 1
#xlt) :;2:0 [(4—2\/5)“ N (4+2\/§)“} 42

Le calcul de ¢'y (1) et de ¢’x (1) a I’aide d’un logiciel de calcul formel nous permet de conclure
que E(X) =8 et V(X) = 40.

Il semble délicat de généraliser, la difficulté venant du calcul de V™ ; dans le cas général, V est
en effet tridiagonale presque symétrique :

a a 0 0 0
b a b 0
0 b a b
V= 0| avec b=a/2.
0
: . a b
0O ... ... ... 0 b a

C’est ce presque qui nous ennuie. Il y a cependant une petite astuce basée sur la nature
particuliére du graphe pour s’en sortir. Nous y reviendrons.
Pour le moment, reformulons-donc le probléme (méthode due a Jean-Michel Dardié) :

3.3 Seconde modélisation

Question 1 : La position du deuxiéme scarabée est repérée dans un repére dont le premier
est lorigine et I'unité vaut 2 cotés du polygone, vérifier que la situation peut étre décrite a l’aide
d’une marche aléatoire sur Z dont vous préciserez les probabilités de transitions. Formuler dans
ce contexte la variable aléatoire T} correspondant & un polygone a 4k cotés.

Question 2 : On généralise la question en supposant que la position a 'instant 0 n’est
pas nécessairement k mais un entier ¢ compris entre 0 et 2k, on note toujours T} la variable
aléatoire donnant le temps de premiére arrivée en 0 ou en 2k. Pour n € N et r € Z, exprimer
la probabilité Px,—; (X, = r) en conditionnant par rapport a la variable aléatoire Xj.
Justifier que Px,—; (X, = 1) = Px,=i (Xn4+1 = r), en déduire que pour tous entiers naturels n
et 1, 0 <1 <2k,

Px,=i (Ty =n) = Pxy=i (Tx =n — 1)

en déduire une relation sur les Py,—; (T = n).

Question 3 : On fixe k pour simplifier les notations et on note ¢; la fonction définie sur
[0, 1] pour tout entier ¢ compris entre 0 et 2k par :

¢i (r) = Pxy=i (Tr =n) 2"

n=0
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en particulier ®; = ¢, est la fonction génératrice des probabilités de la variable aléatoire T), du
temps de premiére rencontre entre les deux scarabées sur un polygone a 4k cotés. En utilisant
la question 2 montrer que pour x # 0 les ¢; (x) sont solution d’'une équation de récurrence
linéaire d’ordre 2, préciser ¢g et ¢op puis déterminer .

Question 4 : Déterminer ’espérance mathématique et la variance de T}.
Solution : C’est parti!

Question 1 : Dans ce repére initialement le (deuxiéme) scarabée est a la position k, si on

note X, sa position a l'instant n, alors X, 11 prend 'une des valeurs X,,+1, X,, ou bien X,, —1
et pour tout ¢ € Z

Px, =i (Xpp1=1+1) =

Px, =i (Xpy1 =1) =

Px,=i(Xn1=i-1) =

W O [ =

La variable T}, dans ce contexte est le temps de premiére arrivée en 0 ou en 2k.

Question 2 : D’aprés la question 1, on a :

Px,—i (Xpn=71)=Px,—it1(Xn=7)  Pxo=i (X1 =1+ 1)+

PX1:i (Xn = 7‘) . PXo:i (Xl = Z) + PXlzi—l (Xn = 7’) . PXO:i (Xl =19 — 1)
= iPX1=i+1 (Xn = 7’) + %PXlzi (Xn = T) + iPXl:i_l (Xn = 7‘)

D’autre part si on connait la position & un instant donné, les positions antérieures n’inter-
viennent plus dans les probabilités des positions postérieures, la différence entre les deux
écritures se réduit donc a un décalage d’indice. La deuxiéme relation vient de ce que 1’événe-
ment : la premiére arrivée en 0 ou 2k est au temps n sachant que X; = ¢ signifie que sous
I'hypothése X; = 1 on a X, égal & 0 ou 2k et pour j < n, 0 < X; < 2k. Il suffit ensuite
d’utiliser la relation précédente.

Finalement on obtient :

1 1

1
Pxo—i (T, =n) = ZPX1:i+1 (T =n) + §PX1:i (T =n) + ZPXlzi—l (T =n)
1 1 1
= ZPX0=Z'+1 (Tk =n— 1) + §PX0:i (Tk =n— 1) + ZPX0=Z'—1 (Tk =n— 1)

Question 3 : D’aprés la question 2, on a pour n > 0

1 1 1
_PXo=i+1 (Tk =n— 1) :En—|-§PX0:Z' (Tk =n— 1) fnn“‘ZPXo:i—l (Tk =n— 1) "

Poni (Tk = ’I’L) l‘n = 1

I’événement T = 0 étant certain si ¢ vaut 0 ou 2k et impossible si non. Comme toutes ces
séries sont absolument convergentes, il vient :

01 (@) = J6is1 () + 564 () + 611 (@)

on a donc :
{ 4¢2+1 _( _%) %gbi—l (‘/E) pour0<z'<2k‘
$o (r) = ¢op, () = 1
et donc :
12z _ /1=
Oy (x) = 2 avec R (x) = 2 ’

Rk (z) + R7* (z)
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On a en particulier ®; (x) = 1 qui confirme que la loi du temps de rencontre sur un carré

N[ = |
I8

est géométrique de probabilité

Question 4 : Calcul de la dérivée @),

o - opf BoRE G R@E-RT) S 0%

2 = 2 2 'Skq)k2
R (Rk 4+ R-F) R (RF + R—F) D

1 L
et si k =2p, S, =2 .
(I)QZ' 22:; (I)2i+1

tout ¢ , on a dans tous les cas_Sk (1) = k. De plus @) (1) = E(T1) = 2, il vient

Comme ®; (1) = 1 pour

p
oisik=2p+1, 8 =1+2)
i=1

E (Ty) = @), (1) = 2k*

Calcul de la dérivée seconde CIDZ :

PP, — ¢ 2 P!
=kt L S8y kL - (8], + 25),9),8y)
of} of}
la seule fonction nouvelle est S}.. En observant que S}, (1) est & un facteur prés la somme des
carrés des entiers pairs ou impairs suivant le cas, on obtient S} (1) = —%k (k‘2 — 1), d’ou :
" 4 8 2 (1.2
(1) = 4k +§k (k*—1)
2
V(1) = B (1) - @} (1) + ¥ (1) = Skt - 2R

Dans le cas des polygones a 2° cotés : E (T),) = 2273 et V (T),) = (275 — 2%73).

3.4 Premiére modélisation (suite)

Greg avangant tel Hercule Poirot dans son enquéte eut un éclair de génie :

L’état initial ¢ = 2P~ du graphe probabiliste est particulier. C’est lui qui casse la symétrie
observée tout au long du graphe! Matriciellement, cela se traduit par le tridiagonal presque
symétrique. L’idée est donc, comme nous 'avons déja vu en exercice de prolongement au
concours C 2012, de déplier le graphe pour obtenir un graphe équivalent concernant la va-
riable aléatoire X : temps d’absorption, mais avec deux états absorbants. Re-numérotons les

sommets efficacement en regroupant les états absorbants : ¢, 1, 2, ..., ,¢/2, ..., ¢—1, ¢+1
1 1
4 4 1
4
@ C ) - @D
1
: T O7T 9 I
4 1
1 1 1 1 1
2 2 2 2 2
"Bizarre ... Bizarre! Il me semble que nous retombons sur la modélisation précédente. Conti-

nuons notre enquéte, mais matriciellement", marmonna Greg en machouillant un caramel au
beurre salé.

Ainsi, la matrice de transition d’un parcours non marqué s’écrit (P) = < 0 I ) avec :
2
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b a b 0 b 0
0 b a b 0 0
V= 0| ota=t/2,b=t/detU=|:
0 :
0 b
: .. a b
o ... ... ... 0 b a

Purée de nouilles et de brocolis : V' est symétrique réelle, donc diagonalisable dans une base
orthonormée de vecteurs propres! Dans le cas présent, on peut méme préciser tout ce petit
monde.

Probléme 3-4-1 : L’algébre linéaire en secours ...

1.

On désigne par (Dy,),>0 la suite définie par : Dy =1, D; = a et pour tout n > 2, D,, =
det(V). Exprimer D,, a I’aide d’une relation de récurrence liant D,,, D,_1 et D,,_5. En
déduire D,, pour tout n > 0.

z

T

. Prouver que le systéme (E7) : VX =AX (X #0),o0 X = | . | seraméne a la

Tn
résolution d’une suite récurrente linéaire d’ordre 2 dont 1’équation caractéristique peut
s’écrire :
a— A

(Ey) - r2+<T>r+1:0

3. Prouver que (E7) n’a pas de solutions si A ¢]0; 2al.

4. On suppose donc A €]0;2a[. Prouver que pour tout entier naturel 1 < j < n, z; est de

. Notons B la base canonique de R” et B’ la base {X1;... X, }, ou X; =

la forme 2iAsin(j6,,), avec 6,, = ——
n

1 m=1,2,...,n (m =0 exclus).

. En déduire que les valeurs propres de V sont au nombre de n (ainsi on retrouve le fait

que V est diagonalisable) et s’écrivent : A, = a (1 + cos (6,,)).
sin(6;)
sin(26;)

sin(né;)
donner le terme générique p;; de P.

En remarquant que 6; = j0; = j 15,

7. Notons D = diag (a(1 + cos(6;))). Exprimer V™ en fonction de m, P, D, et de P~

8. Démontrer que || Xg||* =

"TH indépendamment de k.

9. Calculer PTP et en déduire Pexpression de P! en fonction de P.

10.

11.

12.

Démontrer que lim V™ =0.
n—+oo
Déterminer la i-éme ligne de la matrice V"'U et calculer la somme SZ.(m) (t) de ses (deux)

composantes.

Justifier que I’état de départ peut s’identifier a la matrice ligne esz,z de R ~1 gt que

ox(t) =Y SUV,(t).

m>0
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13. En déduire que ¢x (t) = Z amt™ ™ ou

m>0
1 VS (1 eos((27+ DO,
W = 5= Z S (—=1)? sin((25 + 1)0y)
j=0

14. Application au cas p = 3 : retrouver le résultat du paragraphe précédent :

1 1 tn—i—l
ox(=2 [(4 Tovayr aravayl i

15. Donner un équivalent de v, au voisinage de l'infini.

Conclusion : En regardant bien un graphe probabiliste, nous constatons qu’il n’est nul besoin
de se ruer vers les matrices! La fonction génératrice n’est jamais bien loin, du moment que I’'on
puisse symétriser ou simplifier le probléme a 'aide du graphe. En outre, ceci incite & choisir
(et c’est ici la difficulté) une modélisation du probléme élégante, quand cela est possible. Bien
des calculs lourds sont ainsi évités. L’approche matricielle a cependant pour intérét de donner
directement la loi de la variable aléatoire réelle considérée. Comme cela nécessite le calcul
des puissances successives (ou de l'inverse) d’une matrice, les techniques visant a réduire la
difficulté de cette opération (diagonalisation ou trigonalisation) sont mises en ceuvre. Pour
autant, selon le cas considéré, les calculs peuvent s’avérer lourds et compliqués.

Ci-joint les graphes (nous laissons le script écrit a I’aide du module numpy de Python a la
sagacité du lecteur) donnant les distributions de probabilités de la loi "Premier temps de
rencontre sur un polygone a 2P cotés pour p = 3,4,5,6 :

loi de probabilite de T,

0.14 P ‘ 0.030
0.12 1 0.025 §
0.10 | §
0.020 | §
0.08 1 |
0.015 | |
0.06 4
0.010 §
0.04 §
0.02 1 o.005 §
000 l l L Il L 0000 l Il Il L
0 10 20 30 40 50 60 70 0 50 100 150 200 250 300
0.008 P : 0.0020 R :
0.007 |- §
0.006 [ 4 0.0015 | §
0.005 i
0.004 | 4 0.0010 §
0.003 | §
0.002 4 0.0005 .
0.001 4
0000 l l Il 1 1 00000 l l l L 1 1 1
0 200 400 600 800 1000 1200 0 500 1000 1500 2000 2500 3000 3500 4000 4500
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La décroissance semble exponentielle, ce qui se vérifie en utilisant une échelle logarithmique :

loi de probabilite de T,

10° P : 5 10% P
ER N ]
10 102 i
F E 107 4
107 | 4
i 1 10 9
0% E
b ] 5 ]
105 | ] 10
10 6 | | | | | | 10 6 | | | | |
0 10 20 30 40 50 60 70 0 50 100 150 200 250 300
10° E T 3 107 T T
i 1 107 4
1073 4
E 10 4
1 -5
10 | 4 10° | ]
1 10t} ]
-5
107 § f 107 | B
1 10} 9
10° E
E 10° | 4
10—7 1 1 I I I 0-10 I I I I I I I I
0 200 400 600 800 1000 1200 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Remarquons que la seconde régle des parcours nous permet malgré tout de calculer rapidement
le temps moyen d’absorption :

Notons mq,m1, ..., Myp—2 les temps moyens d’absorption & partir de 'état ¢ = 2P~1 jusqu’a
Iétat 0, comme figuré dans le graphe probabiliste (non symétrisé) modélisant le probléme que
nous rappelons, en mettant a 'intérieur des disques chaque temps moyen d’absorption. Posons
r = 2P~2 pour simplifier.

1 1 1
2 1 1 1
4
1/2
1 1 1
1 1 1
1 1 1 1
2 2 2 2

On en déduit en utilisant la seconde régle des parcours que :

mozl—l—%m(ﬁ—%ml, soit mg =24+ my
m; =1+ %ml + %(miﬂ —l—mi_l), soit m;—1 — 2m; + mijy1 = —4 (1 <i<r— 1)

m, =0 (condition au bord).

L’équation caractéristique de la suite récurrente linéaire associée a la suite récurrente affine

d’ordre 2 : m;_1 — 2m; +mip1 = —4 (1 <i < 2P72 1) écrit 22 — 22+ 1 = 0 qui a pour
unique solution z = 1. Ainsi, les solutions de ’équation linéaire homogéne associée sont de la
forme @, = (An + B)1" = An + b. D’autre part, on remarque aisément que w, = —2n? est
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une solution particuliére de notre équation initiale.

Ainsi, pour tout entier naturel n tel que 1 <n <2P"2 —1,on a : m, = An+ B — 2n>.

Ruse classique : posons m_1 = myq, de sorte que I’équation my_1 — 2m, + mu1+1 = —4 reste
valable pour n = 0. Ainsi, mg=B. Ormg=2+m; = A+ B, dou A=0.

De plus, mop-2 = 0; on aimerait donc bien écrire que B — 2.22P=% = 0, ce qui donnerait la
valeur de B. Mais la relation m,_1 — 2m, + my11 = —4 est vraie pour 0 < n < =2 _ 1
Ceci dit, en choisissant n = 2P~2 — 1 et en utilisant le fait que mqp—2 = 0, on obtient que
Mop—2_5 — 2Mgp-2_1 = —4, soit B—2(2P2 —~2)2 —2[B —2(2P~2 —1)?] = —4, qui conduit aprés
un bref calcul & B = 22773 i.e my = 22P73.

Résultat que nous avions d’abord subodoré puis prouvé lors de la seconde modélisation.

4 Plus sur les chaines de Markov

4.1 Classification des états

Considérons une chaine de Markov, absorbante ou non. On note toujours (P) sa matrice de
transition. Nous allons répartir les états en classes a l'aide de (P).

Définition 4-1-1 : On dit que 'état j est accessible & partir de I’état i s’il existe un entier
(n)

naturel n tel que P > 0. On note i ~» j.

Propriété 4-1-2 : La relation d’accessibilité entre états est réflexive (i.e i ~» i) et transitive
(i.e sii~~ j et j~k,alors i~ k).

Propriété 4-1-3 :  Soient ¢ et j deux états. Les propositions suivantes sont équivalentes :
1. L’état j est accessible a partir de ’état 4, soit i ~~ j.
2. Le processus, partant de i, passe par j avec une probabilité strictement positive.

La propriété 4-1-2 ne dit cependant pas que la relation d’accessibilité est symétrique. Par
exemple, si la chaine de Markov est absorbante, tout état du bord est accessible, mais une fois
atteint, il n’y a plus de retour possible.

Définition 4-1-4 : On dit que deux états ¢ et j communiquent si i ~> j et j ~» i. On note

Propriété 4-1-5 : La relation de communication entre états est une relation d’équivalence.
On notera Cj la classe d’équivalence de I'état 1.

Nous en déduisons que ’ensemble de états S est partitionné en classes (non vides et
disjointes), dites classes indécomposables, dont on peut trouver un systéme de représentants.

Remarque 4-1-6 : A l'intérieur de chaque classe, tous les états communiquent. En parti-
culier, tout état communique avec lui-méme.

Si C7 et (5 sont deux classes distinctes, on peut éventuellement relier un état de Cy & un état
de (9, mais le retour n’est pas possible.

Certaines classes peuvent ne comporter qu'un seul élément, par exemple :

(0-):1 p(-n-):0pourn>1

2,0 ) 1,1 = 5

(n)
N2

— un état de non-retour i : p

— un état absorbant 7 : p(oi) =1, p;;7 =1pourn > 1.

)
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Définition 4-1-7 : Une chaine de Markov qui ne posséde qu'une seule classe d’équivalence
(i.e tous les états communiquent) est dite irréductible.

Exemple 4-1-8 : Le graphe suivant est irréductible : tous les états communiquent.

Les états 0, 1 et 2 ne sont visités qu'un nombre fini de fois; ’état 0 est un état de non-
retour, 1'état 3 est absorbant. En tout, il y a trois classes : {0}, {1,2} et {3}.
Remarquons que la matrice de transition de ce graphe s’écrit :

0 1 0 0
0 1/2 1/2 0
0 1/2 0 1/2
0 0 o0 1

(P) =

L’état de non-retour 0 est caractérisé par une premiére colonne nulle.

4.2 Temps d’atteintes et de retour

Greg prit sa plus belle voix d’outre-tombe et déclama devant son miroir comme jadis Flaubert
le faisait afin de peaufiner ses textes :

Dans ce paragraphe, nous allons préciser la notion de temps d’atteinte, ce qui nous permettra de
généraliser la méthode et les concepts employés lors de la seconde modélisation du probléme
de premiére rencontre des deux scarabées. Nous retrouverons également la géniale seconde
régle de la valeur moyenne vue dans l’article précédent. Et comme je suis généreux, nous
disserterons également sur la probabilité de retour d'un état a lui-méme, et sur le nombre
moyen de tels retours, tout ceci de la maniére la plus élémentaire qui soit. Pas de tribu, pas de
vocabulaire cauchemardesque : états récurrents, transients ... bien que ces derniers ne soient
plus maintenant ... hors d’atteinte!

Définition 4-2-1 : Pour tout état j, on appelle temps d’atteinte de la chaine (X,,),>0 dans
Iétat j a partir de U'instant 1, 'entier (éventuellement infini pour le moment) :

Tj :=inf{n > 1, X,, = j}

Remarquons que (T; =n) = (X1 # j)N(X2 # j)N---N(Xp—1 # j) N (X, = j). Cet événement
ne dépend donc que de X1, ..., X,. I n’y a pas d’hypothése sur I’état j (intérieur, absorbant,
etc.). Cependant, si I'état j est absorbant, on a vu que T; < oo (le bord est atteint avec la
probabilité 1).
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Notation 4-2-2 : Posons a\") := P(T; = n|X0 = i) pour tout entier n > 1, que l'on note

i,J
aussi PY(T; = n) en prenant comme loi initiale e

(n ) )l . . )l .
Ainsi, a; ; est la probabilité pour que le processus, partant de I’état i, atteigne 1’état 7 pour

la premiére fois, a 'instant n. Pour tout couple d’états (i,7), on pose conventionnellement

ag’oj) = 0.

Théoréme 4-2-3 : Pour tout entier n > 1, on a :

( (n—k)
plv] Z ,J p]v]

. 0
avec la convention pz(- j) = 0;j-

Démonstration (abrégée) : Le processus passe de I'état i a I’état j en n étapes s'il passe de i
a j pour la premiére fois en k étapes (0 < k < n) et s’il passe ensuite de j & j en les (n — k)

étapes suivantes. Ces chemins, sont, pour des k distincts, disjoints, et la probabilité pour un

(k). (n—k)
i Pig

chemin fixé est égale a a
Théoréme et définition 4-2-4 : L’espérance mathématique de 7} par rapport a la loi p?
est notée M; ;. C’est le temps moyen d’atteinte de j a partir de i.

La quantité M;; est appelée temps de retour moyen dans i.

On a:

Mij =1+ pijMy;
K

Remarque 4-2-5 : Posons M = (M, ;), U la matrice dont tous les coefficients sont égaux a
1, et A = Diag(M; ;). Matriciellement, 1'égalité précédente se réécrit :

M = U+ (P)(M — A)
On en déduit que : (I — (P))M =U — (P)A.

Attention, si la chaine de Markov est absorbante, la matrice I — P est singuliére.

Continuons notre étude des chaines de Markov absorbantes, songea Greg. Cette écriture par
blocs que peut prendre la matrice de transition (P), je sens qu’il est possible de lexp101ter
encore plus! Allez, hop ! un verre de Gu1llev1cl et tout ceci va apparaitre au grand jour! On a

® =y 1)

ou V est une matrice carrée (n—r) x (n—r) telle que I,,_, — V soit inversible, d’inverse Z vk
k>0

et U une matrice (n — r) x r. La matrice identité I, regroupe les r états absorbants de la

chaine de Markov. Si bien que, en passant a la limite sur les puissances successives de (P) :

o= (o oY)

Notons :

1. La Guillevic est une variété réputée de pomme a cidre
2. section Généralisation partielle
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- I ={1,2,...,n —r} 'ensemble des états intérieurs,
— m,; le nombre moyen de sauts jusqu’a ’absorption, partant de I’état i,
— t;,; le nombre moyen de passage en j en partant de i.

Théoréme et définition 4-2-6 : Pour tout (4,5) € I?, on a :

tij = 0ij+ D Pikth,
kel

soit sous forme matricielle si 'on pose T' = (¢; ;) :
T=I14+VT

relation de laquelle on tire (puisque I — V n’est pas singuliére) :

T=-V)"!

La matrice T s’appelle la matrice fondamentale de la chaine de Markov absorbante.

Corollaire 4-2-7 : Soit i € I.

m; = Z t; ke

kel

Autrement dit, m; est égale a la somme des éléments de la i—éme ligne de la matrice T

Démonstration : Soit ¢ € I I’état de départ. Notons D; la durée de séjour en I et X; la variable
aléatoire réelle "nombre de pas avant absorption". On a clairement D; = X;, donc E(D;) = m;.
Mais par définition des ¢; j, on a E(D;) = Z ti x- Comme quoi, changer de point de vue est

kel
encore une fois bénéfique!

Théoréme 4-2-8 : Notons B le bord de la chaine de Markov absorbante. Soit (i, j) € I x B.
Notons b; ; la probabilité d’étre absorbé en j en partant de i. Alors :

bij = Dij+ Y Pikbi
kel

soit sous forme matricielle, si I'on pose B = (b; ;) :
B=U+VB

qui se réécrit aisément :

B=(-V)'U ie B=TU

4.3 Comportement asymptotique

Définition 4-3-1 : La distribution de probabilité p'= (pg,p1,...,pn) est dite stationnaire
si (P) = 7.

Définition 4-3-2 : Une matrice de transition (P) est dite réguliére s’il existe un entier
naturel m tel que (P)™ ait tous ses éléments strictement positifs.
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Remarque 4-3-3 : Ceci implique entre autres que tous les états communiquent i.e que la
chaine de Markov associée est irréductible. En particulier, il n’y a aucun état absorbant.

Théoréme 4-3-4 : Soit (P) une matrice réguliére.

1. (P)* = ll)r}rl (P)" existe, et est une matrice stochastique dont toutes les lignes sont
n o

identiques,
2. Soit = (p1,p2,-..,pn) une telle ligne. Toutes les composantes de ce vecteur sont stric-
tement positives. C’est de plus 'unique distribution stationnaire de (P),

1
3. Le temps moyen de retour a I'état 7 est égal & M; ; = —.
pi

Remarque 4-3-5 : Comme pour la convergence simple et la convergence uniforme d’une
suite de fonctions en analyse ou linversion des quantificateurs est cruciale, si (P) est une
matrice réguliére, alors il existe un entier m tel que pour tout état i, on atteint 1’état j en
exactement m transitions. Il est maintenant temps de relier la notion de chaine de Markov
irréductible & la notion de matrice de transition réguliére ...

Définition 4-3-6 : Soit S une chaine de Markov irréductible. Sa matrice de transition (P)
est, elle-aussi, dite irréductible.

Définition 4-3-7 :  Soit (P) une matrice irréductible. Soit d = inf{n € N;p}’; > 0}. d est le
PGCD de tous les temps de retour possibles a 1’état .
1. on l'appelle d la période de I'état i,

2. (P) est dite apériodique si d =1,

Théoréme 4-3-8 : Soit une chaine de Markov irréductible. Alors tous les états 7 ont la
méme période.

Théoréme 4-3-9 :  Une matrice (P) est réguliére si elle est irréductible et apériodique.

Corollaire 4-3-10 : De ce qui précéde, on en déduit que :

1. lim p?j = pj, indépendamment de I’état initial 7,
n—+oo

2. Pour tout entier naturel n, p(P)" = p,

Les exemples d’application fourmillent dans les sujets de baccalauréat "spécialité mathéma-
tiques" du bac ES, aussi nous renvoyons le lecteur intéressé vers les annales disponibles sur le
site de 'APMEP : https://www.apmep.fr/!

Revenons, juste pour le plaisir, sur le concours C 2017 dont nous redonnons ci-dessous le
graphe probabiliste, s’esclaffa Greg dans un grand rire psychédélique :



https://www.apmep.fr/

Il est clair que le graphe G de la chaine de Markov est irréductible.
Nous avions re-numéroté les états 11, 10, 01, 00 respectivement par 1, 2, 3, 4. La matrice de
transition s’écrivait alors :

S NE O Wi
S NE O Wl

Wl O NI O
winn © D= O

Recherchons donc un état stationnaire p. D’aprés le théoréme 4-3-4, un tel état existe, il est
unique et il vérifie : p'= p(P)> (dont 'existence est assurée).

I1 nous faut donc déterminer (P)>°. C’est trés limite comme question !

Repoussons-la avec notre meilleure alliée ... la force! Non, XCas. Nous obtenons sans sour-
ciller :

0,3 0,2 0,2 0,3
0,3 0,2 0,2 0,3
0,3 0,2 0,2 0,3
0,3 0,2 0,2 0,3

(P)* =

La distribution stationnaire apparait immédiatement : p'= (0, 3;0,2;0,2;0, 3).

4.4 La formule de Mason

Nous ne nous étendrons pas sur les fondements théoriques de la notion de déterminant d’un
endomorphisme, ni sur ’étude détaillée du groupe des permutations. Nous renvoyons le lecteur
intéressé aux ouvrages classiques de premier cycle, par exemple [1] ou [2], qui sont d’excellentes
références.

Notons S, le groupe des permutations de {1,2,...,n}.
Soit f un endomorphisme de £ = R™ muni d’une base quelconque B et A la matrice de f dans

cette base. On appelle déterminant de A dans la base B le réel detp(A) := Z €o Hai’a(i),

O'ESn i=1
ol ¢, désigne la signature de la permutation o.

Le déterminant est invariant par changement de base. On peut donc parler sans ambiguité du
déterminant de ’endomorphisme f.

Théoréme 4-4-1: Soit A € M,,(R) une matrice vérifiant det(A) # 0. Alors A est inversible

et on a:
. 1

~ det(A)
Le théoréme que nous allons énoncer maintenant est trés utilisé en automatique et méme en
chimie. On peut consulter par exemple :

http://www.lassc.ulg.ac.be/webCheng00/SYST011/Dyna03_fTransfert.pdf
ou :

com(A)T

http://public.iutenligne.net/automatique—-et—-automatismes—-industriels/
verbeken/cours_au_mv/chapitre5/chap52.html
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ou encore :
https://cel.archives-ouvertes.fr/cel-00156394/file/Chapitre5.pdf

Définition 4-4-2 : Soit S 'ensemble des états d’une chaine de Markov absorbante et G son
graphe associé. On appelle déterminant du graphe G le réel défini par :

A=1-Y "L+ LiLj =Y LiLjLip+...

La premiére sommation porte sur toutes les boucles, la seconde sur toutes les paires de boucles
disjointes, la troisiéme sur tous les triplets de boucles disjointes, etc.
Remarquons que A = det(/ — V') dans la décomposition par blocs de la matrice de transition

(P) du graphe G.

Théoréme 4-4-3 (Formule de Mason) : T;; (avec T = (I — V)7!) est égal & :
1
x D Peddi
k

ol P, est la probabilité de transition d’'un chemin direct de ¢ vers j et A le cofacteur du
chemin k, i.e le déterminant des éléments de G non touchés par le chemin k.

Remarque 4-4-4 : il ne s’agit rien d’autre que de la formule de Cramer! Nous pouvons en
déduire la méthode d’application qui suit :

1. calculer le déterminant A du graphe complet,

2. déterminer les K chemins directs reliant 1’état ¢ a 1’état j,

3. calculer la probabilité de transition P de chacun des K chemins directs,
4

. calculer pour chaque chaine directe le déterminant Ay du graphe obtenu en supprimant
tous les nceuds de la k-iéme chaine directe,

5. calculer enfin 7; ; par la formule de Mason.

Exemple 4-4-5 : Détaillons le raisonnement précédent sur un exemple un peu "téte de
neeud", comme 'exemple 1-3-1 dont nous redonnons le graphe probabiliste :

111

En re-numérotant les états 0, 1, 11, 111 par 1, 2, 3, 4, nous allons calculer T} ; pour i = 1,2, 3, 4.

1. Le graphe comporte trois boucles : 0 -0, 0 -1 —-0,0—1 — 11 — 0. Il n’y a donc
aucune boucle disjointe. On obtient donc :

A=1-q—pg—p*g=1—q(l+p+p?
soit A =1— q—ll__’f =p3

2. Il n’y a qu’un seul chemin direct menant de I’état 1 a I’état 2, et il a pour probabilité p;
celui (unique aussi) menant de I'état 1 a I'état 3 est de probabilité p?.

33


https://cel.archives-ouvertes.fr/cel-00156394/file/Chapitre5.pdf

3. Chacun de ces trois chemins directs touchent chacune des boucles donc A; = Ay =
As =1,

4. On en déduit d’aprés la formule de Mason que :

[

P 1
Tho=—===,Tiz3=

p> pr

’Ew|’6

p
Remarquons que 771 = ]% car il n’existe qu’un seul chemin menant du neceud 1 a lui-méme, et

donc p; = 1, et en le supprimant on voit que Ag = 1. Le temps moyen d’absorption, partant

3 11 1 1[/1y?
del’état1estdoncégala:m1:ZT1,j:—+—2+—3=— <—> —1].
P p P P ql\p

Exemple pédagogique 4-4-6 : Le retour des scarabées!

Etudions, & I’aide de la formule de Mason le temps moyen de premiére rencontre de nos deux
scarabées sur un polygone a 24 = 16 cotés. Selon les résultats établis précédemment, on doit
trouver 22473 = 32. Dans ce qui suit, il y a une grossiére erreur. A vous de la trouver!

Le graphe probabiliste modélisant le probléme est le suivant :

1/2 1/4 "

1/2 @

1/4 1/4
1/2 1/2

Ce graphe comporte un certain nombre de boucles :

1

-1—=1, 2—2, 3— 3, toutes de probabilité 5
1 2
— 2 — 3 — 2, de probabilité <Z> ,

1 1
— 1— 2 — 1, de probabilité 1 X 5
3

f1—>2—>3—>2—>1,depr0babilité§ 1)

On en déduit immédiatement le déterminant du graphe :

st () b ()L 0 - 0 s 06

soit :

Il'y a un seul chemin menant de I’état 1 a lui-méme : 1 — 1. Comme vu avant, t 1 = Kl En

enlevant le noeud 1, il reste trois boucles :
~ 2 2et 3 — 3, disjointes et de probabilité 1

27
— 2 — 3 — 2, de probabilité 1—16.
1 1 1\* 3

Ainsi, A1 =1—(2x =+ — — | =—.

sl 21 < AR *'<2> 16

128 3
n en déduit ¢ 1 3 X 16 8
R . . L. 128 1 32

De méme, on laisse le soin au lecteur de vérifier que t15 = = X 1= 3 et que t1 3 =
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128 1 16

3

Il vient que le temps moyen d’absorption, en partant de I’état 1, est égal a :

3
mi = Ztlyj =24
J=1

Mais alors, ou est l'erreur ? 7?7 (exercice)

4.5 Un dernier exemple d’application

Reprenons, & une légére modification prés 'exercice 1 de la section 2-5.
On lance une piéce équilibrée jusqu’a l'obtention de (Face,Face,Face) ou de (Face,Pile,Pile).
Nous allons nous intéresser, en variant les points de vue :

1. ala loi de probabilité de ce jeu,
2. a la probabilité de chacun des événement considérés,
3. au temps moyen de jeu.
Notons 0 pour Pile et 1 pour Face. Les états absorbants sont donc 111 et 100. Comme tous les

deux débutent par 1 (Face), on peut, sans perte de généralité, supposer que 'état de départ
est 0, ce qui nous conduit au graphe probabiliste suivant :

1/2
1/2 1/2
1/2@ / G\m@ / 100
1/2
1/2 s
1/2
11 111

Afin d’étudier la loi de probabilité de la variable aléatoire X : nombre de pas avant ’absorption,
nous pouvons considérer indifféremment :

— la matrice de transition du graphe et ses puissances successives, de maniére a appliquer

la relation de Chapman-Komolgorov ou de maniére équivalente

— déterminer sa fonction génératrice ¢x
Notons que la seconde approche peut étre assouplie en réduisant préalablement le graphe,
mais il nous faudra en contrepartie effectuer un développement en série entiére, ce qui n’est
pas nécessaire avec I’approche matricielle, & condition bien entendu, que le calcul de puissances
successives de la matrice de transition soit aisé.

Approche 1 : Tout matriciel !
La matrice de transition du graphe peut s’écrire (avec p =1/2) :

p p 0 0 0 O

00 pp 00

10 p 00 p O
(P) = 00 p OO p
000 O0T1O0

0 00O0O0T1
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soit :

® =y 7

OflV: etU:

c o3
ot o3
"N o O

o o
o o o

o oo

0 0 p

X-Cas donne une expression immonde pour V™. Méme en essayant de diagonaliser V. Il semble
tentant de tenter I’approche "fonctions génératrices".

Approche 2 : Fonctions génératrices.
La matrice de transition d’un parcours non marqué peut s’écrire (avec p =1/2) :

pt pt 0 0O O O

0 0 pt pt 0 O

10 pt 0O O pt O

(P)_OOptOOpt

0O 0 0 0 1 o0

0O 0 0 0 0 1

soit :
vV U

pt pt 0 O 0 0
|0 0 pt pt 10 O
V=19 0 oMYV, o0
0 0 pt O 0 pt

La loi initiale est ef. D’oti, en utilisant les résultats de la section Généralisation Partielle :

2
ox(t) = [(Is— V) U,

J=1

Greg éclata de rire en repensant & ses longs exercices de calculs d’inverses de matrice au cours
de sa tendre enfance mathématique. Comme je te X-Cas ¢a maintenant!!!
On obtient aisément la premiére ligne de [(I, — V)~tU] :

t2-3+4-12) 2.3
20t —4-t2 —8-t+16)"t* —4-2 — 8-t + 16

Cette derniére nous permet deux options :
1. Calculer directement les probabilités d’étre absorbé en 100 et en 111,

2. Donner 'expression explicite de ¢x(t), puis en calculant ¢y (1), d’en déduire le temps
moyen d’absorption.

On a en remplagant ¢ par 1 :
— P(absorption en 100) = [(I4 — V)7'U]11 = 3/5
— P(absorption en 111) = [(I4 — V)"'U]12 = 2/5
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puis en sommant les deux colonnes :

t* 4+ 4¢3
t) =
ox(t) 42 _8t + 16

En utilisant la propriété 1-1-6, on trouve a l’aide d’un logiciel de calcul formel que F(X) = 28/5
et que V(X) = 188/25.
Utilisons encore X-Cas pour déterminer la matrice fondamentale 7" de notre chaine de Markov :

9 8 6 4
o &8 1
T=1,11%83
0o 2 48

5 5 5

On a en utilisant le corollaire 4-2-7, que le temps moyen d’absorption, en partant de 1’état 0,
est égal 4 2 + % + g + % = %. Tout colle bien !

Mais pour "gagner" la loi de X, il convient de développer en série entiére ¢x (t).

Remarquons que (merci X-Cas) :

6 t2 + 6t + 8
t—2 34 2t2 -8

ox(t) =1+

L’équation t3 +2t2 —8 = 0 a trois solutions : une solution réelle : a ~ 1,5098 et deux solutions
complexes conjuguées : 58,5 ~ —1,7549 £ 1,4897.

. . t2 + 6t + 8 s : :
La fonction rationnelle F(t) := B ror g considérée comme une fonction de la variable
B
complexe, s’écrit sous la forme : F(t) = o + P + ; fﬂl
Classiquement :
o? 4 6a + 8
~ A=lim(t —a)F(t) =
it = F W) = oo E) + 1B
: 5% +66+8
- B=lim(t-p)Ft) = ——F5——,
e N R )
- C=B8B.

Rappelons que pour a € C* et pour |t| < |al, on a :

Lo 1
Zan—i-l _a—t

n>0

1 1 1 _
24 2B 2B
—ip e TP T

donc pour |t| < min(2,«, |8]) = a :

ox) =133 (5] +243 s eaB Y g e aB Y S

n>0 n>0 n>0 n>0

-3 24 Bpntl "
1+ Z <2_n + antl +4R <’m2(n+1) t
n>0
En particulier, on vérifie que P(X = 0) = P(X = 1) = P(X = 2) = 0, ce qu’indiquait le
graphe probabiliste.

ox(t)=1-3

soit :

<

=

=
Il
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La loi de probabilité de X est donc définie par :

X () = [3; +oo[NN

Vn e X(Q), P(X =n) = — 4+ 24 1

v R an+1
on + antl + |B|2(n+1) éR(BB )

Remarque : Nous pouvions également nous servir de la formule de Mason afin de déterminer
le temps moyen d’absorption.
Posons p = 1/2 et re-numérotons les sommets 0, 1, 10, 11, 100, 111 respectivement par 1, 2,
3,4, 5, 6.
Les boucles du graphe sont :

- 51 @ 1 —1, de probabilité p,

— Sy : 23— 2, de probabilité p?,

— 83 : 24— 3 — 2, de probabilité p?
Remarquons que le premier chemin S est disjoint des deux autres, qui eux ne le sont pas entre
eux.
On en déduit que le déterminant du graphe est égal & : A = 1— (p+p?+p?) + (> +p*) = 5/16.
Calculons t1 j pour j = 1, 2,3, 4. Ainsi, nous en déduirons le temps moyen d’absorption partant

4
de l'état 1 : my = Ztl’j'
7j=1

Commengons par remarquer que pour tout état 4, il existe un unique chemin allant de ¢ a .
1

Ainsi, t;; = KZ On a donc t11 = N
)
— Calcul de t1 1 : S\{1} n’a aucune paire de boucles disjointes, donc A; = 1—(p?+p?) = 3
5 16
On en déduit que t1; = 5 x — = 2.

— Calcul de 1 : il y a un seul chemin direct menant de 142 :1 — 2, qui est de probabilité

p. En supprimant les noeuds 1 et 2 de S, il n’y a plus de boucles donc Ay = 1. D’ou

1 16 8
t172:—><—:—.

5
— Calcul de ¢ 3 : il y a deux chemins directs menant de 1 &4 3 : 1 — 2 — 3, de probabilité
p?, et 1 — 2 — 4 — 3, de probabilité p3. Comme précédemment, les cofacteurs associés

) . 1 1 16 6
sont égaux a 1, de sorte que t13 = —+ < | X

48 5 5
4
— Calcul de ¢ 4 : on laisse le lecteur vérifier que ¢4 = 5
28
On retrouve bien la premiére ligne de T' = (I — V)~L. Ainsi, m; = 5

Greg se frotta les mains en vidant une bouteille d’hydromel dans le bac de tri situé en bas de
sa demeure.

"Je crois que nous avons pas mal tourné autour du pot jusqu’a l'ivresse", songeait-il. Une
étoile filante traversa alors le ciel de novembre en laissant une trainée argentée persistante qui
tardait & s’effacer.

"Je crois qu’il est temps de passer le flambeau ... Et pour diluer ces réflexions, rien de tel que
de se diriger vers les bords d’eau. Vers Bordeaux ot mon ami "Lolo" a beaucoup a dire avec
sa faconde légendaire. Les siéges de ce bar Salsa, proche de la place de la Victoire murmurent
encore son nom en rougissant. Encore plus qu’a Nevers ..., au bien nommé "I’Agricole". Allez,
il est temps de brancher! Pour la postérité ...

Au prochain article, nous étudierons en détail les Processus de branchement, étudiant notam-
ment la persistance d’une lignée.
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5 Compléments

5.1 Coefficient binomial généralisé

Définition : Soit n un entier naturel et ¢ un nombre complexe. La factorielle montante est

définie par : (a), := {

1 sin=0,
ala+1)...(a+n) sin>1

Définition : Le coefficient binomial (Z) (ot n un entier naturel et a un nombre complexe)

est défini par :
<a> aa=1).lo=n+1) _ (0

n) n! n!

5.2 Séries entiéres

Lemme d’Abel : Considérons une série entiére Zanzn. On suppose qu’il existe zg € C
n>0
tel que (anz{)n>0 soit bornée. Alors pour tout z € C tel que |z| < |z, Zanz" converge
n>0
absolument.

Théoréme et définition : Soit Zanz" une série entiére. Alors il existe R € [0;+o0]
n>0
vérifiant les conditions équivalentes suivantes :

1. R =sup{|7|; Zanz" converge absolument }
n>0

2. R =sup{|7| ; Zanz" converge }
n>0

3. R=sup{|z|; (anz") tend vers 0}
4. R =sup{|z| ; (an2z™) est bornée}

R s’appelle le rayon de convergence de la série entiére Z anz".

n>0

Calcul du rayon de convergence : Le théoréme précédent donne a lui seul des moyens
pratiques de calcul du rayon de convergence. La place des suites géométriques dans une échelle
de comparaison & l'infini est également fort utile :

(In(n))* << nf <<t << ™, B,y >0,t > 1

Citons néanmoins deux théorémes classiques de calcul du rayon de convergence :

Formule de Hadamard : Soit E a, 2" une série entiére de rayon de convergence R non

n>0
1
nul. Alors R = =— .
11mn—>+oo ’an‘l/n
Formule de Cauchy : Soit E a,z" une série entiére de rayon de convergence R. On
n>0
. . 1 - a 1
suppose qu’a partir d’un certain rang a, # 0, alors : — = lim [t ‘
R notoo |ay)
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Quelques résultats utiles : Soient Zanz" et Z bpz" deux séries entiéres de rayons de
n>0 n>0
convergences respectifs Ry et Rs. Alors :
1. Le rayon de convergence R de Z(an + by)2" vérifie R > min{R;; R2}, avec égalité si
n>0

Ri # Rs.

2. Le rayon de convergence R de Z anz" Z bpz" | vérifie R > min{R;; Rs}, avec
n>0 n>0
égalité si Ry # Ro.

3. La fonction f(z) = Z apz" est indéfiniment dérivable a l'intérieur du disque ouvert de
n>0
convergence Dg et pour tout entier naturel p, on a :

fP) =) nn-1)...(n—p+1)z"7

nzp

Remarquons qu’une série entiére et ses dérivées ont méme rayon de convergence.

Développement en série entiére : Aprés avoir défini le principe, nous donnerons un for-
mulaire succinct de quelques développements classiques. Notons qu’il s’agit 1a de la démarche
inverse du calcul explicite de I'expression d’une série de fonctions. On a par exemple, pour

1
t<1:y th=
H<1:) tF=1—

k>0

Inversement, le développement en série entiére de la fonction définie sur |—1; 1] par f(t) =

est f(t) =) t*.

k>0

1
1—-t¢

Définition : On dit qu’'une fonction f : C — C, définie sur un voisinage de 2y € C, est

développable en série entiére en zq, si et seulement s’il existe une série entiére E apz", de
n>0
rayon de convergence R > 0 telle que :

Ja €]0; R] ; z € B(zp,a) = f(2) = Zan(z’ —20)"
n>0

Remarque : Par translation, on peut supposer zy = 0.
Ce développement est unique, et est précisément égal a la série de Mac-Laurin de f :

S )"

Nous ne nous étendrons pas sur les conditions nécessaires pour une fonction d’étre dévelop-
pable en série entiére. [1] le fait trés bien dans son tome 4.

Nous considérons par ailleurs trés souvent des fonctions de la variable réelle. Le tableau des
développements usuels peut s’écrire . ..

comme dans le lien ci-dessous!
http://www.panamaths.net/Documents/Formulaires/FORMU_DSEUSUELS.pdf
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