
Limite d’une fonction réelle de la
variable réelle



1 Limite d’une fonction en un réel a
Dans toute la suite, D désigne un intervalle ou une réunion d’intervalles

non réduits à un point.

Définition 1 : On dit que la fonction f définie sur D admet pour limite le
réel ` lorsque x tend vers a, et on note lim

x→a
f(x) = ` si pour tout intervalle

ouvert W =]` − ε; ` + ε[ centré en ` on peut trouver un intervalle ouvert
V =]a− α; a+ α[ centré en a tel que pour tout réel x appartenant à V ∩D,
on a f(x) ∈ W : (∀ε > 0)(∃α > 0)(∀x ∈ D∩]a− α; a+ α[), |f(x)− `| < ε.

1.1 Limite finie en un réel a

1.1.1 Cas où f n’est pas définie en a

Nous reprenons la définition générale de la limite en un réel a donnée
précédemment, mais nous l’appliquons d’abord dans le cas où la fonction f
n’est pas définie en a. Cependant, le réel a est adhérent à D.

Exemple 1 : Soit f la fonction définie sur D = R\{0} par f(x) = 2x. Alors
on a lim

x→0
f(x) = 0.

Démonstration : Soit ε > 0 et W =]− ε; ε[. Posons alors V =]− ε/2; ε/2[. Si

x ∈ V ∩D, on a f(x) = 2x ∈ W . D’où le résultat.
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Contre-Exemple 1 : La fonction f définie sur D =] − ∞; 6] \ {2} par

f(x) =

{
0, 5x− 4 si x < 2√
6− x si x > 2

n’admet pas de limite en 2.

On a pourtant envie de dire que si x tend vers 2 par valeurs inférieures (en
restant toujours strictement inférieur à 2), f(x) tend vers −3.
De même, on a envie de dire que si x tend vers 2 par valeurs supérieures (en
restant toujours strictement supérieur à 2), f(x) tend vers 2.

Cette constatation nous amène à définir les notions de limite à droite et à
gauche d’une fonction en un réel a adhérent à son ensemble de définition.
Dans le cas précédent, 2 est adhérent à D =]−∞; 6] \ {2}.

Définition 2 : Soit f une fonction définie sur D et a un réel adhérent à D.
On dit que le réel ` est limite à gauche (resp. à droite) de f en a si pour
tout ε > 0, il existe α > 0 tel que pour tout réel x appartenant à D∩]a−α; a[
(resp. à D∩]a; a+ α[), on a |f(x)− `| < ε.
On note lim

x→a−
f(x) = ` (resp. lim

x→a+
f(x) = `).
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Propriétés et remarque :

1. Si la limite (resp. la limite à gauche, resp. la limite à droite) d’une
fonction f existe en un réel a, alors elle est unique.

2. De plus, f est bornée "au voisinage" de a.
3. Au vu de leurs définitions, on peut également définir les limites à

gauche ou à droite d’une fonction f en un réel a, même si a appartient
à l’ensemble de définition D de cette fonction. De toutes façons, a est
exclus des valeurs que peut prendre x quand x se rapproche de a, que
ce soit par valeurs strictement inférieures ou par valeurs strictement
supérieures. ATTENTION, ce n’est pas le cas dans la définition de
limite ! Voyons ce que ceci implique dans le prochain paragraphe.

Ceci donne un premier critère de non-existence d’une limite en un réel a (que
f y soit définie ou pas) :
Si f possède en a une limite à gauche ET une limite à droite différentes,
alors f n’a pas de limite en a.

Dans le contre-exemple précédent, on a lim
x→a−

f(x) = −3 et lim
x→a+

f(x) = 2.

lim
x→2−

f(x) 6= lim
x→2+

f(x), donc f n’a pas de limite en a = 2.

1.1.2 Cas où f est définie en a

Théorème 1 : Si f est définie en a et si f admet une limite finie ` lorsque
x tend vers a, alors nécessairement ` = f(a).

Démonstration : Supposons que f soit définie en a et que lim
x→a

f(x) = ` i.e
que (∀ε > 0)(∃α > 0)(∀x ∈ D∩]a− α; a+ α[), f(x) ∈]`− ε; `+ ε[.
En particulier, comme f est définie en a, alors pour tout réel ε > 0, f(a) ∈
]` − ε; ` + ε[. En particularisant les réels ε sous la forme

1

n
, avec n ∈ N∗, on

a : (∀n ∈ N∗) ` − 1

n
< f(a) < ` +

1

n
, d’où en faisant tendre n vers +∞ :

` = f(a) par encadrement.

Remarque : Il faut comprendre ce théorème comme quoi, si f est définie
en a, alors on n’a pas trop le choix pour la limite de f en a : si cette dernière
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existe, alors nécessairement ` = f(a).

Ceci donne un second critère de non-existence d’une limite en un réel a où f
est définie :
Si f possède en a une limite à gauche OU une limite à droite différente de
f(a), alors f n’a pas de limite en a.

On peut le visualiser graphiquement sur le contre-exemple suivant, très sem-
blable au premier contre-exemple (mais il y a une différence notable) : La

fonction f définie sur D =] − ∞; 6] par f(x) =

{
0, 5x− 4 si x ≤ 2√
6− x si x > 2

est

définie en 2 : f(2) = −3.

On a lim
x→2−

f(x) = f(2) = −3 et lim
x→2+

f(x) = 2.

lim
x→2+

f(x) 6= f(2), donc f n’a pas de limite en a = 2.

Ce critère est presque toujours applicable en pratique. Mais il faut parfois
revenir au théorème précédent pour prouver qu’une fonction n’a pas de limite
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en un réel donné.

Contre-Exemple 3 : Justifier que la fonction f définie sur R par f(x) = 1
si x 6= 0 et f(0) = 0 n’a pas de limite en 0, mais admet des limites à droite
et à gauche en 0, que vous préciserez.

Théorème 2 : Supposons que f est définie en a. Alors :
[ lim
x→a+

f(x) = lim
x→a−

f(x) = ` et ` = f(a)] si et seulement si lim
x→a

f(x) = `.

Exemple 2 : Justifier que la fonction f définie sur R par f(x) =

x sin
(1
x

)
si x 6= 0

0 si x = 0

admet 0 pour limite lorsque x tend vers 0.

1.2 Limite infinie en un réel a - asymptote verticale

Exemple introductif :
1. Commençons par un exemple classique : f est la fonction définie sur

R∗ par f(x) =
1

x2
.

a) Calculez f(0, 5), f(0, 1), f(0, 01), f(10−4), f(10−6). Vers quelle va-
leur semble se rapprocher f(x) lorsque x tend vers 0 en restant positif ?
b) Même question avec f(−0, 5), f(−0, 1), f(−0, 01), f(−10−4), f(−10−6).
Vers quelle valeur semble se rapprocher f(x) lorsque x tend vers 0 en
restant négatif ?
c) Conclure : Vers quelle valeur semble se rapprocher f(x) lorsque x
tend vers 0 ?

2. Continuons avec un autre exemple toujours aussi classique : f est la

fonction définie sur R∗ par f(x) =
1

x
.

a) Calculez f(0, 5), f(0, 1), f(0, 01), f(10−4), f(10−6). Vers quelle va-
leur semble se rapprocher f(x) lorsque x tend vers 0 en restant positif ?
b) Même question avec f(−0, 5), f(−0, 1), f(−0, 01), f(−10−4), f(−10−6).
Vers quelle valeur semble se rapprocher f(x) lorsque x tend vers 0 en
restant négatif ?
c) Conclure.
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Définition 3 : Soit a un point adhérent à D. On dit que la fonction f
définie sur D admet pour limite +∞ lorsque x tend vers a ∈ R \D, et on
note lim

x→a
f(x) = +∞ si pour tout réel A > 0 on peut trouver un intervalle

ouvert V centré en a tel que pour tout réel x appartenant à V ∩ D, on a
f(x) > A.
Formellement : (∀A > 0)(∃α > 0)(∀x ∈ D), |x− a| < α =⇒ f(x) > A.

Remarque : on définirait de même :
1. lim

x→a+
f(x) = +∞ ou lim

x→a−
f(x) = +∞

2. lim
x→a

f(x) = −∞

Définition 4 : Si lim
x→a+

f(x) = ∞ ou lim
x→a−

f(x) = ∞ ou lim
x→a

f(x) = ∞,
on dit que la droite d’équation x = a est asymptote verticale à la courbe
représentative de f .

La droite D d’équation x = 0 est asymptote verticale à la courbe représen-
tative de la fonction f ci-dessus.
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Point technique : Les valeurs de x où l’on doit chercher les asymp-
totes verticales sont les "bords" de l’ensemble de définition de f ,
aux valeurs interdites.

Exercice 3 : Justifier que les fonctions suivantes ont une ou plusieurs
asymptotes verticales, dont vous donnerez l’équation.

1. f(x) =
3

x+ 2

2. g(x) =
1

x2 − 9

3. h(x) =
x+ 1

x2 − 3x+ 2

Synthèse partielle :
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2 Limite d’une fonction quand x tend vers l’in-
fini

On suppose que l’ensemble de définition D de f contient un intervalle de
la forme [B; +∞[ ou bien ]−∞;B], B ∈ R.

2.1 Limite finie en ±∞ - asymptote horizontale

Définition 5 : On dit que la fonction f définie sur D admet pour limite
le réel ` lorsque x tend vers +∞, et on note lim

x→+∞
f(x) = ` si pour tout

intervalle ouvert W =]` − ε; ` + ε[ centré en ` on peut trouver un réel A tel
que pour tout réel x appartenant à ]A; +∞[∩D, on a f(x) ∈ W .
Formellement : (∀ε > 0)(∃A > 0)(∀x ∈ D), x > A =⇒ |f(x)− `| < ε.

Exemples :

1. Soit f la fonction définie sur D = R \ {0} par f(x) = 1

x
. Alors on a

lim
x→±∞

f(x) = 0.

2. Soit f la fonction définie sur D = R \ {0} par f(x) =
sin(x)
x

. Alors
on a lim

x→±∞
f(x) = 0.

Définition 6 : Si lim
x→+∞

f(x) = ` alors on dit que la courbe représentative
de f a pour asymptote horizontale la droite d’équation y = ` en +∞.
Même chose en −∞.

Point technique : Pour justifier la présence d’une asymptote hori-
zontale en +∞ / en −∞, on prouve que lim

x→+∞
f(x) = ` / lim

x→−∞
f(x) = `,

où ` est un réel fini.
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Ici, la courbe représentative de f coupe (une infinité de fois) son asymptote
horizontale :

Mais pas là...
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Exercice 4 : Justifier que toutes les courbes représentatives des fonctions
définies à l’exercice 3 ont pour asymptote horizontale la droite d’équation
y = 0 en +∞ et en −∞.

Exercice 5 : Soit f la fonction définie par f(x) =
2x2 − 3x+ 4

3x2 + x+ 1
.

Justifiez que la courbe représentative Cf de f a une asymptote horizontale
en ±∞ dont vous donnerez l’équation. Étudiez la position relative de Cf et
de son asymptote.

2.2 Limite infinie en ±∞
Définition 7 : On dit que la fonction f définie sur D admet +∞ pour
limite lorsque x tend vers +∞, et on note lim

x→+∞
f(x) = +∞ si pour tout

réel B > 0 on peut trouver un réel A tel que pour tout réel x appartenant à
]A; +∞[∩D, on a f(x) > B.
Formellement, (∀B > 0)(∃A > 0)(∀x ∈ D), x > A =⇒ f(x) > B.

On définit de même les autres cas :

lim
x→−∞

f(x) = +∞, lim
x→+∞

f(x) = −∞, lim
x→−∞

f(x) = −∞

Exemples :
1. Soit f la fonction définie sur D = R par f(x) = x3. Alors on a

lim
x→±∞

f(x) = ±∞.

2. Soit f la fonction définie sur D = R \ {−3

2
} par f(x) = x2 + x+ 1

2x+ 3
.

Alors on a lim
x→+∞

f(x) = +∞.
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3 Opérations sur les limites

3.1 Manipulations algébriques

Ce sont les mêmes que celles vues dans le chapitre sur les suites. On
retiendra donc en particulier les quatre formes indéterminées :

+∞−∞ ; 0×∞ ;
∞
∞

;
0

0

Remarque : Dans le cas d’un quotient de deux fonctions polynômes (fonc-

tion rationnelle) F (x) =
P (x)

Q(x)
, on retiendra en particulier pour étudier les

limites en ±∞ de mettre en facteur le terme de plus haut degré au numéra-
teur et au dénominateur. Ainsi, si P (x) = anx

n + an−1xn−1 + · · · + a0 et si

Q(x) = bpx
p + bp−1x

p−1 + · · · + b0, alors en ±∞, F (x) =
P (x)

Q(x)
se comporte

comme G(x) =
an
bp
xn−p.

On admettra le :

Théorème 3 : Soient P (x) = anx
n+ an−1xn−1+ · · ·+ a0 et Q(x) = bpx

p+

bp−1x
p−1 + · · · + b0 deux fonctions polynomes. Posons F (x) =

P (x)

Q(x)
. Alors

lim
x→±∞

F (x) = lim
x→±∞

an
bp
xn−p.

3.2 Théorèmes de comparaison et d’encadrement

Théorème 4 (de comparaison) : On suppose que l’ensemble de défini-
tion des fonctions considérées contient un intervalle I de la forme ]A; +∞[.
Soient f , g deux fonctions.

1. Si pour tout réel x ∈ I, g(x) ≤ f(x) et si lim
x→+∞

g(x) = +∞, alors :

lim
x→+∞

f(x) = +∞.

2. Si pour tout réel x ∈ I, f(x) ≤ g(x) et si lim
x→+∞

g(x) = −∞, alors :

lim
x→+∞

f(x) = −∞.
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Nous laissons le lecteur adapter ce théorème au cas où x tende vers −∞ ou
même vers un réel a adhérent à Df ∩Dg.

Théorème 5 (d’encadrement) : On suppose que l’ensemble de définition
des fonctions considérées contient un intervalle I de la forme ]A; +∞[.
Soient f , g et h trois fonctions. On suppose que pour tout réel x ∈ I, g(x) ≤
f(x) ≤ h(x) et qu’il existe un réel ` tel que lim

x→+∞
g(x) = lim

x→+∞
h(x) = `.

Alors lim
x→+∞

f(x) = `.

Nous laissons le lecteur adapter ce théorème au cas où x tende vers −∞ ou
même vers un réel a adhérent à Df ∩Dg ∩Dh.

Théorème 6 (croissance comparée) : Soit n ∈ N.
Alors : lim

x→+∞

ex

xn
= +∞ et lim

x→−∞
xnex = 0.

Exemples : Déterminer la limite des fonctions suivantes :

1. f(x) =
3x+ 2 cosx

−5x+ 2
en −∞.

2. g(x) =
x2e−x + x3 + 1

3x+ 2
en +∞ et en −∞.

3. h(x) =
e2x

x3
− xex en +∞ et en −∞.
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