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Résumé

Ce petit document, largement inspiré par les travaux d’Arthur Engel [2], a pour unique préten-
tion de revisiter deux exercices du Concours C, mais en leur apportant un éclairage différent,
notamment & travers la modélisation préalable des situations exposées, la programmation ef-
fective de scripts (en langage Python) et I'utilisation de graphes probabilistes. 11 rejoint en cela
I’enseignement de spécialité "mathématiques" du bac ES, mais va un peu plus loin au niveau
théorique (niveau L1 ou L2 maximum). Les sujets exposés peuvent aisément étre décortiqués
afin de fournir une base pour un sujet de probléme revisité. Mais revenons a ’essentiel ! L’in-
térét d’étudier les graphes probabilistes et leurs matrices associées tient a un faible arsenal
d’outils puissants permettant de résoudre de nombreux problémes liés aux processus aléa-
toires discrets. Ils généralisent par ailleurs les arbres de probabilité dont 1'utilisation aisée est
familiére aux éléves du secondaire.

1 Processus aléatoires discrets

Nous sommes habitués lors de la modélisation probabiliste d’un énoncé faisant intervenir
une expérience aléatoire, d’introduire les notions d’univers, d’événement et de variable aléa-
toire (réelle ou vectorielle). Il en ressort néanmoins une impression statique de 1'expérience
aléatoire considérée. Le point de vue qui sera adopté ici est celui de la dynamique, avec une
évolution dans le temps.

Considérons par exemple la trajectoire d’une poussiére sur la surface d’'une nappe d’eau. On
peut découper cette surface en n carrés élémentaires puis observer la présence de la poussiére
dans chacun de ces carrés au cours du temps, qui lui-méme peut étre discrétisé. Nous obtenons
alors ce que nous définirons plus loin comme un processus aléatoire discret. Ainsi, nous qua-
lifierons plus volontiers 'univers €2 d’espace des états, en référence aux systémes dynamiques,
plutot qu’ensemble des événements.

L’étude des transitions de la particule d’un état a 'autre a des représentations commodes : &
I’aide de graphes orientés et pondérés ou bien matriciellement. Ces deux approches sont com-
plémentaires et 'utilisation de 'une plutot que l'autre dépend avant tout du cas considéré.
Notons que généralement, il est préférable de commencer par 'approche graphe probabiliste
avant de passer a ’approche matricielle dans un souci de visualisation des états et de leurs
transitions.

1.1 Graphes probabilistes et matrices de transition
1.1.1 Arbres de probabilités

Nous sommes tous familiers de 'utilisation d’arbres de probabilités pour modéliser une
situation dynamique : tirages successifs avec ou sans remise notamment. Rappelons les régles



usuelles :

Régle 1 : La probabilité, partant d’un noeud donné de ’arbre de réaliser un parcours donné,
est égale au produit de toutes les probabilités de transition (inscrites sur les segments) le long
de ce parcours.

Régle 2 : La probabilité d’aller de A & B est la somme des probabilités de tous les chemins
conduisant de A a4 B.

Régle 3 : La somme des probabilités des segments issus d’'un méme nceud est égale a 1.

Remarque 1-1-1-1 :

1. La régle 1 n’est rien d’autre que la traduction de la formule des probabilités composées :
Si P(AyNAyN---NA,) >0, alors :

P(Al M A2 NN An+1) = P(AI)PAl (AQ)PAlmAQP(Ag) - PAlﬂ...An(An—l-l)

2. La régle 2 n’est que la traduction de P(C) = Z P(z;), ou Q= {x; ; i € I}.
{i;z,€C}
3. La régle 3 est la traduction de la formule des probabilités totales.

Exemple 1-1-1-2

Un détaillant achéte ses produits chez deux fournisseurs dont le premier, noté A lui fournit
10% de ses articles. Parmi les articles fournis par A, 99% n’ont pas de défaut de fabrication :
événement B. Parmi les articles fournis par le second fournisseur, 98% n’ont pas de défaut de
fabrication.

On préléve au hasard un article du stock du détaillant. Calculez la probabilité qu’il n’ait pas
de défaut de fabrication.

O (B)P(ANB)=0,099_

@® P(B) = P(A)Ps(B) + P(A)Px(B) = 0,981

Le calcul sus-mentionné est une application immeédiate de la formule des probabilités totales.
Avantage de I’arbre : nous percevons la dynamique du processus! Généralisons-donc un peu...
de maniére heuristique en gardant les mémes régles de parcours.

1.1.2 Un exemple modéle

Yom suait & grosses gouttes. Faut dire qu’il n’avait pas fait les choses a8 moitié en marchant
activement depuis le ministére de ’agriculture, situé a deux pas des Invalides. ’été parisien
commengait tout juste a poindre le bout de son nez qu’il en avait asséché sa gorge. Vite, se



désaltérer... Une terrasse accueillante prés de I’hotel de ville lui tendait les bras. La chaise en
osier craqua subrepticement lorsqu’il s’assit nonchalamment en étirant ses membres alourdis.
Ses lévres frémissantes saluérent le demi pression qu’il savoura goulument... jusqu’au moment
fatidique de I’addition! Cinq euros!

"Bigre! Diantre! Purée de forficules! Paris sera toujours Paris!" se dit-il en essuyant sa mous-
tache du revers de 'index.

Il farfouilla dans sa poche pour y trouver sa bourse en cuir élimée par les ans. Mais celle-ci
ne contenait plus qu’un seul et malheureux euro. En regardant le nom du troquet : "Pie et
Matou", un frisson glacé parcourut son échine. Un de ses collégues venant d’Ardéche et dans
la déche y avait vécu un moment douloureux face aux trois tauliéres : Brigida, dite Bri la
géometre ; Christelle, dite Cricri 'aréne, et Nathalie, dite Nath I’Aligot.

Mais les trois amazones semblérent compréhensives lorsqu’il leur déclara ne pouvoir leur resti-
tuer leur dii qu’a hauteur d’un euro ; d’autant que les distributeurs alentours étaient en panne
comme de par hasard!

— C’est pas grave mon biquet, déclara Brigida un sourire en coin. Je te propose un petit
jeu qui va te plaire.

— Lequel 7 demanda Yom les lévres séches.

— J’ai une piéce parfaitement honnéte comme moi, dit Brigida d’un air entendu. Tu vas la
lancer autant de fois que nécessaire pour gagner mon dii de cing euros. Si tu fais Pile,
tu gagnes la manche, sinon tu la perds. Voici les régles : tant que tu disposes d’un ou
deux euros, tu joues ton pécule. Si tu as trois ou quatre euros, tu joues le complément
& cinq euros... & moins que tu ne perdes entre temps. Mais si tu perds...

— Quoi ? interrogea Yom le regard hagard.

— Je réaliserai ton réve d’artiste : tu entreras en Seine!

Yom sortit un papier de sa poche afin de calculer ses chances de rester au sec. Rien de tel
qu’un bon petit graphe pour se détendre. Voici ce qu’il scribouilla :

L’état de départ est noté 1 (comme un euro, ce dont je dispose) et ceux de fin (appelés états
absorbants) sont notés 0 et 5 (comme zéro et cing euros). Entre-temps, je peux passer par les
états 2, 4 et 3. En construisant le graphe petit & petit en fonction du résultat obtenu a chaque
tour, j’obtiens donc :

Ok! Ok! Les chemins menant au gain sont ceux qui partant de 1 ont pour terminaison 5,

soit :
-Cy:1—2—4—5
-Cy:1—2—4—3—5
tout ceci précédé de n boucles, ot n est un entier naturel éventuellement nul et la boucle le
Y
=I5

Bon, ¢a m’étonnerait que je boucle une infinité de fois, mais je dois quand méme le prendre

chemin 1 — 2 — 4 — 3 — 1, de probabilité 3
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en considération. Résumons donc tout ca...

S S U B =S I 1
P(Gain) = — ] x= 4+ — | x= =-.
=3 () 5 % (8) % -3
n=0 n=0
n boucles suivi de Cy n boucles suivi de C2

Comme dirait Cambronne : M. ..E! Ca sent la mise en biére tout ¢a! marmonna Yom. Je suis
vraiment mouillé dans une drole d’histoire !

Ce n’était pas "Alain ’Amanite" & qui il avait mailé son probléme qui allait le contredire. Sa
simulation dont le script est donné ci-dessous arrivait inévitablement & la méme conclusion !

def unePartie() :

somme=1 #somme initiale du joueur
while somme not in [0, 5]:
if somme in [1,2]: #La mise qu'il va jouer en fonction
mise=somme #de la somme dont il dispose
else:

mise=5-somme
alea=randint (1, 2)

if alea==1: #Cas ou le joueur gagne une manche
somme=somme+mise
else:
somme=somme-mise
if somme==5: #Test de gain de la partie
return 1 #1 si gain
else:
return 0 #0 si perte

#Programme principal
from random import randint
G=0
N=int (input ("Combien de parties ? "))
for i in range(N) :
G=G+unePartie ()
print ("Frequence de gain : ",G/N)

Méme pour N = 100000, la fréquence de parties gagnées oscillait autour de 0,2!
Yom se dit "Apreés tout, il fait chaud! Et la Seine est saine!"

Toute ressemblance avec des faits ou des personnes existant ou ayant eristé serait purement
fortuite.

1.1.3 Vocabulaire

L’exemple précédent est déja riche d’enseignement. Nous constatons en effet que les états 0 et
5 jouent un role particulier par rapport aux états 1, 2, 3 et 4. Une fois atteints, on y reste.
Nous parlerons d’états absorbants.

Nous considérerons toujours ultérieurement une suite (ce qui suppose le temps discrétisé)
d’expériences aléatoires dont les résultats, que nous appellerons états, appartiendront a un
ensemble au plus dénombrable. Nous n’étudierons donc pas des processus continus. Restons
discrets!



Définition 1-1-3-1 :
1. On note S l'ensemble des états qu’il est possible de visiter au cours de notre suite
d’expériences aléatoires. On supposera que cet ensemble est fini ou infini dénombrable.

2. On appelle probabilité de transition de i vers j, et on note p;; la probabilité de passer
de T'état ¢ & I’é¢tat j au cours d’'un pas de temps. A priori, p;; dépend de n et 1'on
devrait noter p;j(n), mais nous travaillerons uniquement sur des probabilités de transition
indépendantes de l'instant considéré. cf 1-1-3-3.

3. Un état 7 est dit absorbant s’il vérifie p;; = 1. On note B ’ensemble des états absorbants
de S et on I'appelle le bord de S.

4. On appelle état intérieur un élément de S\ B.

Définition 1-1-3-2 :
— Définition naive : La donnée de S, ensemble des états, des p;;, probabilités de transitions
entre états, ainsi que de I'état initial (ag, a1, ...) définit une chaine de Markov.
— Définition plus rigoureuse : Soit (X ),>0 une suite de variables aléatoires a valeurs
dans l’ensemble S des états que I'on peut supposer égal & N. On dit que cette suite

est une chaine de Markov si pour tout entier n > 1 et toute suite (ig,...,n—1,%,7)
def

d’éléments de S tel que P(B,) = P(Xo=i9N---NX,_1 =i,—1NX,, =1) >0, on ait
Pp,(Xn+1 = J) = Px,=i(Xn+1 = J).

On peut comprendre ceci comme : dans I’évolution au cours du temps, I’état du processus
a l'instant n 4+ 1 ne dépend que de celui-ci & I'instant n précédent, mais non de ses états

antérieurs. Le processus est sans mémoire.

Définition 1-1-3-3 :
1. Une chaine de Markov est dite absorbante si son bord B est non vide : il y a au moins

un état absorbant.

2. Une chaine de Markov est dite homogéne (en temps) si la probabilité Px, —;(X,+1 = j)
ne dépend pas de n > 0. On la note p;; et on 'appelle probabilité de transition (en une
étape) de l'état i a I'état j.

Remarque 1-1-3-4 : Dans cet article, nous étudierons les deux cas : chaines de Markov
absorbantes, et chaines sans bord. Dans tous les cas, elles seront supposées homogénes.

Propriété 1-1-3-5 :
1. Pour tout couple d’entiers (i,7) on a p;; > 0,
2. Pour tout ¢ € S, Zpij =1.

jeSs

Remarque 1-1-3-6 : La propriété précédente ne dit rien d’autre que pour chaque i € S,
lapplication B +— Y jes Pij définit une mesure de probabilité sur S.

1.2 Outils calculatoires

1.2.1 Reégles de parcours

Les régles présentées ici ont une importance pratique capitale! La régle 3, dont nous donne-
rons une autre version ultérieurement, se différencie des deux autres qui sont identiques & celles
présentées pour les arbres de probabilité, car elle permet de calculer non pas une probabilité,
mais une durée moyenne de parcours i.e une espérance.



Régle 1 : La probabilité, partant d’'un état donné du graphe de réaliser un parcours donné,
est égale au produit de toutes les probabilités de transition le long de ce parcours.

Reégle 2 : La probabilité, partant d’'un état intérieur ¢ donné, d’atteindre un quelconque
sous ensemble 1" du bord B est égale a la somme des probabilités de tous les chemins menant
de i & T'. Cette régle reste valable entre deux états intérieurs i et j.

Reégle 3 : La durée moyenne m,; des parcours aléatoires allant de I'état ¢ au bord B est la
moyenne pondérée des longueurs des parcours de ¢ & B, chaque longueur de parcours £, étant
pondérée par la probabilité p; de ce parcours.

Exemple 1-2-1-1 : Calculons & titre d’exemple la durée moyenne du jeu proposé par nos
tauliéres parisiennes :
n € N désignant le nombre de boucles, les chemins menant & B sont :

16
— Oy : n boucles — 1 — 2 — 4 — 3 — 5, de longueur 4n + 4 et de probabilité

1 n+1
(%)

1/1\"
— (3., : n boucles — 1 — 0, de longueur 4n + 1 et de probabilité 3 (1_6> ,

1/1\"
— Ch.p i nboucles — 1 — 2 — 4 — 5, de longueur 4n+3 et de probabilité 3 <—> ,

1/ 1\"
— Cyyp i1 boucles — 1 — 2 — 0, de longueur 4n + 2 et de probabilité 1 (1_6>

On en déduit que le temps moyen d’absorption est égal a :

N~ [dntd Ant3 Ant2 dnt 1] (1" SN (600426 (1"
=2 T s ta T 6) =2 "1 ) (i

soit en utilisant les propriétés de la série géométrique rappelées dans la partie complément :

60 1\"" 26 1\" 60 1 2% 1
Tm:— — — — = _7:2
162”2"(16) " 16 n>0<16> 162 (1—1/16)2 " 161 —1/16

Non seulement la probabilité de gagner a ce jeu est de 0,2 mais de plus, il dure en moyenne
deux lancers!

Régles de la valeur moyenne Ces outils permettent de simplifier les régles de parcours
présentées précédemment. Notamment la régle 3 de durée moyenne de parcours. On note
S ={1,2,...,n} 'ensemble des états.

Définition 1-2-1-2 : On appelle fonction de probabilité la fonction définie sur S a valeurs

dans [0;1], qui & chaque état i associe sa probabilité d’étre absorbée dans un sous-ensemble

T <. . R .
T C B. On la note pz(- ) ol, si aucune confusion n’est & craindre p;.

La formule des probabilités totales nous dit alors que pour tout état intérieur i :

n
pi = Zpikpk
k=1

Pour le bord : p; =1sii€Tetp;=0siic B\T.



Théoréme fondamental 1-2-1-3 :

1. Premiére régle de la valeur moyenne : La valeur de la fonction de probabilité en un état
intérieur 7 est la moyenne pondérée de ses valeurs en les états voisins de .

2. Seconde régle de la valeur moyenne : La valeur du délai d’absorption en un état
intérieur ¢ est de 1 plus la moyenne pondérée des délais d’absorption en les états voisins.

Remarques 1-2-1-4 :

1. Il est trés formateur de chercher une preuve de la seconde régle de la valeur moyenne.
Comme 4 est un état intérieur, on sait que le délai d’absorption m; est au moins égal &
1. Le lecteur intéressé pourra consulter [2] au besoin.

2. Il arrive parfois que les transitions entre états n’aient pas la méme durée. La seconde
régle de la valeur moyenne doit alors étre modifiée. Nous n’en parlerons pas ici.

1.2.2 Reéduction de graphes

Les premiéres et secondes régles de parcours nous permettent de simplifier avantageusement
certains graphes probabilistes. Citons notamment :

(a) Suppression d’un nceud : La régle 1 de parcours se traduit par :

équivaut & :

(b) Réunions de branches en paralléles : La régle 2 de parcours se traduit par :

a

équivaut & : b

a+b

O—-0

(c) Réunions de boucles issues d’un méme nceud : Ce n'est qu'un cas particulier de
ce que nous avons vu en (b).

O——AD—0
équivaut & : @

b

O—D—@
O

a+b
7




(d) Synthése : Simplification de graphes faisant intervenir des boucles :

G

Cas fréquent 1 :
équivaut a :

Cas fréquent 2 :

O—D——0@
équivaut a : ®

Appliquons ces résultats pour retrouver la probabilité de gain au jeu des tauliéres en simpli-
fiant petit a petit le graphe. Nous poserons p =1/2 :

L’état 1 est fondamental.

Regroupons les branches 1 — 0 et 1 — 2 — 0 de probabilités respectives p et p? qui ménent
a l'état absorbant O; les branches 1 — 2 — 4 — 5et1 — 2 — 4 — 3 — 5 de
probabilités respectives p? et p? qui ménent a 1’état absorbant 5, sans oublier la seule boucle
du graphe 1 — 2 — 4 — 3 — 1, de probabilité p*. Nous obtenons le graphe suivant :

lui-méme équivalent & :

On en déduit P(Gain) = plgjlff = 0,2. Pas de surprise!



1.2.3 Matrices de transition

Définition 1-2-3-1 : Soit une chaine de Markov a N états. On appelle matrice de transition
de cette chaine la matrice (P) = (psj)1<i,j<n des probabilités de transition entre deux états
du graphe probabiliste associé.

Définition 1-2-3-2 : On appelle matrice stochastiqgue une matrice carrée dont tous les co-
efficients sont positifs ou nuls et dont la somme des coefficients de chaque ligne est égale &

1.

Remarque 1-2-3-3 :
1. La matrice de transition d’un graphe probabiliste est une matrice stochastique.

2. Une matrice stochastique M admet toujours 1 comme valeur propre a laquelle on peut
associer le vecteur propre V dont toutes les composantes sont égales a 1.

3. Une matrice stochastique dont la somme des coefficients des colonnes est aussi égale & 1
est dite bistochastique.

Nous allons maintenant établir un résultat trés utile concernant les chaines de Markov homo-
génes. Cette propriété, appelée relation de Chapman-Komolgorov, permet de relier les proba-
bilités de transition en n étapes aux probabilités de transition en une étape.

On notera (P) = (pi,j); jes? la matrice de transition de la chaine de Markov étudiée.

(n)

Pour n > 0 et (i,5) € S%, on note p,” la probabilité, partant de I'état i a I'instant 0 d’étre

i7j
dans I’état j & l'instant n i.e pl(.g.) = Pxy=i(Xn = J).
On pose également P(™ := ( z('g))(i,j)esz-

Théoréme 1-2-3-4 : Pour tout entier n > 0, la matrice de transition en n étapes est égale
a la puissance n-iéme de la matrice de transition en une étape :

Corollaire 1-2-3-5 :  Pour tout entier n > 0, la matrice P(™ est stochastique.

Corollaire 1-2-3-6 : Pour tout (,5) € S? et tout (m,n) € N? on a :
5 = ol
keS

Citons maintenant un corollaire d’une utilité capitale :

Corollaire 1-2-3-7 : Notons pp 1’état initial du systéme et p,, son état aprés n transitions,
tous deux écrits sous la forme d’un vecteur ligne de longueur Card(S). Alors

Pn = Po(P)"
Il y aurait encore beaucoup a dire sur la classification des états, la notion de temps d’attente, le

conditionnement, ce qui dépasserait de loin le niveau de cet article. Nous renvoyons le lecteur
intéressé a [3] ou [4] par exemple.



Application au probléme des tauliéres :
La matrice de transition du graphe peut s’écrire, en notant p = 1/2 :

0 1 2 3 4 5

0/1 0 0 0 0 O

1lp 0 p 0 0 O

2l p 0 0 0 p O

(P) = 30 p 0 0 0 p
410 0 0 p 0 p

5\0 0 0 0 0 1

On a noté sur les bords horizontaux et verticaux de la matrice les différents états.
Par hypothése, 1'état initial est pp = (0,1,0,0,0,0). En utilisant la corollaire 3-1-2-7, la pro-
babilité de se retrouver dans I’état 7 & I'instant n est égale & :

Pn = Do(P)" = e3 (P)"

soit la seconde ligne de (P)™. Un petit coup de pouce de XCas donne :

1
2 2 2
()" =(£)"+(=2)"+(3)" (15+5xi)(F)" +(15—5x)( )"—50(%)”+20]
7 ) 100

SIS

Les formules, qui font apparaitre de "maniére artificielle" des complexes se simplifient aisément
(petit exercice de calcul rapide). en particulier, la probabilité d’avoir gagné au bout de n jets
de piéces est égale a :

(15 +50) (F)" + (15 = 5i) ()" =50 (1)" +20
100

Exercice :
N\
1. Déterminer en fonction de n la partie réelle de (15 + 5¢) (—Z> ,

2. En déduire la probabilité de gain p,, au bout de n jets de dés.

3. Calculer lim p,
n—-4o0o

1.2.4 Reéduction de graphes et matrices de transition

L’objectif est ici d’examiner les liens entre les procédures de réduction des graphes et leur
représentation matricielle.

Réunion de branches et de boucles paralléles : C’est une étape préalable indispen-
sable. Tant qu’il y a des branches paralléles, nous n’avons pas affaire, en toute rigueur, & un
graphe pondéré et une représentation matricielle n’est donc pas envisageable. Il convient donc
en premier lieu d’utiliser cette régle.

Soit M une matrice stochastique. Notons M := liIJIrl M™ lorsque cette limite existe.
n—-—+0oo
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Théoréme 1-2-4-1 : Si le bord B d’une chaine de Markov est non vide, la probabilité,
partant d’un état intérieur quelconque, d’atteindre B est égale a 1.

Le but des procédés de réduction est de construire & partir d’'un graphe G de matrice de
transition (P), le graphe G de matrice (P).
Remarquons qu’une matrice de transition est définie & permutation des sommets prés. On

ne peut donc en toute rigueur parler de la matrice de transition qu’une fois les sommets du
graphe numérotés fixés une fois pour toute.

Suppression de nceuds et de boucles :

00—

a pour matrice de transition :

Suppression d’un nceud :

0 a O
(P)=10 0 b
0 01
et pour tout entier n > 2 :
0 0 ab

On a donc (P) = (P)2. Le graphe G est donc :

@ ab 5 )

Suppression d’une boucle :

a pour matrice de transition :

a™ n—1 ak
(7))" _ < bZk:O )

0 1



et comme 0 <a<1,ona:

D'ou G :

Nous pouvons remarquer que les matrices de transition sont des matrices d’application affine
de R™.

Le jeu des tauliéres : Yom, l'esprit rafraichi par sa petite baignade se décida a reprendre
le dréle de jeu des tauliéres a la lumiére matricielle.

avec p = 1/2.
Si j’examine les chemins menant au sommet 5 j’obtiens le sous-graphe :

dont la matrice d’incidence est :

0 p 00O
000 p O
M=1]p 0 0 0 p
00 p 0 p
0 0001

VU
On a l'écriture par blocs : M =
0 1
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0 p 00
0
0 00 0
avec V = et U=
p 0 00 p
p
0 p O
si bien que :
n n—1y,k
[V (Zigve)u
0 1
n—1
Or (Id—V) (Z Vk> = Id —V". D’autre part, si ma barbiche ne me trompe pas, la matrice
k=0
Id — V est inversible et bien évidemment lim V"™ =0.

n—-+o0o
Dans ce cas précis, on a méme V* = p*Id, donc :
p ) p s

(Id—V)Id+V +V?4+V3) =1 -phHId

la limite étant assurée par le fait que 0 < p < 1. D’ou :
_ 0 NU
M =
0 1

La partie du graphe issue de I’état 1 est donnée par la premiére ligne de NU, soit

ot N = (Id+V +V24+V3).

1—p?

Yes! La boucle est bouclée!

Yom se dit que toutes ces réflexions qui avaient mis en ébullition ses neurones méritaient bien
un rafraichissement. Pourquoi pas une petite biére ?
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2 Concours C 2012

Cet exercice est une généralisation d’un probléme issu du concours C 2012.
Chaque seconde, une particule se déplace dans N + 1 compartiments numérotés de 0 & IV selon
la régle suivante :
— Si la particule est dans le compartiment 0, elle se déplace vers le compartiment 1 avec
la probabilité 1
— Si la particule est dans un compartiment i € [1, N — 1], alors elle se déplace de maniére
équiprobable vers le compartiment précédent ou le compartiment suivant,
— Si la particule est dans le compartiment N, elle y reste (absorption)
Calculez le temps moyen de parcours.

2.1 Simulation informatique

Donnons de suite un programme qui demande a l'utilisateur de saisir le nombre de portes
N séparant les compartiments et qui renvoie le temps moyen d’absorption de la particule.
Ce-dernier est calculé sur un grand nombre d’expériences temps saisi par 'utilisateur. Nous
avons pris ici temps=10 000.

from random import =

def deplacements() :
abscisse=deplacement=0
while abscisse<N:
k=random ()
if abscisse==0:
abscisse=abscisse+l
else:
if k<=0.5:
abscisse=abscisse+l
else:
abscisse=abscisse-1
deplacement=deplacement+1

if abscisse==N:
return deplacement

#Programme principal
N=int (input ("Combien de portes voulez-vous disposer ? "))
temps=int (input ("Sur combien de temps observer le mobile ? "))
3=0
deplacement_total=0
while j<temps:
deplacement_total=deplacement_totalt+deplacements ()
J=3+1

print ("Le mobile effectue en moyenne ",deplacement_total/temps," deplacements")

On obtient le tableau suivant :
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N Temps moyen de parcours

2 3.9722
3 8.9288
4
5
6

15.9898
24.9838
36.4928

I semble que le temps moyen d’absorption de la particule soit d’environ N? secondes s'il y a
N portes entre les compartiments.

2.2 Approche théorique

Le graphe modélisant le déplacement de la particule est aisé a construire a ’aide de ’énoncé :

1 1
1 2 2 1

O =0 =@ =0 (:>—>2 ™
1 1 1
2 2 2

Notons m; le temps moyen d’absorption (la particule arrive dans le compartiment N) pour
chaque état ¢. La seconde régle de la valeur moyenne et la condition de bord donnent :

my =0 (condition au bord)

m0:1+m1

1 .
mi:1+§(mi—1+mi+1) (1<i<N-1)

soit :
mN:O (1)
mo=1+m; (2)
Mmi—1 — 2m; + mip1 = —2 (1§’i§N—1) (3)

Le lecteur pourra, au besoin consulter la partie compléments, paragraphe 4-2.
(3) définit une suite récurrente affine d’ordre 2, dont les solutions s’écrivent comme somme
d’une solution particuliére et des solutions de I’équation homogéne associée :

(Eo):mi_1—2mi—|—mi+1:0 (1§Z§N—1)

L’équation caractéristique associée a (FEp) s’écrit 2?2 — 22 +1 = 0 qui admet pour unique

solution x = 1. Ainsi, les solutions de (Ep) sont de la forme u; = (Ai + B) x 1° = Ai + B.

D’autre part, il est aisé de constater que v; = —i% est une solution particuliére de (3).

Ainsi, m; = Ai+ B—i%2 (1<i< N —1).

On aimerait bien remplacer ¢ par 0 dans l'expression précédente. Pour cela, on utilise la

"ruse" classique suivante : on choisit m_; tel que (3) soit vérifié en remplagant ¢ par 0 :

m_1— 2mg+mq = —2. Mais alors mg = B. Or mg @ 1+m=1+A+B—-1= A+ B, dou

A=0.

On en déduit que pour tout 0 < i < N — 1, m; = B —42. Il reste a calculer la valeur de B.

Remplacons i par N —1 dans (3) : B— (N —2)2—2(B— (N —1)?) —l—@ = —2, ce qui conduit
=0

aprés un bref calcul & B = N2.

Ainsi, mg = N2, ce qui confirme les résultats obtenus dans la simulation précédente.

15



2.3 Commentaires et prolongements

Définition 2-3-1 : L’état 0 est dit réfiéchissant. Une fois visité, on en ressort juste aprés
avec la probabilité 1.

On pourrait aussi résoudre cet exercice en considérant des marches biaisées : la probabilité
de se déplacer a gauche ¢ est différente de celle de se déplacer & droite r & chaque pas de temps.
La méthode est la méme.

Exercice 2-3-2 : Une particule se déplace chaque seconde depuis ’abscisse 0 de maniére
équiprobable vers la droite ou vers la gauche d’une unité sur un axe gradué de —n a n. Les
états —n et n sont supposés absorbants. Calculez le temps moyen d’absorption.

Comparez avec le résultat obtenu au Concours C 2012. Justifiez de maniére heuristique.

Voici maintenant un autre exemple qui aurait pu donner lieu & un joli probléme du méme type
(exercice-défi) :

Exercice 2-3-3 : Une histoire de rencontre...
On étudie la premiére rencontre entre deux scarabées situés symétriquement sur un polygone
a 2P (p > 2) cotés. Le jeu se déroule ainsi :
— A Dinstant initial, deux scarabées sont situés symétriquement par rapport a O, centre
d’un polygone régulier & 2P cotés.
— Chaque seconde on lance une piéce pour chacun des scarabées. Si la piéce tombe sur pile
le scarabée concerné tourne dans le sens des aiguilles d’une montre, sinon il tourne dans
le sens inverse des aiguilles d’'une montre.

1. Créez un script prenant pour argument p et qui renvoie le temps moyen de premiére
rencontre. Il s’agit bien siir de calculer une fréquence. On pourra par exemple effectuer
10 000 expériences.

2. Dessinez un graphe probabiliste modélisant le probléme. Prouvez théoriquement que
pour tout entier naturel p > 2, le temps moyen de rencontre 7T}, est égal a 22p—3,

3. Créez un script prenant pour argument p et qui renvoie pour 10 000 expériences le
temps de premiére rencontre, qui sera indiqué en abscisse. En ordonnée sera indiquée
la fréquence de chaque temps de rencontre. Testez le script pour p = 3, 4, 5, 6. En
déduire la "forme" supposée de la distribution de la loi de 7). Vérifiez sur une échelle
logarithmique. Conclusion ?

4. Déterminez de maniére théorique la loi exacte de T;,. Comparez avec les résultats obtenus
expérimentalement.
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3 Concours C 2017

Un étudiant passionné d’informatique a créé un programme générant une suite de nombres
exclusivement composée de 0 et de 1 avec les conditions suivantes :
— les deux premiers nombres sont égaux & 1,
— si deux nombres consécutifs sont égaux a 1, alors le nombre suivant est égal & 1 avec une
probabilité de %,
— si deux nombres consécutifs sont égaux a 0, alors le nombre suivant est égal & 0 avec une
probabilité de %,
— si deux nombres consécutifs sont distincts, alors le nombre suivant est égal &4 0 ou 1 avec
équiprobabilité.
On note X, la variable aléatoire égale au n-iéme nombre généré par le programme.
Donner la loi de X, pour n > 3 ainsi que 'espérance de X,,.

3.1 Simulation informatique

Voici comment aurait pu procéder I'étudiant pour générer sa suite :

def parcours(L,n):

for i in range(n): #n est le temps d'observation
alea=random/()
if L[-2:]1==[1,1]: #0n observe les deux derniers termes
if alea<=2/3: #et on choisit le terme suivant
L.append (1) #en respectant les donnees de 1'exercice
else:
L.append(0)
elif L[-2:]==[0,0]:
if alea<=2/3:
L.append(0)
else:
L.append (1)
else:
if alea<=1/2:
L.append (0)
else:
L.append(1l)
return L

# Programme principal

from random import =

N=int (input ("Combien de temps d'observation ? "))

liste=[1,1] #Initialisation de la liste
print ("liste : ",parcours(liste,N))

Pas vraiment besoin d’étre passionné d’informatique pour créer ce script... Ceci dit, nous

allons voir dés le paragraphe suivant qu’il nous sera nécessaire d’entrer dans la matrice!

Utilisons le script précédent pour simuler la loi de probabilité de X, via I’approche fréquentiste.
Nous calculerons par exemple les lois approchées de X4 et de X7¢. Nous gardons en stock la
fonction parcours(L,n) définie précédemment ; n > 1 désigne toujours le nombre de transitions
souhaitées.

#Programme principal
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from random import =
N=int (input ("Nombre d'experiences ? "))
nb=int (input ("Nombre de transitions par experience ? "))
NO,N1=0,0
for j in range(N) :
Liste=parcours([1l,1],nb)
if Liste[len(Liste)-1]==

NO=NO+1
else:
N1=N1+1
print ("P (X", nb+2,"=0) = ",NO/N)
print ("P (X", nb+2,"=1) = ",N1/N)

Avec N=100 000 expériences, nous obtenons le tableau suivant :

Z; 0 1
fi 0,38083 0,61017
fio  0,49765 0,50235

ou f; (i = 4,10) désigne la fréquence de 0 (resp. de 1) comme dernier chiffre aprés i — 2
transitions. Attention au décalage, le nombre de départ 11, est de longueur 2.

3.2 Approche théorique

Puisque les deux derniers chiffres obtenus déterminent entiérement le suivant avec les condi-
tions citées, nous sommes amenés a définir naturellement quatre états : 11, 10, 01, 00. Les
probabilités de transition sont données par ’énoncé. D’ou le graphe probabiliste suivant :

Soit n un entier naturel supérieur ou égal a 3. Il est clair que X,,(Q2) = {0;1}.

L’état initial s’écrit 11 ; ainsi il faut n — 2 transitions pour connaitre le n-iéme nombre généré
par le programme. Essayons par exemple de calculer P(X,, = 1). Nous devons additionner la
probabilité de tous les chemins, qui, partant de ’état initial 11, arrivent au méme état ou a
I’état 01.

Seulement, le graphe est compliqué. Méme en essayant d’utiliser les méthodes de réduction.
Remarquons aussi qu’il n’y a aucun état absorbant. L’idée est donc d’utiliser I’outil matriciel.
Numérotons les états 1, 2, 3, 4 pour 11, 10, 01 et 00, de sorte que la matrice de transition s’écrit :

S NI=E O Wl
S NE O Wl

Wl O NI O
[JSR N (@) [NR (@)

—
co



Notons 7, = (ph, p2,p3,pt) la probabilité d’atteindre chacun des états 1, 2, 3 et 4 au bout de
n transitions. Par hypothése pyp = (1,0,0,0). On a la relation de récurrence py,+1 = prA. Une
récurrence facile ou l'utilisation du corollaire 1-2-3-7 nous améne a p,, = poA”™. Or po = ef
ol e; désigne le premier vecteur de la base canonique de R*. On en déduit que p, n’est rien
d’autre que la premiére ligne de A™.

Un petit coup de pouce de XCas nous donne directement la forme de A" :

—(—%)”+6(1%0)”+2(%)”+3 —2(- %)”+2(1%0)” 2(5)"+2 2(—%)"—2(%3"—2(%)”2 (—%)”—6(%1)0”+2(%)”+3
3(-3)" (élgn 3(5)"+8  6(=3)"~ (%1)0”+3(%)”+2 —6(—%)”+(1%0)”+3(%)”+2 —3(—%)”+3(1%0)”—3(%)"+3
—3(- %)”+3(1%0)” 3(5)"+8  —6(= %)"+(1%0)”+3(%)”+2 6(—%)”—(%1)0”+3(%)”+2 3(—%)"—3(%()]"—3(%)”+3
(=3)"- 6(%1)0”+2(%)”+3 2(-3)"- 2(%()]” 2(5)"+2 —2(—%)”+2(1%0)”—2(%)”+2 —(—%)”+6(1%0)”+2(%)”+3

Remarquons que P(X, =0) =p2_, +ph_, et P(Xn, =1) =pl_,+p3_,.
On en déduit la loi de probabilité de X,

P(X, = 0) = 110[ (-%)n_2—4<%>n_2+5

et ) )
1 1\"" 1\""
PX,=1)=—||-3 4| -
) . 1 1 n—2 1 n—2
Nous en déduisons que E(X,,) = P(X,, =1) = o 1l—3 +4 3 +5

Donnons les lois de probabilité de X4 et de X :

€Ty 0 1
P(Xy=x;) 0,389 06111
P(X10=1;) 0,4984 0,5016

Les résultats obtenus a la simulation précédente rejoignent la théorie. Ouf...
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4 Compléments

4.1 Petit point sur la série géométrique

+o0o
On appelle ainsi la série entiére définie sur D =] — 1; 1] par f(z) = Z "
n=0

Propriété 4-1-1 :

1. f est de classe C*° sur D et pour tout entier naturel p non nul, on a

+oo
P (z) = Zn(n —1)...(n—p+1)z"7?
n=p
1
2. Pour tout réel x € D =| —1;1[, on a f(z) = T
1 = 1
3. Pour tout réel z € D =] — 1;1[, on a f'(z) = (e i.e an"‘l = -z

n=1

4.2 Suites récurrentes affines d’ordre 2

Nous ne rappellerons que 'essentiel qui nous intéresse dans cet article. Pour une preuve
des résultats énoncés, on peut consulter :
https://fr.wikiversity.org/wiki/Approfondissement_sur_les_suites_numériques/
Suites_récurrentes_d’ ordre_deux

Considérons une suite réelle u définie par une relation de récurrence de la forme :

(B) {un+2 + aun+’1 + bu, =c
ug, w1 donnés

Définition 4-2-1 :
1. u est appelée suite affine linéaire d’ordre 2.

2. Les suites définies par la relation w49 + auy1 + bu, = 0 s’appellent suites récurrentes
linéaires d’ordre 2.

Propriété 4-2-2 : L’ensemble des suites récurrentes linéaires d’ordre 2 est un R—espace
vectoriel de dimension 2.

Définition et Propriété 4-2-3 : L’équation du second degré 22 + ax + b = 0 s’appelle
équation caractéristique de (Ep) : upt2 + atpy1 + bu, = 0.

1. Si I’équation caractéristique a deux solutions réelles distinctes « et 3, alors les solutions
de (Ep) sont de la forme :

u, = Aa™ + BB" ; (A, B) € R?

2. Si I’équation caractéristique a une unique solution réelle «y, alors les solutions de (Ep)
sont de la forme :

u, = (An+ B)ad ; (A, B) € R?
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3. Si I’équation caractéristique a deux solutions non réelles (nécessairement conjuguées) :
a + i3, alors les solutions de (Ey) sont de la forme :

u, = Aa™ cos(nfB) + Ba"sin(np) ; (A, B) € R?
Propriété 4-2-4 : Posons P(X) = X? +aX +b. Ainsi P'(X) =2X +a.

1. Si P(1) # 0, alors v, = -

2. Si P(1) = 0, nous distinguons deux sous-cas :

est une solution particuliére de (E).

a) Si P'(1) # 0 i.e a # —2, alors v, = 57 est une solution particuliére de (£),
b) Si P/(1) =0, alors v,, = % est une solution particuliére de (E).

E noncons maintenant le résultat le plus utile :

Propriété 4-2-5 : Toute solution de (E) s’écrit comme somme d’un élément de (Ey) et
d’une solution particuliére de (E).
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