Limite d’une fonction réelle de la
variable réelle



1 Limite d’une fonction en un réel a

Dans toute la suite, D désigne un intervalle ou une réunion d’intervalles
non réduits a un point.

Définition 1 : On dit que la fonction f définie sur D admet pour limite le

réel ¢ lorsque z tend vers a, et on note | lim f(z) = ¢| si pour tout intervalle
r—a

ouvert W =|¢ — €;{ + €| centré en ¢ on peut trouver un intervalle ouvert
V =]a — a;a+ af centré en a tel que pour tout réel x appartenant & V- N D,
ona f(x) e W: (Ve > 0)(3a > 0)(Ve € DNja — a;a+ af), | f(x) — | <e.

1.1 Limite finie en un réel a

1.1.1 Cas ou f n’est pas définie en a

Nous reprenons la définition générale de la limite en un réel a donnée
précédemment, mais nous 'appliquons d’abord dans le cas ou la fonction f
n’est pas définie en a. Cependant, le réel a est adhérent & D.

Exemple 1 : Soit f la fonction définie sur D = R\ {0} par f(z) = 2z. Alors

on a lim f(z) = 0.
z—0

Démonstration : Soit € > 0 et W =] — €; €[. Posons alors V' =| — ¢/2;€/2[. Si
xeVND,ona f(x)=2x € W. D'ou le résultat.




Contre-Exemple 1 : La fonction f définie sur D =] — o0;6] \ {2} par

vVO—zsix > 2

0,50 —4siz <2
flz) = { O S n’admet pas de limite en 2.

On a pourtant envie de dire que si x tend vers 2 par valeurs inférieures (en
restant toujours strictement inférieur a 2), f(z) tend vers —3.
De méme, on a envie de dire que si = tend vers 2 par valeurs supérieures (en
restant toujours strictement supérieur a 2), f(x) tend vers 2.

Cette constatation nous ameéne & définir les notions de limite & droite et a
gauche d’une fonction en un réel a adhérent a son ensemble de définition.
Dans le cas précédent, 2 est adhérent & D =| — o0; 6] \ {2}.

Définition 2 : Soit f une fonction définie sur D et a un réel adhérent a D.
On dit que le réel £ est limite & gauche (resp. a droite) de f en a si pour
tout € > 0, il existe a > 0 tel que pour tout réel x appartenant & DNja — a; al
(resp. & DNa;a + af), on a |f(z) — 4] < e.
On note lim f(x) = ¢ (resp. lim+ flx)=10).

Tr—a

r—a~



Propriétés et remarque :

1. Si la limite (resp. la limite a gauche, resp. la limite a droite) d’une
fonction f existe en un réel a, alors elle est unique.

2. De plus, f est bornée "au voisinage" de a.

3. Au vu de leurs définitions, on peut également définir les limites a
gauche ou a droite d’une fonction f en un réel a, méme si a appartient
a ’ensemble de définition D de cette fonction. De toutes fagons, a est
exclus des valeurs que peut prendre x quand x se rapproche de a, que
ce soit par valeurs strictement inférieures ou par valeurs strictement
supérieures. ATTENTION, ce n’est pas le cas dans la définition de
limite! Voyons ce que ceci implique dans le prochain paragraphe.

Ceci donne un premier critére de non-existence d’une limite en un réel a (que
f vy soit définie ou pas) :

Si f posséde en a une limite & gauche ET une limite a droite différentes,
alors f n’a pas de limite en a.

Dans le contre-exemple précédent, on a lim f(z) = —3 et lim+ flz)=2.
r—a r—a

lim f(z)# lim f(x), donc f n’a pas de limite en a = 2.
T2 x—27T

1.1.2 Cas ou f est définie en a

Théoréme 1 : Si f est définie en a et si f admet une limite finie ¢ lorsque
x tend vers a, alors nécessairement ¢ = f(a).

Démonstration : Supposons que f soit définie en a et que lim f(z) = ¢ i.e
Tr—a

que (Ve > 0)(Ja > 0)(Vx € DNja — asa + «f), f(z) €]0 — €, £ + €.
En particulier, comme f est définie en a, alors pour tout réel € > 0, f(a) €

|0 — €; ¢ + €]. En particularisant les réels € sous la forme —, avec n € N*, on
n
1 1
a:(Vn e N)l—— < f(a) < £+ —, d’ou en faisant tendre n vers +oo :
n n

¢ = f(a) par encadrement.

Remarque : Il faut comprendre ce théoréme comme quoi, si f est définie
en a, alors on n’a pas trop le choix pour la limite de f en a : si cette derniére



existe, alors nécessairement ¢ = f(a).

Ceci donne un second critére de non-existence d’une limite en un réel a ou f
est définie :

Si f posséde en a une limite a gauche OU une limite a droite différente de
f(a), alors f n’a pas de limite en a.

On peut le visualiser graphiquement sur le contre-exemple suivant, trés sem-
blable au premier contre-exemple (mais il y a une différence notable) : La

0,50 —4sixz<2
fonction f définie sur D =] — oo; 6] par f(z) = , X six < st

V6—xsiz>2
définie en 2 : f(2) = —3.

On a lirgl_ f(z) =f(2)=—-3et lirgl+ flz) =2.
m j%q(x) # f(2), donc f n’a pa; de limite en a = 2.

li
r—2

Ce critére est presque toujours applicable en pratique. Mais il faut parfois
revenir au théoréme précédent pour prouver qu'une fonction n’a pas de limite
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en un réel donné.

Contre-Exemple 3 : Justifier que la fonction f définie sur R par f(z) =1
sixz #0et f(0) =0 n’a pas de limite en 0, mais admet des limites a droite
et a gauche en 0, que vous préciserez.

Théoréme 2 : Supposons que f est définie en a. Alors :
[ lim f(z) = lim f(x)=/{et {= f(a)] si et seulement si li_r)n f(z) ="
T—a T—a~ T—a

VS S
Exemple 2 : Justifier que la fonction f définie sur R par f(z) = s (E) stz 70
Osiz=0

admet 0 pour limite lorsque x tend vers 0.

1.2 Limite infinie en un réel a - asymptote verticale

Exemple introductif :
1. Commencons par un exemple classique : f est la fonction définie sur

R* par f(z) = %

a) Calculez f(0,5), f(0,1), f(0,01), f(10™*), f(107°). Vers quelle va-

leur semble se rapprocher f(x) lorsque z tend vers 0 en restant positif 7

b) Méme question avec f(—0,5), f(—0,1), f(—=0,01), f(=107%), f(=1075).
Vers quelle valeur semble se rapprocher f(z) lorsque x tend vers 0 en
restant négatif 7

c¢) Conclure : Vers quelle valeur semble se rapprocher f(z) lorsque x
tend vers 07

2. Continuons avec un autre exemple toujours aussi classique : f est la
fonction définie sur R* par f(z) = —.

a) Calculez f(0,5), £(0,1), f(0,01), f(10™%), f(1075). Vers quelle va-

leur semble se rapprocher f(x) lorsque z tend vers 0 en restant positif ?

b) Méme question avec f(—0,5), f(—=0,1), f(—0,01), f(—=107%), f(=1075).
Vers quelle valeur semble se rapprocher f(z) lorsque x tend vers 0 en
restant négatif 7

c¢) Conclure.



Définition 3 : Soit a un point adhérent & D. On dit que la fonction f
définie sur D admet pour limite 400 lorsque = tend vers a € R\ D, et on

note | lim f(z) = +o0o | si pour tout réel A > 0 on peut trouver un intervalle
r—a

ouvert V' centré en a tel que pour tout réel x appartenant & V. N D, on a
flz) > A.
Formellement : (VA > 0)(3a > 0)(Vx € D), |z —a| < a = f(z) > A.

Remarque : on définirait de méme :

1. lim f(z) = 400 ou lim f(x) = +o0
z—a™t Tz—a~

2. lim f(z) = —o0

Tr—a

Définition 4 : Si lim+ f(z) = oo ou lim f(x) = oo ou lim f(x) = oo,
r—a Tr—a— T—ra
on dit que la droite d’équation z = a est asymptote verticale a la courbe

représentative de f.

La droite D d’équation = = 0 est asymptote verticale a la courbe représen-
tative de la fonction f ci-dessus.



Point technique : Les valeurs de x ot ’on doit chercher les asymp-
totes verticales sont les "bords" de I’ensemble de définition de f,

aux valeurs interdites.

Exercice 3 : Justifier que les fonctions suivantes ont une ou plusieurs
asymptotes verticales, dont vous donnerez 1’équation.

3
L f@) =5

1

r+1
M) = et

Synthése partielle :



2 Limite d’une fonction quand x tend vers 1’in-

fini

On suppose que I'ensemble de définition D de f contient un intervalle de
la forme [B; +o0[ ou bien | — 00; B], B € R.

2.1 Limite finie en o0 - asymptote horizontale
Définition 5 : On dit que la fonction f définie sur D admet pour limite

le réel ¢ lorsque = tend vers 400, et on note lir+n f(x) ={]si pour tout
T—>+00

intervalle ouvert W =]¢ — ¢; ¢ + €[ centré en ¢ on peut trouver un réel A tel
que pour tout réel x appartenant a |A; +oo[ND, on a f(z) € W.
Formellement : (Ve > 0)(3A > 0)(Vx € D),z > A = |f(z) —{| <e.

Exemples :

1
1. Soit f la fonction définie sur D = R \ {0} par f(z) = = Alors on a
lim f(x)=0.

r—+oo

sin(z)

2. Soit f la fonction définie sur D = R\ {0} par f(z) = . Alors
T

on a x1—1>r:?oof(x> = 0.

Définition 6 : Si lir}rq f(z) = £ alors on dit que la courbe représentative
T—r+00

de f a pour asymptote horizontale la droite d’équation y = ¢ en +oc.
Méme chose en —oo.

Point technique : Pour justifier la présence d’une asymptote hori-
zontale en +00 / en —0o, on prouve que liIJP flxy=+¢/ lim f(z)=1¢,
T—+00 r——00

ol ¢/ est un réel fini.



Ici, la courbe représentative de f coupe (une infinité de fois) son asymptote
horizontale :

1.24

0.8
0.6

0.4[4

-0.44

-0.64

Mais pas la...




Exercice 4 : Justifier que toutes les courbes représentatives des fonctions
définies & l'exercice 3 ont pour asymptote horizontale la droite d’équation
y =0 en 400 et en —o0.

222 — 31 + 4
3x2+x+1°

Justifiez que la courbe représentative C; de f a une asymptote horizontale
en +o0o dont vous donnerez I'équation. Etudiez la position relative de C ¢ et
de son asymptote.

Exercice 5 : Soit f la fonction définie par f(x) =

2.2 Limite infinie en +o00

Définition 7 : On dit que la fonction f définie sur D admet +oo pour

limite lorsque x tend vers +oo, et on note lirf f(z) = 400 si pour tout
T—+00

réel B > 0 on peut trouver un réel A tel que pour tout réel x appartenant a
JA; +o00[ND, on a f(x) > B.
Formellement, (VB > 0)(3A > 0)(Vz € D),z > A = f(z) > B.

On définit de méme les autres cas :

lim f(z) =400, lim f(z)=—00, lim f(z)= —o0

r——00 T—-+00 T——00

Exemples

1. Soit f la fonction définie sur D = R par f(z) = 3. Alors on a
lim f(x)= £o0.

r—+00
2 +rx+1

3
2. Soit f la fonction défini D =R\ {-= =
Soit f la fonction définie sur \{ 2} par f(x) 13

Alors on a xl_l)gloo f(z) = +oc.
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3 Opérations sur les limites

3.1 Manipulations algébriques

Ce sont les mémes que celles vues dans le chapitre sur les suites. On
retiendra donc en particulier les quatre formes indéterminées :

400 —00 ; 0Xoo ; ;

v
0

818

Remarque : Dans le cas d'un quotient de deux fonctions polynéomes (fonc-

Plz)
Q(z)’

limites en +oo de mettre en facteur le terme de plus haut degré au numéra-
teur et au dénominateur. Ainsi, si P(x) = a,2" + a,_12,-1 + -+ - + ag et si

tion rationnelle) F(z) = on retiendra en particulier pour étudier les

Q(l’) = bp.Tp + bp*ll’p_l + -+ b07 alors en :i:OO, F(.T) = QESE) se comporte
x
comme G(x) = In g,
bp

On admettra le :

Théoréme 3 : Soient P(z) = a,2" + ap—12p—1+ -+ ap et Q(x) = bya? +

P
by 127! + -+ 4+ by deux fonctions polynomes. Posons F(x) = % Alors
x
lim F(z) = lim In gn=p,
r—rto0 r—rF00 »

3.2 Théorémes de comparaison et d’encadrement

Théoréme 4 (de comparaison) : On suppose que 'ensemble de défini-
tion des fonctions considérées contient un intervalle I de la forme | A; +o00].
Soient f, g deux fonctions.

1. Si pour tout réel x € I, g(x) < f(z) et si lim g(z) = 400, alors :

r—r+00
lim f(x) = +o0.

T—+00
2. Si pour tout réel x € I, f(z) < g(z) et si liI}_l g(x) = —o0, alors :
T—r+400
L, f@) = oo
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Nous laissons le lecteur adapter ce théoréme au cas ot x tende vers —oco ou
méme vers un réel a adhérent a Dy N D,.

Théoréme 5 (d’encadrement) : On suppose que 'ensemble de définition

des fonctions considérées contient un intervalle I de la forme |A; +o0].

Soient f, g et h trois fonctions. On suppose que pour tout réel x € I, g(x) <

f(z) < h(x) et qu'il existe un réel ¢ tel que ligl g(x) = ligl h(z) = £.
T—r+00 T—r+00

Alors lim f(z) =¢.

T—+00

Nous laissons le lecteur adapter ce théoréme au cas ot x tende vers —oo ou
meéme vers un réel a adhérent & Dy N Dy N Dy,

Théoréme 6 (croissance comparée) : Soit n € N.
x

. € .
Alors: lim — = +ooet lim z2"e® = 0.
xz—>+oo " T——00

Exemples : Déterminer la limite des fonctions suivantes :

3x +2cosx
1. f(l’) = TH en —o0.

2 —x 3 1
2. g(z) = e 3 —|—+x2 i en +o0 et en —oo.

T

6233
3. h(z) = — — we" en +00 et en —oo0.

T
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