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Un exemple intéressant

1
Soit f la fonction définie sur Df = R* par f(x) = — dont on donne la
X

courbe représentative Cr ci-dessous :

f est une fonction paire : Dy est symétrique par rapport a 0 et pour tout
x € Df, f(—x) = f(x).
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Un exemple intéressant

La fonction f est strictement croissante sur | — oo; 0[ et strictement
décroissante sur sur ]0; +oo].

On résume ceci dans le tableau de variations qui suit :
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Un exemple intéressant

La fonction f est strictement croissante sur | — oo; 0[ et strictement

décroissante sur sur ]0; +oo].
On résume ceci dans le tableau de variations qui suit :

F(x) / | \

Notre but est maintenant de justifier les " points d'interrogation” ; les 0 le
seront plus tard. Par parité de f, leurs valeurs seront égales. Il nous suffira
donc d'observer le comportement de f(x) lorsque x prend des valeurs
positives de plus en plus proches de 0 : on dira que x tend vers 0.
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Un exemple intéressant

La fonction f n'est donc pas définie en 0. Cependant, nous allons étudier

le comportement des images f(x) (en ordonnée) lorsque x se rapproche
aussi prés que I'on veut de 0 (sans jamais |'atteindre).
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Un exemple intéressant

La fonction f n'est donc pas définie en 0. Cependant, nous allons étudier
le comportement des images f(x) (en ordonnée) lorsque x se rapproche
aussi prés que I'on veut de 0 (sans jamais |'atteindre).

Mais que signifie : " x se raproche de 0" 7 Ou dit autrement x est
infiniment proche de 0 7

x peut tendre vers 0 en restant strictement positif : 0,1 ; 0,01 ; 0,001, etc.
Mais x peut aussi tendre vers 0 en restant strictement négatif : -0,1 ;
-0,01 ; -0,001, etc.
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Un exemple intéressant

La fonction f n'est donc pas définie en 0. Cependant, nous allons étudier
le comportement des images f(x) (en ordonnée) lorsque x se rapproche
aussi prés que I'on veut de 0 (sans jamais |'atteindre).

Mais que signifie : " x se raproche de 0" 7 Ou dit autrement x est
infiniment proche de 0 7

x peut tendre vers 0 en restant strictement positif : 0,1 ; 0,01 ; 0,001, etc.
Mais x peut aussi tendre vers 0 en restant strictement négatif : -0,1 ;
-0,01 ; -0,001, etc.

Le fait que f soit paire ne changera rien a 'affaire : que la variable x
tende vers 0 en étant strictement négative ou strictement positive,
donnera la méme image f(x).

Yannick Le Bastard (LEGTA de I'Hérault) Limite d'une fonction January 16, 2024 5/22



Un exemple intéressant

La fonction f n'est donc pas définie en 0. Cependant, nous allons étudier
le comportement des images f(x) (en ordonnée) lorsque x se rapproche
aussi prés que I'on veut de 0 (sans jamais |'atteindre).

Mais que signifie : " x se raproche de 0" 7 Ou dit autrement x est
infiniment proche de 0 7

x peut tendre vers 0 en restant strictement positif : 0,1 ; 0,01 ; 0,001, etc.
Mais x peut aussi tendre vers 0 en restant strictement négatif : -0,1 ;
-0,01 ; -0,001, etc.

Le fait que f soit paire ne changera rien a 'affaire : que la variable x
tende vers 0 en étant strictement négative ou strictement positive,
donnera la méme image f(x).

Nous allons donc évaluer numériquement les valeurs des images f(x)
lorsque x se rapproche indéfiniment de 0 (par valeurs supérieures ou
inférieures).
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Un exemple intéressant

Explicitons ceci a I'aide d'un tableau de valeurs :

x [0,1]0,01[0,001[10°%[107°[10°10
f(x) | 100 | 10* | 10 | 10'2 | 10'8 | 10%°
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Un exemple intéressant

Explicitons ceci a I'aide d'un tableau de valeurs :

x [0,1]0,01[0,001[10°%[107°[10°10
f(x) | 100 | 10* | 10 | 10'2 | 10'8 | 10%°

Il semble que plus x se rapproche de 0, plus les termes f(x) deviennent
grands ; on pourrait méme dire peuvent dépasser a un moment donné
toute valeur B fixée a I'avance, aussi grande soit-elle . ..
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Un exemple intéressant

Explicitons ceci a I'aide d'un tableau de valeurs :

x [0,1]0,01[0,001[10°%[107°[10°10
f(x) | 100 | 10* | 10 | 10'2 | 10'8 | 10%°

Il semble que plus x se rapproche de 0, plus les termes f(x) deviennent
grands ; on pourrait méme dire peuvent dépasser a un moment donné
toute valeur B fixée a I'avance, aussi grande soit-elle . ..

Fixons-nous par exemple B = 16000 (en ordonnée). La droite D
d'équation y = 16000 coupe la courbe représentative de f en deux points.
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Un exemple intéressant

Explicitons ceci a I'aide d'un tableau de valeurs :

x [0,1]0,01[0,001[10°%[107°[10°10
f(x) | 100 | 10* | 10 | 10'2 | 10'8 | 10%°

Il semble que plus x se rapproche de 0, plus les termes f(x) deviennent
grands ; on pourrait méme dire peuvent dépasser a un moment donné
toute valeur B fixée a I'avance, aussi grande soit-elle . ..

Fixons-nous par exemple B = 16000 (en ordonnée). La droite D
d'équation y = 16000 coupe la courbe représentative de f en deux points.
Leurs abscisses sont les antécédents de 16000 par f i.e les solutions de

1
I'équation — = 16000. Ce sont :
X
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Un exemple intéressant

Explicitons ceci a I'aide d'un tableau de valeurs :

x [0,1]0,01[0,001[10°%[107°[10°10
f(x) | 100 | 10* | 10 | 10'2 | 10'8 | 10%°

Il semble que plus x se rapproche de 0, plus les termes f(x) deviennent
grands ; on pourrait méme dire peuvent dépasser a un moment donné
toute valeur B fixée a I'avance, aussi grande soit-elle . ..

Fixons-nous par exemple B = 16000 (en ordonnée). La droite D
d'équation y = 16000 coupe la courbe représentative de f en deux points.
Leurs abscisses sont les antécédents de 16000 par f i.e les solutions de

1 1 1
I'équation — = 16000. C t: ——— et —.
équation — e son 200 © 400
Comme f est strictement décroissante sur ]0; +-o00], si x < —, alors

00
f(x) > 16000. Et comme f est strictement croissante sur | — co; 0], si

1
X > =150 alors f(x) > 16000
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Un exemple intéressant

Bref, si x € D¢N] — 400; 400[=] — 400; 0[U]0; 400[, on a :
f(x) > 4002 = 16000.
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Un exemple intéressant

Bref, si x € D¢N] — 400; 400[=] — 400; 0[U]0; 400[, on a :

f(x) > 400% = 16000.

Plus précisément, si B désigne un réel strictement positif, dés que x est
\ {0}, alors f(x) > B.

VB VB [

Bref, f(x) peut dépasser n'importe quelle valeur strictement positive B
pourvu que x € D soit assez proche de 0.

assez proche de 0 : x € ]
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Un exemple intéressant

Bref, si x € D¢N] — 400; 400[=] — 400; 0[U]0; 400[, on a :

f(x) > 400% = 16000.

Plus précisément, si B désigne un réel strictement positif, dés que x est
\ {0}, alors f(x) > B.

VB VB [

Bref, f(x) peut dépasser n'importe quelle valeur strictement positive B
pourvu que x € D soit assez proche de 0.

FEE=

assez proche de 0 : x € ]
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Premieres notations

Une définition presque formelle

f a pour limite +oo lorsque x tend vers 0, et on note Iim0 f(x) = 400 si
X—>

pour tout réel B > 0 (aussi grand soit-il) il existe un réel x € Dy
suffisamment proche de 0 tel que f(x) > B.

En particulier, on remarquera également que :

Deux autres définitions presque formelles

© f a pour limite a gauche +oo lorsque x tend vers 0, et on note
lim f(x) = +oo si pour tout réel B > 0 (aussi grand soit-il) il existe

un réel x € Dy strictement inférieur a 0 tel que f(x) > B.

@ f a pour limite a droite +o0o lorsque x tend vers 0, et on note
lim f(x) = +o0 si pour tout réel B > 0 (aussi grand soit-il) il existe
x—0
un réel x € Dy strictement supérieur a 0 tel que f(x) > B.
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Un second exemple intéressant

Soit f la fonction définie sur D = R* par f(x) = % dont on donne la

courbe représentative Cr ci-dessous :

f est une fonction impaire : Df est symétrique par rapport a 0 et pour
tout x € Dr, f(—x) = —f(x).
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Un second exemple intéressant

Comme a I'exemple précédent, nous allons nous intéresser au cas ou la

variable x se rapproche de 0 en laquelle f n'est pas définie (mais 0 est un
point adhérent a Dy).
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Un second exemple intéressant

Comme a I'exemple précédent, nous allons nous intéresser au cas ou la
variable x se rapproche de 0 en laquelle f n'est pas définie (mais 0 est un
point adhérent a Dy).

Nous pourrions aussi nous limiter a des valeurs strictement positives de x
puisque par imparité f(—x) = —f(x). Mais pour des raisons pédagogiques,
nous distinguerons les cas ol :

@ x tend vers 0 par valeurs strictement inférieures : x — 0, x < 0.
@ x tend vers 0 par valeurs strictement supérieures : x — 0, x < 0.

Donnons un tableau des valeurs de f(x) quand x tend vers 0.

x | —0,1]-0,01]—-10"%*[—-10"%]—-108]108]10°[10°%*]0,01]0,1
f(x)| =10 | =100 | —10* | —10° | —108 | 10® | 10° | 10* | 100 | 10
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Un second exemple intéressant

Comme a I'exemple précédent, nous allons nous intéresser au cas ou la
variable x se rapproche de 0 en laquelle f n'est pas définie (mais 0 est un
point adhérent a Dy).

Nous pourrions aussi nous limiter a des valeurs strictement positives de x
puisque par imparité f(—x) = —f(x). Mais pour des raisons pédagogiques,
nous distinguerons les cas ol :

@ x tend vers 0 par valeurs strictement inférieures : x — 0, x < 0.
@ x tend vers 0 par valeurs strictement supérieures : x — 0, x < 0.

Donnons un tableau des valeurs de f(x) quand x tend vers 0.

x | —0,1]-0,01]—-10"%*[—-10"%]—-108]108]10°[10°%*]0,01]0,1
f(x)| =10 | =100 | —10* | —10° | —108 | 10® | 10° | 10* | 100 | 10

Il semble que lorsque x tend vers 0 par valeurs strictement inférieures
(resp. vers O par valeurs strictement supérieures), f(x) tende vers —co
(resp. +00).

Yannick Le Bastard (LEGTA de I'Hérault) Limite d'une fonction January 16, 2024 10 /22



Un second exemple intéressant

Limites a gauche et a droite de f en 0 différentes : respectivement
égales —oco0 et a +oo.

D,:y=B

0005 001 0015 002 0025 0.03 0.035

&l

Si a ;0/, alors f(x) < -B

Yannick Le Bastard (LEGTA de I'Hérault) Limite d'une fonction January 16, 2024



Un second exemple intéressant

Définitions presque formelles

© f a pour limite a gauche —co lorsque x tend vers 0, et on note

lim f(x) = —oo si pour tout réel B > 0 (aussi grand soit-il) il existe
x—0~
un réel x € Dr strictement inférieur a 0 tel que f(x) < —B.

@ f a pour limite a droite +oo lorsque x tend vers 0, et on note

Iim+ f(x) = +o0 si pour tout réel B > 0 (aussi grand soit-il) il existe
x—0
un réel x € Dr strictement supérieur a O tel que f(x) > B.

Cependant. ..

f n’a pas de limite en 0.

En effet, que x se rapproche de 0 par la gauche (donc par valeurs
strictement inférieures) ou par la droite (donc par valeurs strictement
supérieures) n'engendre pas le méme comportement pour son image f(x).)
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Généralisation des exemples précédents

Dans toute la suite, f désigne une fonction définie sur un sous-ensemble
D de R et a un réel n'appartenant pas a Dr, mais qui en est un point

frontiére : Yo > 0, DeN] — «; a[# 0.
Typiquement, a est une valeur interdite de f au bord de son ensemble de

définition Dr.
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Généralisation des exemples précédents

Dans toute la suite, f désigne une fonction définie sur un sous-ensemble
D de R et a un réel n'appartenant pas a Dr, mais qui en est un point
frontiére : Yo > 0, DeN] — «; a[# 0.

Typiquement, a est une valeur interdite de f au bord de son ensemble de
définition Dr.

Une définition formelle de la limite

On dit que f a pour limite +o00 (resp. —oo) lorsque x tend vers a, et on

note IiLn f(x) = +oo (resp. —o0) si pour tout réel B > 0, il existe un réel
X—a

a > 0 tel que pour tout x € DfN] — a; af, f(x) > B (resp. f(x) < —B) :

(VB > 0)(Ja > 0)(Vx € DeN] — a; ), f(x) > B (resp. f(x) < —B).
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Généralisation des exemples précédents

Dans toute la suite, f désigne une fonction définie sur un sous-ensemble
D de R et a un réel n'appartenant pas a Dr, mais qui en est un point
frontiére : Yo > 0, DeN] — «; a[# 0.

Typiquement, a est une valeur interdite de f au bord de son ensemble de
définition Dr.

Une définition formelle de la limite

On dit que f a pour limite +o00 (resp. —oo) lorsque x tend vers a, et on

note IiLn f(x) = +oo (resp. —o0) si pour tout réel B > 0, il existe un réel
X—a

a > 0 tel que pour tout x € DfN] — a; af, f(x) > B (resp. f(x) < —B) :

(VB > 0)(Ja > 0)(Vx € DeN] — a; ), f(x) > B (resp. f(x) < —B).

Remarquons que si f était définie en a, on aurait nécessairement une
limite finie (en cas d’existence de limite) égale a f(a). Nous le
démontrerons dans un autre diaporama.
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Généralisation des exemples précédents

Définitions formelles des limites a droite/a gauche

© On dit que f a pour limite a gauche +oo (resp. —o0) lorsque x

tend vers a, et on note lim f(x) = +oo (resp. lim f(x) = —o0) si
X X—)_37 , X—a -
pour tout réel B > 0, il existe un réel a > 0 tel que pour tout

x € DrN]a — a; a[, f(x) > B (resp. f(x) < —B).
@ On dit que f a pour limite a droite +oo (resp. —oo) lorsque x tend
vers a, et on note lim f(x) = +oo (resp. lim f(x) = —o0) si pour
+ x—at
tout réel B > 0, il existe un réel a > 0 tel que pour tout
x € DrN]a; a+ af, f(x) > B (resp. f(x) < —B).
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Généralisation des exemples précédents

Définitions formelles des limites a droite/a gauche

© On dit que f a pour limite a gauche +oo (resp. —o0) lorsque x

tend vers a, et on note lim f(x) = +oo (resp. lim f(x) = —o0) si
X X—)_37 , X—a -
pour tout réel B > 0, il existe un réel a > 0 tel que pour tout

x € DrN]a — a; a[, f(x) > B (resp. f(x) < —B).
@ On dit que f a pour limite a droite +oo (resp. —oo) lorsque x tend
vers a, et on note lim f(x) = +oo (resp. lim f(x) = —o0) si pour
+ x—at
tout réel B > 0, il existe un réel a > 0 tel que pour tout
x € DrN]a; a+ af, f(x) > B (resp. f(x) < —B).

Remarquons que dire que f a pour limite a gauche (resp. a droite) +oco en
a signifie que la restriction de f a DfN] — oo; a[ (resp. a DrN]a; +o00[) a
pour limite 4-c0.
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Asymptotes verticales

Soit f une fonction définie sur D et a un réel adhérent a Dr en lequel
n'est pas définie : typiquement une valeur interdite qui est un point
frontiére de Dsy.

Cr désigne la courbe représentative de la fonction f;

On dit que la droite D d'équation x = a est asymptote verticale a Cr si :

Q lim f(x) = o0

X—a

ou
Q@ lim f(x) = +oo

X—a~

ou
Q@ Ilim f(x) =+

x—at
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Asymptotes verticales

Soit f une fonction définie sur D et a un réel adhérent a Dr en lequel
n'est pas définie : typiquement une valeur interdite qui est un point
frontiére de Dsy.

Cr désigne la courbe représentative de la fonction f;

On dit que la droite D d'équation x = a est asymptote verticale a Cr si :

Q lim f(x) = o0

X—a

ou
Q@ lim f(x) = +oo

X—a~

ou
Q@ Ilim f(x) =+

x—at

Bref, "plus x se rapproche de a", "plus f(x) explose vers l'infini I"
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Exemples classiques a connaitre

Exemples de fonctions avec asymptotes verticales

1
Q 1 est définie sur R\ {a} par f(x) = —aF (ke N*) en a.
x_1
@ f est définie sur R\ {0} par f(x) = €

(k>2)en0.

xk

In(x)

[ par f(x) = tan(x) en —5 et en %

© f est définie sur R \ {1} par f(x) =

(k>1)en 1

© f est définie sur} 2 >
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Exemples classiques a connaitre

1 1
X—>—4~ (X + 4)2 x—y—4+ (X + 4)2
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Exemples classiques a connaitre

Cr
20
15
10
3.5 -2‘3 2 0.5 1 15 2 25 3 315 4 45 3 55 6 6.5 3 »

=20

.eX— .=

lim —5— =—ocet lim —5— =+

x—0~ X x—0+t X
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Exemples classiques a connaitre

02
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Exemples classiques a connaitre

lim tan(x) = —oco et lim tan(x) =400
T =

X—— " X——=

2 2
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Exemples classiques a connaitre

Démontrons par exemple le point 2.
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Exemples classiques a connaitre

Démontrons par exemple le point 2.
Soit donc k un entier naturel supérieur ou égal a 2 et x un réel strictement

positif (le cas ol x est strictement négatif se traiterait de méme).

Rappelons que la fonction exponentielle exp est dérivable sur R et égale a
sa propre dérivée. De plus exp(0) = % = 1.
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Exemples classiques a connaitre

Démontrons par exemple le point 2.

Soit donc k un entier naturel supérieur ou égal a 2 et x un réel strictement
positif (le cas ol x est strictement négatif se traiterait de méme).

Rappelons que la fonction exponentielle exp est dérivable sur R et égale a
sa propre dérivée. De plus exp(0) = % = 1.
En particulier exp est dévivable en 0 et donc par définition du nombre

dérivé : lim exp(x) = exp(0) = exp’(0) = exp(0) = 1.
x—0 x—0
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Exemples classiques a connaitre

Démontrons par exemple le point 2.

Soit donc k un entier naturel supérieur ou égal a 2 et x un réel strictement
positif (le cas ol x est strictement négatif se traiterait de méme).

Rappelons que la fonction exponentielle exp est dérivable sur R et égale a
sa propre dérivée. De plus exp(0) = % = 1.

En particulier exp est dévivable en 0 et donc par définition du nombre

dérivé : lim exp(x) = exp(0) = exp’(0) = exp(0) = 1.
x—0 x—0

X

On a donc Ilim =1 et partant, comme k > 2, lim ——1 = t°o°
x—0t X x—0t X%

d'ol par produit :
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Rappelons que la fonction exponentielle exp est dérivable sur R et égale a
sa propre dérivée. De plus exp(0) = % = 1.

En particulier exp est dévivable en 0 et donc par définition du nombre

dérivé : lim exp(x) = exp(0) = exp’(0) = exp(0) = 1.
x—0 x—0

X

On a donc Ilim =1 et partant, comme k > 2, lim ——1 = t°o°
x—0t X x—0t X%

d'ol par produit :

x—s0+  xk
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Quelques exercices

En anticipant un peu sur les regles de calcul algébrique sur les limites (que
vous avez déja appliquées avec les suites numériques), déterminez les
limites (ou limites a droite / a gauche) en a de chacune des fonctions qui

suivent :
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En anticipant un peu sur les regles de calcul algébrique sur les limites (que
vous avez déja appliquées avec les suites numériques), déterminez les
limites (ou limites a droite / a gauche) en a de chacune des fonctions qui
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Exercices classiques

|

3x —2
o f(x)_2x+5 ena=—o.
3x +2
Q f(X)—men a=-3eta=2
I
Q f(x)= % en a = 1. Ne pas oublier que In(1) =0 ...
=
o f(x):ex3 ena=0.
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