
Continuité et dérivabilité d’une
fonction de la variable réelle



1 Rappel : Limite d’une fonction en un réel a
Dans toute la suite, D désigne un intervalle ou une réunion d’intervalles

non réduits à un point.

Définition : On dit que la fonction f définie sur D admet pour limite le réel
` lorsque x tend vers a adhérent à D, et on note lim

x→a
f(x) = `, si pour tout

intervalle ouvert W centré en l on peut trouver un intervalle ouvert V centré
en a tel que pour tout réel x appartenant à V ∩D, on a f(x) ∈ W .

1.1 Cas où f n’est pas définie en a

Nous reprenons la définition générale de la limite en un réel a donnée précé-
demment, mais nous l’appliquons d’abord dans le cas où la fonction f n’est
pas définie en a. Cependant, le réel a est "adhérent" à D.

Exemple : Soit f la fonction définie sur D = R \ {0} par f(x) = 2x. Alors on
a lim

x→0
f(x) = 0.

Démonstration : Sans perte de généralité, on peut supposer W de la forme

W =]−ε; ε[. Posons alors V =]−ε/2; ε/2[. Si x ∈ V ∩D, on a f(x) = 2x ∈ W .
D’où le résultat.
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Remarques :
— Si la limite d’une fonction f existe en un réel a, alors elle est unique.
— De plus, f est bornée "au voisinage" de a.
— On peut définir la notion de limite à droite et de limite à gauche

d’une fonction f en a en remplaçant V ∩D par ]a; +∞[∩D (respecti-
vement ]−∞; a[∩D) dans la définition précédente. On note lim

x→a+
f(x)

(respectivement lim
x→a−

f(x)).

1.2 Cas où f est définie en a

Théorème 1 : Si f est définie en a et si f admet une limite finie ` lorsque
x tend vers a, alors nécessairement ` = f(a).

Théorème 2 : Supposons que f est définie en a. Alors lim
x→a+

f(x) = lim
x→a−

f(x) =

` et ` = f(a) si et seulement si lim
x→a

f(x) = `.

2 Continuité d’une fonction

2.1 Définition de la continuité

Définition 1 : On dit que la fonction f est continue en a ∈ D si f admet
une limite finie ` en a.

Remarque : Comme vu précédemment, on a alors nécessairement ` = f(a).
On énoncera la :

Définition 2 : On dit que la fonction f est continue en a ∈ D si lim
x→a

f(x) = f(a) .

Formellement, (∀ε > 0)(∃α > 0)(∀x ∈]a− α; a+ α[∩D), |f(x)− f(a)| < ε.

Exemples fondamentaux : les fonctions suivantes sont continues en chaque
point de leur ensemble de définition.

1. f est la fonction racine carrée.
2. f est une fonction polynôme.
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3. f est une fonction rationnelle (quotient de deux polynômes).
4. f est une fonction trigonométrique : sin, cos, tan.
5. f est la fonction exponentielle.
6. f est la fonction logarithme népérien.

Définition 3 : On dit que la fonction f est continue sur D si f est continue
en chaque point de D.

Interprétation géométrique : On peut tracer le graphe d’une fonction
continue sans lever le crayon. Mais ce n’est pas toujours facile ! (il existe des
fonctions continues dérivables nulle part)

Exercice 1 : Dessiner le graphe d’une fonction f continue sur D = [−2; 2] et
le graphe d’une fonction g définie sur D = [−2; 2], discontinue en x = 1.

Continuité à gauche et à droite : Soit f une fonction définie sur D et
a ∈ D. Alors f est continue à droite (resp. à gauche) en a si limx→a+ f(x) =
f(a) (resp. si limx→a− f(x) = f(a)).

2.2 Propriétés calculatoires

Théorèmes généraux : très utilisés en pratique !
1. La somme de deux fonctions continues sur D est une fonction continue

sur D.
2. Le produit de deux fonctions continues surD est une fonction continue

sur D.
3. Si f et g sont deux fonctions continues sur D et si g 6= 0 sur D, alors

f

g
est une fonction continue sur D

4. Si f est une fonction continue sur D, à valeurs dans D′ et g une
fonction continue sur D′, alors la fonction composée g ◦ f est une
fonction continue sur D.

Exercice 2 :
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1) Prouver que la fonction définie sur D = R \ {0} par f(x) = 4x3 +
5

x2
est continue sur D.

2) Prouver que la fonction définie sur D = R par f(x) = xsin
(
1

x

)
si

x 6= 0 et f(0) = 0 est continue sur D.
3) Un exemple plus "bourrin" : Soit f la fonction définie sur D = R par

f(x) =

√
1 + 2x2 − 1

x
si x 6= 0 et f(0) = 0. Alors f est continue sur D.

(on prouvera d’abord la continuité de f sur R∗ à l’aide des théorèmes
généraux, puis la continuité de f en 0.

2.3 Continuité et suites

Théorème 3 : Soit (un) une suite définie par récurrence : u0 est donné et
pour tout n ∈ N, un+1 = f(un). Si (un) converge vers un réel ` et si f une
fonction continue en `, alors ` = f(`).

Ce théorème est très utile pour déterminer la valeur des limites possibles
d’une suite (un) définie par récurrence à l’aide d’une fonction continue f . On
résout l’équation x = f(x).

Ce théorème peut être même "affiné" pour caractériser la continuité d’une
fonction f en un réel a.

Théorème 4 (caractérisation séquentielle de la continuité) : Soit f
une fonction définie sur D et a ∈ D, alors : f est continue en a si et seulement
si pour toute suite (un) convergeant vers a, la suite (f(un)) converge vers f(a).

On en déduit un critère de non continuité de f en a : si l’on trouve une suite
(un) d’éléments de D convergeant vers a mais telle que (f(un)) ne tende pas
vers f(a), alors f n’est PAS continue en a.

Exercice défi (difficile) :

Justifiez que la fonction définie sur R par f(x) =

0 si x ≤ 0

1− xE
(
1

x

)
si x > 0

est continue en 0 et même partout sauf aux réels de la forme
1

n
, (n ∈ N∗).
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N’hésitez pas à utiliser votre calculatrice pour visualiser le graphe de f ,
notamment entre 0 et 1.

3 Dérivabilité d’une fonction
Définition 4 : On dit que la fonction f définie surD est dérivable en a ∈ D
lorsque lim

x→a

f(x)− f(a)
x− a

existe et est finie. On note cette limite f ′(a).

Remarques et propriétés :
1. Si f est dérivable en a, alors f est continue en a. La réciproque est

fausse ! ! !
Exercice 3 : donner deux contre-exemples (mais pas pour les mêmes
raisons).

2. f ′(a), s’il existe, est le coefficient directeur de la tangente Ta à la
courbe représentative C de f au point A(a; f(a)).

3. L’équation de la tangente Ta à la courbe représentative C de f au
point A(a; f(a)) s’écrit : y = f ′(a)(x− a) + f(a) .

Définition 5 : Une fonction f est dérivable sur D si f est dérivable en
chaque réel a appartenant à D.

Une fonction f dérivable sur D est donc "lisse", dans le sens où chaque point
de sa courbe représentative admet une tangente non verticale.

Exemples fondamentaux : les fonctions suivantes sont dérivables en chaque
point de leur ensemble de définition.

1. f est la fonction cosinus ou la fonction sinus
2. f est une fonction polynôme
3. f est une fonction rationnelle (quotient de deux polynômes)
4. f est la fonction logarithme népérien
5. f est la fonction exponentielle
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Théorèmes généraux : Très utiles en pratique !
1. La somme de deux fonctions dérivables est une fonction dérivable
2. Le produit de deux fonctions dérivables est une fonction dérivable
3. Si f et g sont deux fonctions dérivables sur D et si g 6= 0 sur D, alors

f

g
est une fonction dérivable sur I

4. Si f est une fonction dérivable surDI, à valeurs dans D′ et g une
fonction dérivable sur D′, alors la fonction composée g ◦ f est une
fonction dérivable sur D.

Tableau des dérivées usuelles : cf annexe 1

Tableau des opérations sur les dérivées : cf annexe 2

Exercice 4 : La fonction partie entière.
Soit x un réel. On définit la partie entière de x et on note E(x) le plus
grand entier relatif n tel que n ≤ x.

1) Calculer E(1, 5) ; E(2) ; E(0, 99) ; E(−1, 5).
2) Tracer la courbe représentative de la fonction partie entière sur I =

[−3; 3[.
3) Justifier que E est continue sur R \ Z et discontinue sur Z. Vous

préciserez en particulier lim
x→n−

E(x) et lim
x→n+

E(x)

4) On définit la fonction f sur [−1; 2[ par f(x) = E(x)sin(πx).

a) Exprimer f(x) à l’aide de sin(πx) lorsque x appartient à l’un des
intervalles suivants : [−1; 0[, [0; 1[ et [1; 2[.

b) Prouver que f est continue sur [−1; 2[
c) f est-elle dérivable en 0 ? en 1 ?
d) Dresser le tableau de variations de f sur [−1; 2[
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4 Théorème(s) des valeurs intermédiaires
Ce théorème, fondamental en analyse sera démontré ultérieurement en

utilisant les résultats établis au chapitre sur les suites. Nous programmerons
par ailleurs la méthode utilisée pour la démonstration, dite méthode de
dichotomie, pour résoudre certaines équations de manière numérique.

Théorème des valeurs intermédiaires sur un segment [a; b] : Soit f
une fonction continue sur [a; b]. A lors pour tout réel k ∈ [f(a); f(b)] il existe
(au moins) un réel c ∈ [a; b] tel que f(c) = k.

Remarque : le réel c n’est pas forcément unique. Dans le graphique précédent,
on remarque aisément que k a trois antécédents par f . Il s’agit donc d’un
théorème d’existence. On peut le traduire de la manière suivante : Pour tout
réel k compris entre f(a) et f(b), l’équation f(x) = k a au moins une solution
c dans [a; b].
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Moyennant quelques hypothèses supplémentaires, on peut obtenir l’unicité
d’une telle solution.

TVI strictement monotone : Soit f une fonction continue et stric-
tement monotone sur l’intervalle [a; b]. Alors pour tout réel k compris
entre f(a) et f(b), il existe un UNIQUE réel x appartenant à [a; b] tel que
f(x) = k.

Corollaire très utile : Soit f une fonction continue et strictement monotone
sur l’intervalle [a; b]. Si f(a)f(b) < 0, il existe un unique réel c ∈ [a; b] tel que
f(c) = 0.

Par translation, on peut toujours utiliser le TVI strictement monotone
sous la forme de son corollaire, qui est donc le plus utilisé en pratique.

Remarque importante : Les théorèmes des valeurs intermédiaires et TVI
strictement monotone s’étendent aisément au cas où f est définie sur un in-
tervalle ouvert ou semi-ouvert, borné ou non. Les valeurs f(a) et f(b) sont
alors remplacées par des limites.
Par exemple, si f est une fonction continue sur [a; b[, le TVI s’énonce ainsi :

TVI : Pour tout réel k ∈ [f(a); lim
x→b

f(x)[ (ou k ∈] lim
x→b

f(x); f(a)]), il existe

au moins un réel c ∈ [a; b[ tel que f(x) = k ; avec unicité si f est strictement
monotone.

Exercice 5 : Prouver que l’équation x5 + x − 3 = 0 a une unique solution
c dans R et en donner un encadrement à 10−1 près. Vous utiliserez votre
calculatrice pour ce dernier.

Exercice 6 : Soient f et g les fonctions définies sur R par f(x) =
1

4
x4+

1

2
x2−

x− 1 et g(x) = x3 + x− 1.

1) Calculer g′(x), en déduire son signe et les variations de g.
2) Démontrer que l’équation g(x) = 0 a une unique solution c dans R.
3) Calculer f ′(x), étudier son signe et en déduire les variations de la

fonction f . Dresser ensuite son tableau de variations.
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5 Annexes

5.1 Dérivées des fonctions usuelles

On vous laisse marquer (très clairement) à droite du tableau sur quel(s) in-
tervalle(s) les règles suivantes sont valables.

Si f(x) est égal à alors f ′(x) est égal à
k 0
x 1
x2 2x

xn (n ≥ 1) nxn−1

1

x
− 1

x2√
x

1

2
√
x

sin(x) cos(x)
cos(x) − sin(x)
ex ex

ln(x)
1

x

5.2 Opérations sur les dérivées

On vous laisse marquer (très clairement) à droite du tableau sur quel(s) in-
tervalle(s) les règles suivantes sont valables.

Si f(x) est de la forme alors f ′(x) est égal à
u(x) + v(x) u′(x) + v′(x)
u(x)v(x) u′(x)v(x) + v′(x)u(x)

ku(x) (k ∈ R) ku′(x)
1

u(x)
(u(x) 6= 0) − u

′(x)

u(x)2

u(x)

v(x)
(v(x) 6= 0)

u′(x)v(x)− v′(x)u(x)
v(x)2

v ◦ u(x) v′ ◦ u(x)× u′(x)
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