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Résumé
Ce petit document, largement inspiré par les travaux d’Arthur Engel [2], a pour unique préten-
tion de revisiter deux exercices du Concours C, mais en leur apportant un éclairage différent,
notamment à travers la modélisation préalable des situations exposées, la programmation ef-
fective de scripts (en langage Python) et l’utilisation de graphes probabilistes. Il rejoint en cela
l’enseignement de spécialité "mathématiques" du bac ES, mais va un peu plus loin au niveau
théorique (niveau L1 ou L2 maximum). Les sujets exposés peuvent aisément être décortiqués
afin de fournir une base pour un sujet de problème revisité. Mais revenons à l’essentiel ! L’in-
térêt d’étudier les graphes probabilistes et leurs matrices associées tient à un faible arsenal
d’outils puissants permettant de résoudre de nombreux problèmes liés aux processus aléa-
toires discrets. Ils généralisent par ailleurs les arbres de probabilité dont l’utilisation aisée est
familière aux élèves du secondaire.

1 Processus aléatoires discrets

Nous sommes habitués lors de la modélisation probabiliste d’un énoncé faisant intervenir
une expérience aléatoire, d’introduire les notions d’univers, d’événement et de variable aléa-
toire (réelle ou vectorielle). Il en ressort néanmoins une impression statique de l’expérience
aléatoire considérée. Le point de vue qui sera adopté ici est celui de la dynamique, avec une
évolution dans le temps.
Considérons par exemple la trajectoire d’une poussière sur la surface d’une nappe d’eau. On
peut découper cette surface en n carrés élémentaires puis observer la présence de la poussière
dans chacun de ces carrés au cours du temps, qui lui-même peut être discrétisé. Nous obtenons
alors ce que nous définirons plus loin comme un processus aléatoire discret. Ainsi, nous qua-
lifierons plus volontiers l’univers Ω d’espace des états, en référence aux systèmes dynamiques,
plutôt qu’ensemble des événements.
L’étude des transitions de la particule d’un état à l’autre a des représentations commodes : à
l’aide de graphes orientés et pondérés ou bien matriciellement. Ces deux approches sont com-
plémentaires et l’utilisation de l’une plutôt que l’autre dépend avant tout du cas considéré.
Notons que généralement, il est préférable de commencer par l’approche graphe probabiliste
avant de passer à l’approche matricielle dans un souci de visualisation des états et de leurs
transitions.

1.1 Graphes probabilistes et matrices de transition

1.1.1 Arbres de probabilités

Nous sommes tous familiers de l’utilisation d’arbres de probabilités pour modéliser une
situation dynamique : tirages successifs avec ou sans remise notamment. Rappelons les règles
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usuelles :

Règle 1 : La probabilité, partant d’un nœud donné de l’arbre de réaliser un parcours donné,
est égale au produit de toutes les probabilités de transition (inscrites sur les segments) le long
de ce parcours.

Règle 2 : La probabilité d’aller de A à B est la somme des probabilités de tous les chemins
conduisant de A à B.

Règle 3 : La somme des probabilités des segments issus d’un même nœud est égale à 1.

Remarque 1-1-1-1 :

1. La règle 1 n’est rien d’autre que la traduction de la formule des probabilités composées :
Si P (A1 ∩A2 ∩ · · · ∩An) > 0, alors :

P (A1 ∩A2 ∩ · · · ∩An+1) = P (A1)PA1
(A2)PA1∩A2

P (A3) . . . PA1∩...An
(An+1)

2. La règle 2 n’est que la traduction de P (C) =
∑

{i;xi∈C}

P (xi), où Ω = {xi ; i ∈ I}.

3. La règle 3 est la traduction de la formule des probabilités totales.

Exemple 1-1-1-2 :
Un détaillant achète ses produits chez deux fournisseurs dont le premier, noté A lui fournit
10% de ses articles. Parmi les articles fournis par A, 99% n’ont pas de défaut de fabrication :
événement B. Parmi les articles fournis par le second fournisseur, 98% n’ont pas de défaut de
fabrication.
On prélève au hasard un article du stock du détaillant. Calculez la probabilité qu’il n’ait pas
de défaut de fabrication.

A

0,
1

B P (A ∩B) = 0,099
0,9

9

B
0,01

A

0,9 B P (A ∩B) = 0,882
0,9

8

B
0,02

⊕

P (B) = P (A)PA(B) + P (A)PA(B) = 0,981

Le calcul sus-mentionné est une application immédiate de la formule des probabilités totales.
Avantage de l’arbre : nous percevons la dynamique du processus ! Généralisons-donc un peu...
de manière heuristique en gardant les mêmes règles de parcours.

1.1.2 Un exemple modèle

Yom suait à grosses gouttes. Faut dire qu’il n’avait pas fait les choses à moitié en marchant
activement depuis le ministère de l’agriculture, situé à deux pas des Invalides. L’été parisien
commençait tout juste à poindre le bout de son nez qu’il en avait asséché sa gorge. Vite, se
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désaltérer... Une terrasse accueillante près de l’hôtel de ville lui tendait les bras. La chaise en
osier craqua subrepticement lorsqu’il s’assit nonchalamment en étirant ses membres alourdis.
Ses lèvres frémissantes saluèrent le demi pression qu’il savoura goulument... jusqu’au moment
fatidique de l’addition ! Cinq euros !
"Bigre ! Diantre ! Purée de forficules ! Paris sera toujours Paris !" se dit-il en essuyant sa mous-
tache du revers de l’index.
Il farfouilla dans sa poche pour y trouver sa bourse en cuir élimée par les ans. Mais celle-ci
ne contenait plus qu’un seul et malheureux euro. En regardant le nom du troquet : "Pie et
Matou", un frisson glacé parcourut son échine. Un de ses collègues venant d’Ardèche et dans
la dèche y avait vécu un moment douloureux face aux trois taulières : Brigida, dite Bri la
géomètre ; Christelle, dite Cricri l’arène, et Nathalie, dite Nath l’Aligot.
Mais les trois amazones semblèrent compréhensives lorsqu’il leur déclara ne pouvoir leur resti-
tuer leur dû qu’à hauteur d’un euro ; d’autant que les distributeurs alentours étaient en panne
comme de par hasard !

– C’est pas grave mon biquet, déclara Brigida un sourire en coin. Je te propose un petit
jeu qui va te plaire.

– Lequel ? demanda Yom les lèvres sèches.
– J’ai une pièce parfaitement honnête comme moi, dit Brigida d’un air entendu. Tu vas la

lancer autant de fois que nécessaire pour gagner mon dû de cinq euros. Si tu fais Pile,
tu gagnes la manche, sinon tu la perds. Voici les règles : tant que tu disposes d’un ou
deux euros, tu joues ton pécule. Si tu as trois ou quatre euros, tu joues le complément
à cinq euros... à moins que tu ne perdes entre temps. Mais si tu perds...

– Quoi ? interrogea Yom le regard hagard.
– Je réaliserai ton rêve d’artiste : tu entreras en Seine !

Yom sortit un papier de sa poche afin de calculer ses chances de rester au sec. Rien de tel
qu’un bon petit graphe pour se détendre. Voici ce qu’il scribouilla :

L’état de départ est noté 1 (comme un euro, ce dont je dispose) et ceux de fin (appelés états
absorbants) sont notés 0 et 5 (comme zéro et cinq euros). Entre-temps, je peux passer par les
états 2, 4 et 3. En construisant le graphe petit à petit en fonction du résultat obtenu à chaque
tour, j’obtiens donc :

2 4

0 5

1 3

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Ok ! Ok ! Les chemins menant au gain sont ceux qui partant de 1 ont pour terminaison 5,

soit :
– C1 : 1 −→ 2 −→ 4 −→ 5
– C2 : 1 −→ 2 −→ 4 −→ 3 −→ 5

tout ceci précédé de n boucles, où n est un entier naturel éventuellement nul et la boucle le

chemin 1 −→ 2 −→ 4 −→ 3 −→ 1, de probabilité

(
1

2

)4

=
1

16
.

Bon, ça m’étonnerait que je boucle une infinité de fois, mais je dois quand même le prendre
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en considération. Résumons donc tout ça...

P (Gain) =
+∞∑

n=0

(
1

16

)n

×
1

8
︸ ︷︷ ︸

n boucles suivi de C1

+
+∞∑

n=0

(
1

16

)n

×
1

16
︸ ︷︷ ︸

n boucles suivi de C2

=
1

5
.

Comme dirait Cambronne : M. . .E ! Ca sent la mise en bière tout ça ! marmonna Yom. Je suis
vraiment mouillé dans une drôle d’histoire !
Ce n’était pas "Alain l’Amanite" à qui il avait mailé son problème qui allait le contredire. Sa
simulation dont le script est donné ci-dessous arrivait inévitablement à la même conclusion !

def unePartie():

somme=1 #somme initiale du joueur

while somme not in [0,5]:

if somme in [1,2]: #La mise qu'il va jouer en fonction

5 mise=somme #de la somme dont il dispose

else:

mise=5-somme

alea=randint(1,2)

if alea==1: #Cas ou le joueur gagne une manche

10 somme=somme+mise

else:

somme=somme-mise

if somme==5: #Test de gain de la partie

return 1 #1 si gain

15 else:

return 0 #0 si perte

#Programme principal

from random import randint

20 G=0

N=int(input("Combien de parties ? "))

for i in range(N):

G=G+unePartie()

print("Frequence de gain : ",G/N)

Même pour N = 100000, la fréquence de parties gagnées oscillait autour de 0,2 !
Yom se dit "Après tout, il fait chaud ! Et la Seine est saine !"

Toute ressemblance avec des faits ou des personnes existant ou ayant existé serait purement

fortuite.

1.1.3 Vocabulaire

L’exemple précédent est déjà riche d’enseignement. Nous constatons en effet que les états 0 et
5 jouent un rôle particulier par rapport aux états 1, 2, 3 et 4. Une fois atteints, on y reste.
Nous parlerons d’états absorbants.
Nous considérerons toujours ultérieurement une suite (ce qui suppose le temps discrétisé)
d’expériences aléatoires dont les résultats, que nous appellerons états, appartiendront à un
ensemble au plus dénombrable. Nous n’étudierons donc pas des processus continus. Restons
discrets !
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Définition 1-1-3-1 :

1. On note S l’ensemble des états qu’il est possible de visiter au cours de notre suite
d’expériences aléatoires. On supposera que cet ensemble est fini ou infini dénombrable.

2. On appelle probabilité de transition de i vers j, et on note pij la probabilité de passer
de l’état i à l’état j au cours d’un pas de temps. A priori, pij dépend de n et l’on
devrait noter pij(n), mais nous travaillerons uniquement sur des probabilités de transition
indépendantes de l’instant considéré. cf 1-1-3-3.

3. Un état i est dit absorbant s’il vérifie pii = 1. On note B l’ensemble des états absorbants
de S et on l’appelle le bord de S.

4. On appelle état intérieur un élément de S \B.

Définition 1-1-3-2 :
– Définition naïve : La donnée de S, ensemble des états, des pij , probabilités de transitions

entre états, ainsi que de l’état initial (a0, a1, . . . ) définit une chaine de Markov.
– Définition plus rigoureuse : Soit (Xn)n≥0 une suite de variables aléatoires à valeurs

dans l’ensemble S des états que l’on peut supposer égal à N. On dit que cette suite
est une chaine de Markov si pour tout entier n ≥ 1 et toute suite (i0, . . . , in−1, i, j)

d’éléments de S tel que P (Bn)
def
= P (X0 = i0 ∩ · · · ∩Xn−1 = in−1 ∩Xn = i) > 0, on ait

PBn
(Xn+1 = j) = PXn=i(Xn+1 = j).

On peut comprendre ceci comme : dans l’évolution au cours du temps, l’état du processus
à l’instant n+1 ne dépend que de celui-ci à l’instant n précédent, mais non de ses états
antérieurs. Le processus est sans mémoire.

Définition 1-1-3-3 :

1. Une chaine de Markov est dite absorbante si son bord B est non vide : il y a au moins
un état absorbant.

2. Une chaine de Markov est dite homogène (en temps) si la probabilité PXn=i(Xn+1 = j)
ne dépend pas de n ≥ 0. On la note pij et on l’appelle probabilité de transition (en une
étape) de l’état i à l’état j.

Remarque 1-1-3-4 : Dans cet article, nous étudierons les deux cas : chaines de Markov
absorbantes, et chaines sans bord. Dans tous les cas, elles seront supposées homogènes.

Propriété 1-1-3-5 :

1. Pour tout couple d’entiers (i, j) on a pij ≥ 0,

2. Pour tout i ∈ S,
∑

j∈S

pij = 1.

Remarque 1-1-3-6 : La propriété précédente ne dit rien d’autre que pour chaque i ∈ S,
l’application B 7→

∑

j∈S pij définit une mesure de probabilité sur S.

1.2 Outils calculatoires

1.2.1 Règles de parcours

Les règles présentées ici ont une importance pratique capitale ! La règle 3, dont nous donne-
rons une autre version ultérieurement, se différencie des deux autres qui sont identiques à celles
présentées pour les arbres de probabilité, car elle permet de calculer non pas une probabilité,
mais une durée moyenne de parcours i.e une espérance.
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Règle 1 : La probabilité, partant d’un état donné du graphe de réaliser un parcours donné,
est égale au produit de toutes les probabilités de transition le long de ce parcours.

Règle 2 : La probabilité, partant d’un état intérieur i donné, d’atteindre un quelconque
sous ensemble T du bord B est égale à la somme des probabilités de tous les chemins menant
de i à T . Cette règle reste valable entre deux états intérieurs i et j.

Règle 3 : La durée moyenne mi des parcours aléatoires allant de l’état i au bord B est la
moyenne pondérée des longueurs des parcours de i à B, chaque longueur de parcours ℓk étant
pondérée par la probabilité pk de ce parcours.

Exemple 1-2-1-1 : Calculons à titre d’exemple la durée moyenne du jeu proposé par nos
taulières parisiennes :
n ∈ N désignant le nombre de boucles, les chemins menant à B sont :

– C1;n : n boucles −→ 1 −→ 2 −→ 4 −→ 5, de longueur 4n+3 et de probabilité
1

8

(
1

16

)n

,

– C2;n : n boucles −→ 1 −→ 2 −→ 4 −→ 3 −→ 5, de longueur 4n + 4 et de probabilité
(

1

16

)n+1

,

– C3;n : n boucles −→ 1 −→ 0, de longueur 4n + 1 et de probabilité
1

2

(
1

16

)n

,

– C4;n : n boucles −→ 1 −→ 2 −→ 0, de longueur 4n+ 2 et de probabilité
1

4

(
1

16

)n

On en déduit que le temps moyen d’absorption est égal à :

Tm =

+∞∑

n=0

[
4n+ 4

16
+

4n + 3

8
+

4n+ 2

4
+

4n+ 1

2

](
1

16

)n

=

+∞∑

n=0

(
60n + 26

16

)(
1

16

)n

soit en utilisant les propriétés de la série géométrique rappelées dans la partie complément :

Tm =
60

162

∑

n≥1

n

(
1

16

)n−1

+
26

16

∑

n≥0

(
1

16

)n

=
60

162
1

(1− 1/16)2
+

26

16

1

1− 1/16
= 2

Non seulement la probabilité de gagner à ce jeu est de 0,2 mais de plus, il dure en moyenne
deux lancers !

Règles de la valeur moyenne Ces outils permettent de simplifier les règles de parcours
présentées précédemment. Notamment la règle 3 de durée moyenne de parcours. On note
S = {1, 2, . . . , n} l’ensemble des états.

Définition 1-2-1-2 : On appelle fonction de probabilité la fonction définie sur S à valeurs
dans [0; 1], qui à chaque état i associe sa probabilité d’être absorbée dans un sous-ensemble

T ⊂ B. On la note p
(T )
i où, si aucune confusion n’est à craindre pi.

La formule des probabilités totales nous dit alors que pour tout état intérieur i :

pi =

n∑

k=1

pikpk

Pour le bord : pi = 1 si i ∈ T et pi = 0 si i ∈ B \ T .
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Théorème fondamental 1-2-1-3 :

1. Première règle de la valeur moyenne : La valeur de la fonction de probabilité en un état
intérieur i est la moyenne pondérée de ses valeurs en les états voisins de i.

2. Seconde règle de la valeur moyenne : La valeur du délai d’absorption en un état
intérieur i est de 1 plus la moyenne pondérée des délais d’absorption en les états voisins.

Remarques 1-2-1-4 :

1. Il est très formateur de chercher une preuve de la seconde règle de la valeur moyenne.
Comme i est un état intérieur, on sait que le délai d’absorption mi est au moins égal à
1. Le lecteur intéressé pourra consulter [2] au besoin.

2. Il arrive parfois que les transitions entre états n’aient pas la même durée. La seconde
règle de la valeur moyenne doit alors être modifiée. Nous n’en parlerons pas ici.

1.2.2 Réduction de graphes

Les premières et secondes règles de parcours nous permettent de simplifier avantageusement
certains graphes probabilistes. Citons notamment :

(a) Suppression d’un nœud : La règle 1 de parcours se traduit par :

0 1 2
a b

équivaut à :

0 2
ab

(b) Réunions de branches en parallèles : La règle 2 de parcours se traduit par :

0 1

a

béquivaut à :

0 1
a+ b

(c) Réunions de boucles issues d’un même nœud : Ce n’est qu’un cas particulier de
ce que nous avons vu en (b).

0 1 2

a

b

équivaut à :

0 1 2

a+ b
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(d) Synthèse : Simplification de graphes faisant intervenir des boucles :

Cas fréquent 1 :

0 1
b

a

équivaut à :

0 1

b
1−a

Cas fréquent 2 :

0 1 2
b c

aéquivaut à :

0 1 2

b
1−a

c
1−a

Appliquons ces résultats pour retrouver la probabilité de gain au jeu des taulières en simpli-
fiant petit à petit le graphe. Nous poserons p = 1/2 :

2 4

0 5

1 3

p

p

p

p

p

p

p

p

L’état 1 est fondamental.
Regroupons les branches 1 → 0 et 1 → 2 → 0 de probabilités respectives p et p2 qui mènent
à l’état absorbant 0 ; les branches 1 −→ 2 −→ 4 −→ 5 et 1 −→ 2 −→ 4 −→ 3 −→ 5 de
probabilités respectives p3 et p4 qui mènent à l’état absorbant 5, sans oublier la seule boucle
du graphe 1 −→ 2 −→ 4 −→ 3 −→ 1, de probabilité p4. Nous obtenons le graphe suivant :

0 1 5
p+ p2 p3 + p4

p4

lui-même équivalent à :

0 1 5

p+p2

1−p4
p3+p4

1−p4

On en déduit P (Gain) = p3+p4

1−p4
= 0, 2. Pas de surprise !
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1.2.3 Matrices de transition

Définition 1-2-3-1 : Soit une chaîne de Markov à N états. On appelle matrice de transition

de cette chaine la matrice (P) = (pi,j)1≤i,j≤N des probabilités de transition entre deux états
du graphe probabiliste associé.

Définition 1-2-3-2 : On appelle matrice stochastique une matrice carrée dont tous les co-
efficients sont positifs ou nuls et dont la somme des coefficients de chaque ligne est égale à
1.

Remarque 1-2-3-3 :

1. La matrice de transition d’un graphe probabiliste est une matrice stochastique.

2. Une matrice stochastique M admet toujours 1 comme valeur propre à laquelle on peut
associer le vecteur propre ~V dont toutes les composantes sont égales à 1.

3. Une matrice stochastique dont la somme des coefficients des colonnes est aussi égale à 1
est dite bistochastique.

Nous allons maintenant établir un résultat très utile concernant les chaines de Markov homo-
gènes. Cette propriété, appelée relation de Chapman-Komolgorov, permet de relier les proba-
bilités de transition en n étapes aux probabilités de transition en une étape.
On notera (P) = (pi,j)i,j∈S2 la matrice de transition de la chaine de Markov étudiée.

Pour n ≥ 0 et (i, j) ∈ S2, on note p
(n)
i,j la probabilité, partant de l’état i à l’instant 0 d’être

dans l’état j à l’instant n i.e p
(n)
i,j = PX0=i(Xn = j).

On pose également P(n) := (p
(n)
i,j )(i,j)∈S2 .

Théorème 1-2-3-4 : Pour tout entier n ≥ 0, la matrice de transition en n étapes est égale
à la puissance n-ième de la matrice de transition en une étape :

P(n) = (P)n

Corollaire 1-2-3-5 : Pour tout entier n ≥ 0, la matrice P(n) est stochastique.

Corollaire 1-2-3-6 : Pour tout (i, j) ∈ S2 et tout (m,n) ∈ N
2 on a :

p
(m+n)
i,j =

∑

k∈S

p
(m)
i,k p

(n)
k,j

Citons maintenant un corollaire d’une utilité capitale :

Corollaire 1-2-3-7 : Notons ~p0 l’état initial du système et ~pn son état après n transitions,
tous deux écrits sous la forme d’un vecteur ligne de longueur Card(S). Alors

~pn = ~p0(P)n

Il y aurait encore beaucoup à dire sur la classification des états, la notion de temps d’attente, le
conditionnement, ce qui dépasserait de loin le niveau de cet article. Nous renvoyons le lecteur
intéressé à [3] ou [4] par exemple.
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Application au problème des taulières :
La matrice de transition du graphe peut s’écrire, en notant p = 1/2 :

(P) =











0 1 2 3 4 5

0 1 0 0 0 0 0
1 p 0 p 0 0 0
2 p 0 0 0 p 0
3 0 p 0 0 0 p
4 0 0 0 p 0 p
5 0 0 0 0 0 1











On a noté sur les bords horizontaux et verticaux de la matrice les différents états.
Par hypothèse, l’état initial est ~p0 = (0, 1, 0, 0, 0, 0). En utilisant la corollaire 3-1-2-7, la pro-
babilité de se retrouver dans l’état i à l’instant n est égale à :

~pn = ~p0(P)n = eT2 (P)n

soit la seconde ligne de (P)n. Un petit coup de pouce de XCas donne :

~pn = [
(−15−5∗i)(−i

2
)
n
+(−15+5∗i)( i

2
)
n
−50( 1

2
)
n
+80

100 ,
(−i

2
)
n
+( i

2
)
n
+(− 1

2
)
n
+( 1

2
)
n

4 ,
i(−i

2
)
n

+−i( i

2
)
n

−(− 1

2
)
n

+( 1

2
)
n

4 ,
−i(−i

2
)
n

+i( i

2
)
n

−(− 1

2
)
n

+( 1

2
)
n

4 ,
−(−i

2
)
n

−( i

2
)
n

+(− 1

2
)
n

+( 1

2
)
n

4 ,
(15+5∗i)(−i

2
)
n

+(15−5∗i)( i

2
)
n

−50( 1

2
)
n

+20

100 ]

Les formules, qui font apparaître de "manière artificielle" des complexes se simplifient aisément
(petit exercice de calcul rapide). en particulier, la probabilité d’avoir gagné au bout de n jets
de pièces est égale à :

(15 + 5i)
(
−i
2

)n
+ (15− 5i)

(
i
2

)n
− 50

(
1
2

)n
+ 20

100

Exercice :

1. Déterminer en fonction de n la partie réelle de (15 + 5i)

(
−i

2

)n

,

2. En déduire la probabilité de gain pn au bout de n jets de dés.

3. Calculer lim
n→+∞

pn

1.2.4 Réduction de graphes et matrices de transition

L’objectif est ici d’examiner les liens entre les procédures de réduction des graphes et leur
représentation matricielle.

Réunion de branches et de boucles parallèles : C’est une étape préalable indispen-
sable. Tant qu’il y a des branches parallèles, nous n’avons pas affaire, en toute rigueur, à un
graphe pondéré et une représentation matricielle n’est donc pas envisageable. Il convient donc
en premier lieu d’utiliser cette règle.

Soit M une matrice stochastique. Notons M̃ := lim
n→+∞

Mn lorsque cette limite existe.
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Théorème 1-2-4-1 : Si le bord B d’une chaine de Markov est non vide, la probabilité,
partant d’un état intérieur quelconque, d’atteindre B est égale à 1.

Le but des procédés de réduction est de construire à partir d’un graphe G de matrice de
transition (P), le graphe G̃ de matrice (P̃).
Remarquons qu’une matrice de transition est définie à permutation des sommets près. On
ne peut donc en toute rigueur parler de la matrice de transition qu’une fois les sommets du
graphe numérotés fixés une fois pour toute.

Suppression de nœuds et de boucles :

Suppression d’un nœud :

0 1 2
a b

1

a pour matrice de transition :

(P) =








0 a 0

0 0 b

0 0 1








et pour tout entier n ≥ 2 :

(P)n = (P)2 =








0 0 ab

0 0 b

0 0 1








On a donc ˜(P) = (P)2. Le graphe G̃ est donc :

0 2

1

ab

b

1

Suppression d’une boucle :

0 1
b

a 1

a pour matrice de transition :

(P) =

(
a b

0 1

)

Un calcul simple nous amène à :

(P)n =

(
an b

∑n−1
k=0 a

k

0 1

)
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et comme 0 < a < 1, on a :

˜(P) =

(
0 b

1−a

0 1

)

D’où G̃ :

0 1

b
1−a

1

Nous pouvons remarquer que les matrices de transition sont des matrices d’application affine
de R

n.

Le jeu des taulières : Yom, l’esprit rafraichi par sa petite baignade se décida à reprendre
le drôle de jeu des taulières à la lumière matricielle.

2 4

0 5

1 3

1

p

p

p

p

p

p

p

p

1

avec p = 1/2.
Si j’examine les chemins menant au sommet 5 j’obtiens le sous-graphe :

2 4

5

1 3

p

p

p

p

p

p

1

dont la matrice d’incidence est :

M =














0 p 0 0 0

0 0 0 p 0

p 0 0 0 p

0 0 p 0 p

0 0 0 0 1














On a l’écriture par blocs : M =

(
V U

0 1

)
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avec V =











0 p 0 0

0 0 0 p

p 0 0 0

0 0 p 0











et U =







0
0
p
p







si bien que :

Mn =




V n

(
∑n−1

k=0 V
k
)

U

0 1





Or (Id−V )

(
n−1∑

k=0

V k

)

= Id−V n. D’autre part, si ma barbiche ne me trompe pas, la matrice

Id− V est inversible et bien évidemment lim
n→+∞

V n = 0.

Dans ce cas précis, on a même V 4 = p4Id, donc :

(Id− V )(Id+ V + V 2 + V 3) = (1− p4)Id

la limite étant assurée par le fait que 0 < p < 1. D’où :

M̃ =

(
0 NU

0 1

)

où N = 1
1−p4

(Id+ V + V 2 + V 3).

La partie du graphe issue de l’état 1 est donnée par la première ligne de NU , soit
p3 + p4

1− p4
.

Yes ! La boucle est bouclée !

Yom se dit que toutes ces réflexions qui avaient mis en ébullition ses neurones méritaient bien
un rafraichissement. Pourquoi pas une petite bière ?
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2 Concours C 2012

Cet exercice est une généralisation d’un problème issu du concours C 2012.
Chaque seconde, une particule se déplace dans N+1 compartiments numérotés de 0 à N selon
la règle suivante :

– Si la particule est dans le compartiment 0, elle se déplace vers le compartiment 1 avec
la probabilité 1,

– Si la particule est dans un compartiment i ∈ [1, N − 1], alors elle se déplace de manière
équiprobable vers le compartiment précédent ou le compartiment suivant,

– Si la particule est dans le compartiment N , elle y reste (absorption)
Calculez le temps moyen de parcours.

2.1 Simulation informatique

Donnons de suite un programme qui demande à l’utilisateur de saisir le nombre de portes
N séparant les compartiments et qui renvoie le temps moyen d’absorption de la particule.
Ce-dernier est calculé sur un grand nombre d’expériences temps saisi par l’utilisateur. Nous
avons pris ici temps=10 000.

from random import *

def deplacements():

abscisse=deplacement=0

5 while abscisse<N:

k=random()

if abscisse==0:

abscisse=abscisse+1

else:

10 if k<=0.5:

abscisse=abscisse+1

else:

abscisse=abscisse-1

deplacement=deplacement+1

15

if abscisse==N:

return deplacement

#Programme principal

20 N=int(input("Combien de portes voulez-vous disposer ? "))

temps=int(input("Sur combien de temps observer le mobile ? "))

j=0

deplacement_total=0

while j<temps:

25 deplacement_total=deplacement_total+deplacements()

j=j+1

print("Le mobile effectue en moyenne ",deplacement_total/temps," deplacements")

On obtient le tableau suivant :
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N Temps moyen de parcours
2 3.9722
3 8.9288
4 15.9898
5 24.9838
6 36.4928

Il semble que le temps moyen d’absorption de la particule soit d’environ N2 secondes s’il y a
N portes entre les compartiments.

2.2 Approche théorique

Le graphe modélisant le déplacement de la particule est aisé à construire à l’aide de l’énoncé :

0 1 2 3 . . . N−1 N

1

1
2

1
2

1
2

1
2

1
2

1
2

Notons mi le temps moyen d’absorption (la particule arrive dans le compartiment N) pour
chaque état i. La seconde règle de la valeur moyenne et la condition de bord donnent :







mN = 0 (condition au bord)

m0 = 1 +m1

mi = 1 +
1

2
(mi−1 +mi+1) (1 ≤ i ≤ N − 1)

soit : 





mN = 0 (1)

m0 = 1 +m1 (2)

mi−1 − 2mi +mi+1 = −2 (1 ≤ i ≤ N − 1) (3)

Le lecteur pourra, au besoin consulter la partie compléments, paragraphe 4-2.
(3) définit une suite récurrente affine d’ordre 2, dont les solutions s’écrivent comme somme
d’une solution particulière et des solutions de l’équation homogène associée :

(E0) : mi−1 − 2mi +mi+1 = 0 (1 ≤ i ≤ N − 1)

L’équation caractéristique associée à (E0) s’écrit x2 − 2x + 1 = 0 qui admet pour unique
solution x = 1. Ainsi, les solutions de (E0) sont de la forme ui = (Ai+B)× 1i = Ai+B.
D’autre part, il est aisé de constater que vi = −i2 est une solution particulière de (3).
Ainsi, mi = Ai+B − i2 (1 ≤ i ≤ N − 1).
On aimerait bien remplacer i par 0 dans l’expression précédente. Pour cela, on utilise la
"ruse" classique suivante : on choisit m−1 tel que (3) soit vérifié en remplaçant i par 0 :

m−1 − 2m0 +m1 = −2. Mais alors m0 = B. Or m0
(2)
= 1+m1 = 1+A+B − 1 = A+B, d’où

A = 0.
On en déduit que pour tout 0 ≤ i ≤ N − 1, mi = B − i2. Il reste à calculer la valeur de B.
Remplaçons i par N −1 dans (3) : B− (N −2)2−2(B− (N −1)2)+mN

︸︷︷︸

=0

= −2, ce qui conduit

après un bref calcul à B = N2.
Ainsi, m0 = N2, ce qui confirme les résultats obtenus dans la simulation précédente.
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2.3 Commentaires et prolongements

Définition 2-3-1 : L’état 0 est dit réfléchissant. Une fois visité, on en ressort juste après
avec la probabilité 1.

On pourrait aussi résoudre cet exercice en considérant des marches biaisées : la probabilité
de se déplacer à gauche ℓ est différente de celle de se déplacer à droite r à chaque pas de temps.
La méthode est la même.

Exercice 2-3-2 : Une particule se déplace chaque seconde depuis l’abscisse 0 de manière
équiprobable vers la droite ou vers la gauche d’une unité sur un axe gradué de −n à n. Les
états −n et n sont supposés absorbants. Calculez le temps moyen d’absorption.
Comparez avec le résultat obtenu au Concours C 2012. Justifiez de manière heuristique.

Voici maintenant un autre exemple qui aurait pu donner lieu à un joli problème du même type
(exercice-défi) :

Exercice 2-3-3 : Une histoire de rencontre...
On étudie la première rencontre entre deux scarabées situés symétriquement sur un polygone
à 2p (p > 2) côtés. Le jeu se déroule ainsi :

– À l’instant initial, deux scarabées sont situés symétriquement par rapport à O, centre
d’un polygone régulier à 2p côtés.

– Chaque seconde on lance une pièce pour chacun des scarabées. Si la pièce tombe sur pile
le scarabée concerné tourne dans le sens des aiguilles d’une montre, sinon il tourne dans
le sens inverse des aiguilles d’une montre.

1. Créez un script prenant pour argument p et qui renvoie le temps moyen de première
rencontre. Il s’agit bien sûr de calculer une fréquence. On pourra par exemple effectuer
10 000 expériences.

2. Dessinez un graphe probabiliste modélisant le problème. Prouvez théoriquement que
pour tout entier naturel p ≥ 2, le temps moyen de rencontre Tp est égal à 22p−3.

3. Créez un script prenant pour argument p et qui renvoie pour 10 000 expériences le
temps de première rencontre, qui sera indiqué en abscisse. En ordonnée sera indiquée
la fréquence de chaque temps de rencontre. Testez le script pour p = 3, 4, 5, 6. En
déduire la "forme" supposée de la distribution de la loi de Tp. Vérifiez sur une échelle
logarithmique. Conclusion ?

4. Déterminez de manière théorique la loi exacte de Tp. Comparez avec les résultats obtenus
expérimentalement.
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3 Concours C 2017

Un étudiant passionné d’informatique a créé un programme générant une suite de nombres
exclusivement composée de 0 et de 1 avec les conditions suivantes :

– les deux premiers nombres sont égaux à 1,
– si deux nombres consécutifs sont égaux à 1, alors le nombre suivant est égal à 1 avec une

probabilité de 2
3 ,

– si deux nombres consécutifs sont égaux à 0, alors le nombre suivant est égal à 0 avec une
probabilité de 2

3 ,
– si deux nombres consécutifs sont distincts, alors le nombre suivant est égal à 0 ou 1 avec

équiprobabilité.
On note Xn la variable aléatoire égale au n-ième nombre généré par le programme.
Donner la loi de Xn pour n ≥ 3 ainsi que l’espérance de Xn.

3.1 Simulation informatique

Voici comment aurait pu procéder l’étudiant pour générer sa suite :

def parcours(L,n):

for i in range(n): #n est le temps d'observation

alea=random()

if L[-2:]==[1,1]: #On observe les deux derniers termes

5 if alea<=2/3: #et on choisit le terme suivant

L.append(1) #en respectant les donnees de l'exercice

else:

L.append(0)

elif L[-2:]==[0,0]:

10 if alea<=2/3:

L.append(0)

else:

L.append(1)

else:

15 if alea<=1/2:

L.append(0)

else:

L.append(1)

return L

20

# Programme principal

from random import *
N=int(input("Combien de temps d'observation ? "))

liste=[1,1] #Initialisation de la liste

25 print("liste : ",parcours(liste,N))

Pas vraiment besoin d’être passionné d’informatique pour créer ce script... Ceci dit, nous
allons voir dès le paragraphe suivant qu’il nous sera nécessaire d’entrer dans la matrice !

Utilisons le script précédent pour simuler la loi de probabilité de Xn via l’approche fréquentiste.
Nous calculerons par exemple les lois approchées de X4 et de X10. Nous gardons en stock la
fonction parcours(L,n) définie précédemment ; n ≥ 1 désigne toujours le nombre de transitions
souhaitées.

#Programme principal
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from random import *
N=int(input("Nombre d'experiences ? "))

5 nb=int(input("Nombre de transitions par experience ? "))

N0,N1=0,0

for j in range(N):

Liste=parcours([1,1],nb)

if Liste[len(Liste)-1]==0:

10 N0=N0+1

else:

N1=N1+1

print("P(X",nb+2,"=0) = ",N0/N)

15 print("P(X",nb+2,"=1) = ",N1/N)

Avec N=100 000 expériences, nous obtenons le tableau suivant :

xi 0 1
f4 0,38983 0,61017
f10 0,49765 0,50235

où fi (i = 4, 10) désigne la fréquence de 0 (resp. de 1) comme dernier chiffre après i − 2
transitions. Attention au décalage, le nombre de départ 11, est de longueur 2.

3.2 Approche théorique

Puisque les deux derniers chiffres obtenus déterminent entièrement le suivant avec les condi-
tions citées, nous sommes amenés à définir naturellement quatre états : 11, 10, 01, 00. Les
probabilités de transition sont données par l’énoncé. D’où le graphe probabiliste suivant :

10

11 00

01

1/2

2/3 2/3

1/3

1/21/2

1/2 1/3

Soit n un entier naturel supérieur ou égal à 3. Il est clair que Xn(Ω) = {0; 1}.
L’état initial s’écrit 11 ; ainsi il faut n− 2 transitions pour connaître le n-ième nombre généré
par le programme. Essayons par exemple de calculer P (Xn = 1). Nous devons additionner la
probabilité de tous les chemins, qui, partant de l’état initial 11, arrivent au même état ou à
l’état 01.
Seulement, le graphe est compliqué. Même en essayant d’utiliser les méthodes de réduction.
Remarquons aussi qu’il n’y a aucun état absorbant. L’idée est donc d’utiliser l’outil matriciel.
Numérotons les états 1, 2, 3, 4 pour 11, 10, 01 et 00, de sorte que la matrice de transition s’écrit :

A =














2

3

1

3
0 0

0 0
1

2

1

2
1

2

1

2
0 0

0 0
1

3

2

3













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Notons ~pn = (p1n, p
2
n, p

3
n, p

4
n) la probabilité d’atteindre chacun des états 1, 2, 3 et 4 au bout de

n transitions. Par hypothèse ~p0 = (1, 0, 0, 0). On a la relation de récurrence ~pn+1 = ~pnA. Une
récurrence facile ou l’utilisation du corollaire 1-2-3-7 nous amène à ~pn = ~p0A

n. Or ~p0 = eT1 ,
où e1 désigne le premier vecteur de la base canonique de R4. On en déduit que ~pn n’est rien
d’autre que la première ligne de An.

Un petit coup de pouce de XCas nous donne directement la forme de An :










−(− 1

3
)
n

+6( 1

2
)
n

+2( 1

6
)
n

+3

10

−2(− 1

3
)
n

+2( 1

2
)
n

−2( 1

6
)
n

+2

10

2(− 1

3
)
n

−2( 1

2
)
n

−2( 1

6
)
n

+2

10
(− 1

3
)
n

−6( 1

2
)
n

+2( 1

6
)
n

+3

10
3(− 1

3
)
n
−3( 1

2
)
n
−3( 1

6
)
n
+3

10

6(− 1

3
)
n
−( 1

2
)
n
+3( 1

6
)
n
+2

10

−6(− 1

3
)
n
+( 1

2
)
n
+3( 1

6
)
n
+2

10

−3(− 1

3
)
n
+3( 1

2
)
n
−3( 1

6
)
n
+3

10
−3(− 1

3
)
n
+3( 1

2
)
n
−3( 1

6
)
n
+3

10

−6(− 1

3
)
n
+( 1

2
)
n
+3( 1

6
)
n
+2

10

6(− 1

3
)
n
−( 1

2
)
n
+3( 1

6
)
n
+2

10

3(− 1

3
)
n
−3( 1

2
)
n
−3( 1

6
)
n
+3

10
(− 1

3
)
n
−6( 1

2
)
n
+2( 1

6
)
n
+3

10

2(− 1

3
)
n
−2( 1

2
)
n
−2( 1

6
)
n
+2

10

−2(− 1

3
)
n
+2( 1

2
)
n
−2( 1

6
)
n
+2

10

−(− 1

3
)
n
+6( 1

2
)
n
+2( 1

6
)
n
+3

10










Remarquons que P (Xn = 0) = p2n−2 + p4n−2 et P (Xn = 1) = p1n−2 + p3n−2.
On en déduit la loi de probabilité de Xn :

P (Xn = 0) =
1

10

[

−

(

−
1

3

)n−2

− 4

(
1

2

)n−2

+ 5

]

et

P (Xn = 1) =
1

10

[(

−
1

3

)n−2

+ 4

(
1

2

)n−2

+ 5

]

Nous en déduisons que E(Xn) = P (Xn = 1) =
1

10

[(

−
1

3

)n−2

+ 4

(
1

2

)n−2

+ 5

]

Donnons les lois de probabilité de X4 et de X10 :

xi 0 1
P (X4 = xi) 0,3889 0,6111
P (X10 = xi) 0,4984 0,5016

Les résultats obtenus à la simulation précédente rejoignent la théorie. Ouf...
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4 Compléments

4.1 Petit point sur la série géométrique

On appelle ainsi la série entière définie sur D =]− 1; 1[ par f(x) =
+∞∑

n=0

xn.

Propriété 4-1-1 :

1. f est de classe C∞ sur D et pour tout entier naturel p non nul, on a

f (p)(x) =

+∞∑

n=p

n(n− 1) . . . (n− p+ 1)xn−p

2. Pour tout réel x ∈ D =]− 1; 1[, on a f(x) =
1

1− x
,

3. Pour tout réel x ∈ D =]− 1; 1[, on a f ′(x) =
1

(1− x)2
i.e

+∞∑

n=1

nxn−1 =
1

(1− x)2
.

4.2 Suites récurrentes affines d’ordre 2

Nous ne rappellerons que l’essentiel qui nous intéresse dans cet article. Pour une preuve
des résultats énoncés, on peut consulter :
https://fr.wikiversity.org/wiki/Approfondissement_sur_les_suites_numériques/

Suites_récurrentes_d’ordre_deux

Considérons une suite réelle u définie par une relation de récurrence de la forme :

(E) :

{

un+2 + aun+1 + bun = c

u0, u1 donnés

Définition 4-2-1 :

1. u est appelée suite affine linéaire d’ordre 2.

2. Les suites définies par la relation un+2 + aun+1 + bun = 0 s’appellent suites récurrentes

linéaires d’ordre 2.

Propriété 4-2-2 : L’ensemble des suites récurrentes linéaires d’ordre 2 est un R−espace
vectoriel de dimension 2.

Définition et Propriété 4-2-3 : L’équation du second degré x2 + ax + b = 0 s’appelle
équation caractéristique de (E0) : un+2 + aun+1 + bun = 0.

1. Si l’équation caractéristique a deux solutions réelles distinctes α et β, alors les solutions
de (E0) sont de la forme :

un = Aαn +Bβn ; (A,B) ∈ R
2

2. Si l’équation caractéristique a une unique solution réelle α0, alors les solutions de (E0)
sont de la forme :

un = (An+B)αn
0 ; (A,B) ∈ R

2
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3. Si l’équation caractéristique a deux solutions non réelles (nécessairement conjuguées) :
α± iβ, alors les solutions de (E0) sont de la forme :

un = Aαn cos(nβ) +Bαnsin(nβ) ; (A,B) ∈ R
2

Propriété 4-2-4 : Posons P (X) = X2 + aX + b. Ainsi P ′(X) = 2X + a.

1. Si P (1) 6= 0, alors vn = 1
a+b+c

est une solution particulière de (E).

2. Si P (1) = 0, nous distinguons deux sous-cas :
a) Si P ′(1) 6= 0 i.e a 6= −2, alors vn = cn

2+a
est une solution particulière de (E),

b) Si P ′(1) = 0, alors vn = cn2

2 est une solution particulière de (E).

É nonçons maintenant le résultat le plus utile :

Propriété 4-2-5 : Toute solution de (E) s’écrit comme somme d’un élément de (E0) et
d’une solution particulière de (E).
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